Zapiski s priprav

Zanke

ACM priprave na tekmovanja

Razli¢ica z dne 22. marec 2025

Kazalo
1 Sintaksa

2 Primeri uporabe
2.1 Spreminjanje dolzine zanke Lo L oo
2.2 Branje stevil vzanki Lo o
2.3 Zanka z drugac¢nim korakom in zacetkomo 000

10

11

1 Sintaksa

V programiranju pogosto zelimo nek del kode ponoviti, zato uporabljamo zanke. Pozna-
mo vec¢ zank, a najpogosteje uporabljamo zanko for. Le-ta ima tri posebne komponente:
zacetek, pogoj in korak. Poglejmo si preprost primer, ki trikrat izpise besedo nekaj.

#include <stdio.h>

int main() {
// zaletek; p0goyj; korak
for (int stevec=0; stevec < 3; stevec++) {
// med zauitimi oklepaji {} je koda,
// ki se tzvede vsako iteracijo zanke
printf ("nekaj\n") ;
}

return O;

Poglejmo si, kako ta program deluje. Podpic¢ja v peti vrstici razdelijo okrogle oklepaje
na tri dele: zacCetek (int stevec=0), pogoj (stevec < 3) in korak (stevec++). Zacetek
se bo izvedel, ko se ta zanka zacne. Vsaki¢ preden se izvede koda v notranjosti zanke, se
preveri pogoj. Ce pogoj drzi, se bo izvedla koda v zanki, sicer pa se bo zanka koncala.
Korak je podoben zacetku, in se izvede na koncu vsake ponovitve zanke.

V zgornjem primeru zacetek naredi novo stevilko stevec in jo nastavi na 0. Pogoj pre-
veri, Ce je stevec manjsi od 3, korak stevec++ pa je okrajsava za stevec = stevec + 1,
torej poveca stevec za 1. Program sledi naslednjem postopku:

1. Program se zacne in pride do for zanke, najprej se izvede zacetek int stevec=0.

2. Zdaj se je zacela zanka, preveri se pogoj stevec < 3. Ker je stevec za zdaj se
0, je pogoj izpolnjen. Izvede se vsebina zanke, torej program izpise nekaj. Zdaj
smo prisli do konca zanke, izvede se korak, zato se stevec poveca na 1, program
pa skodi nazaj na zacetek zanke.

3. Ker smo na zacetku zanke, se preveri pogoj, stevec < 3, stevec je zdaj 1 in je
pogoj Se vedno izpolnjen, zato se izvede vsebina zanke. Ko program se enkrat
izpise nekaj, izvede korak, stevec poveca na 2 in skoci nazaj na zacetek.

4. Spet smo na zacetku, zato se preveri pogoj, stevec je zdaj 2, kar je manjse od 3,
zato se nekaj izpise Se tretjic. Program potem povecéa stevec na 3 in skoc¢i nazaj
na zacetek.

5. Ker smo spet na zacetku, se bo se enkrat preveril pogoj, a zdaj je stevec enak 3
in 3 ni manjse od 3, zato se zanka konca. Ker je naslednji ukaz return 0, se bo
program tam koncal.

10

11

Vredno je omeniti, da je nas stevec zavzel vrednosti 0, 1, in 2, kar se morda zdi ¢udno,
glede na to, da bi ponavadi Steli do tri kot 1,2, 3. Tovrstno Stetje od nic je zelo pogosto
v programiranju, in bo prislo prav kasneje, ko se bomo u¢ili o seznamih.

2 Primeri uporabe

2.1 Spreminjanje dolzine zanke

Zanka, ki smo jo napisali zgoraj, se bo vedno ponovila trikrat. Kaj pa ¢e hoc¢emo, da se
zanka ponovi glede na neko stevilo na vhodu? Seveda je tudi to mogoce in sicer tako,
da vstavimo naso spremenljivko v pogoj zanke. Poglejmo si primer.

#include <stdio.h>

int main() {
int dolzina;
scanf ("%d", &dolzina);
for (int stevec=0; stevec < dolzina; stevec++) {
printf ("-");
+
printf(">\n");
return O;

Zgornji program sprejme Stevilo in narise puscico te dolzine. Tu uporabimo Se en trik,
in sicer v funkciji printf znotraj zanke ne dodamo \n, s ¢imer dosezemo to, da so v
izhodu znaki - eden zraven drugega v isti vrstici in ne vsak v svoji.

2.2 Branje stevil v zanki

Ena od moci racunalnikov je zelo hitra obdelava velike koli¢ine podatkov, racunalnik bo
na primer zlahka sestel tiso¢ stevil, medtem ko bi bilo to poceti na roke precej zamudno.
Poglejmo si, kako bi napisali program, ki bi nekaj izra¢unal z vec Stevili.

#include <stdio.h>

int main() {
int n;
scanf ("%d", &n);
int vsota = 0;
for (int i=0; i < n; i++) {
int sestevanec;

10

11

12

13

14

scanf ("%d", &sestevanec);
vsota += sestevanec;

+

printf ("%d\n", vsota);

return O;

V zgornjem primeru prvo preberemo stevilo n, nato pa ustvarimo spremenljivko vsota,
ki jo takoj nastavimo na 0. V tej spremenljivki bomo hranili vsoto stevil, ki smo jih
do sedaj videli na vhodu (razen n), na koncu programa bo torej enaka vsoti vseh takih
Stevil.

Opazimo, da v zanki namesto stevec sedaj uporabljamo i, ki je tradicionalna izbira
za spremenljivko v zanki. V notranjosti zanke so zdaj trije ukazi. Najprej naredimo novo
spremenljivko, ki jo poimenujemo sestevanec in preberemo naslednje stevilo iz vhoda.
Nato pa z okrajSavo vsota += sestevanec pristejemo spremenljivki vsota spremenljiv-
ko sestevanec. Na daljse bi to lahko napisali kot vsota = vsota + sestevanec. V
vsaki iteraciji tako pristejemo ravno prebrano stevilo k vsoti, na koncu pa bomo izpisali
vsoto vseh.

2.3 Zanka z drugacnim korakom in zacetkom

Do zdaj so vse nase zanke takole: for (int i=0; i < 10; i++), torej so zacele z nic in
se nekajkrat ponovile. C++ pa nam dovoli, da lahko z nasimi zankami naredimo veliko
vec¢. Kot primer si poglejmo zanko, ki izpise vsa soda stevila med 1 in 100.

Pozorno poglejmo stevila, ki jih moramo izpisati. Ker 1 ni sodo, bo prvo izpisano
stevilo 2. Stevilo 3 prav tako ni sodo, tako da bomo izpisali 4, po tem pa 6, 8, 10 in tako
dalje. Vidimo, da vsak korak povecamo izpisano stevilo za 2, napisimo torej program.

#include <stdio.h>

int main() {
for (int i=2; i<=100; i += 2) {
printf ("%d\n", 1i);
}

return O;

Ker se zZelena stevila zacnejo z dva, bomo v zacetni del zanke vpisali int i=2. Ker
zelimo izpisati stevila med 1 in 100 in ne med 1 in 99, bomo v pogojnem delu uporabili
znak manjse ali enako, 1<=100 (pogoj 1<100 ne bi veljal za Stevilo 100). Ker zelimo
povecati nase Stevilo za 2 vsak korak, smo v polje za korak napisali i += 2. Edina

stvar, ki jo naredimo v notranjosti napisane zanke pa je, da izpiSemo trenutno vrednost
spremenljivke i.

	Sintaksa
	Primeri uporabe
	Spreminjanje dolžine zanke
	Branje števil v zanki
	Zanka z drugačnim korakom in začetkom

