
Zapiski s priprav

Zanke
ACM priprave na tekmovanja

Različica z dne 22. marec 2025

Kazalo
1 Sintaksa 2

2 Primeri uporabe 3
2.1 Spreminjanje dolžine zanke . 3
2.2 Branje števil v zanki . 3
2.3 Zanka z drugačnim korakom in začetkom 4

1

1 Sintaksa
V programiranju pogosto želimo nek del kode ponoviti, zato uporabljamo zanke. Pozna-
mo več zank, a najpogosteje uporabljamo zanko for. Le-ta ima tri posebne komponente:
začetek, pogoj in korak. Poglejmo si preprost primer, ki trikrat izpiše besedo nekaj.

1 #include <stdio.h>
2

3 int main() {
4 // začetek; pogoj; korak
5 for (int stevec=0; stevec < 3; stevec++) {
6 // med zavitimi oklepaji {} je koda,
7 // ki se izvede vsako iteracijo zanke
8 printf("nekaj\n");
9 }

10 return 0;
11 }

Poglejmo si, kako ta program deluje. Podpičja v peti vrstici razdelijo okrogle oklepaje
na tri dele: začetek (int stevec=0), pogoj (stevec < 3) in korak (stevec++). Začetek
se bo izvedel, ko se ta zanka začne. Vsakič preden se izvede koda v notranjosti zanke, se
preveri pogoj. Če pogoj drži, se bo izvedla koda v zanki, sicer pa se bo zanka končala.
Korak je podoben začetku, in se izvede na koncu vsake ponovitve zanke.

V zgornjem primeru začetek naredi novo številko stevec in jo nastavi na 0. Pogoj pre-
veri, če je stevec manjši od 3, korak stevec++ pa je okrajšava za stevec = stevec + 1,
torej poveča stevec za 1. Program sledi naslednjem postopku:

1. Program se začne in pride do for zanke, najprej se izvede začetek int stevec=0.

2. Zdaj se je začela zanka, preveri se pogoj stevec < 3. Ker je stevec za zdaj še
0, je pogoj izpolnjen. Izvede se vsebina zanke, torej program izpiše nekaj. Zdaj
smo prišli do konca zanke, izvede se korak, zato se stevec poveča na 1, program
pa skoči nazaj na začetek zanke.

3. Ker smo na začetku zanke, se preveri pogoj, stevec < 3, stevec je zdaj 1 in je
pogoj še vedno izpolnjen, zato se izvede vsebina zanke. Ko program še enkrat
izpiše nekaj, izvede korak, stevec poveča na 2 in skoči nazaj na začetek.

4. Spet smo na začetku, zato se preveri pogoj, stevec je zdaj 2, kar je manjše od 3,
zato se nekaj izpiše še tretjič. Program potem poveča stevec na 3 in skoči nazaj
na začetek.

5. Ker smo spet na začetku, se bo še enkrat preveril pogoj, a zdaj je stevec enak 3
in 3 ni manjše od 3, zato se zanka konča. Ker je naslednji ukaz return 0, se bo
program tam končal.

2

Vredno je omeniti, da je naš števec zavzel vrednosti 0, 1, in 2, kar se morda zdi čudno,
glede na to, da bi ponavadi šteli do tri kot 1, 2, 3. Tovrstno štetje od nič je zelo pogosto
v programiranju, in bo prišlo prav kasneje, ko se bomo učili o seznamih.

2 Primeri uporabe
2.1 Spreminjanje dolžine zanke
Zanka, ki smo jo napisali zgoraj, se bo vedno ponovila trikrat. Kaj pa če hočemo, da se
zanka ponovi glede na neko število na vhodu? Seveda je tudi to mogoče in sicer tako,
da vstavimo našo spremenljivko v pogoj zanke. Poglejmo si primer.

1 #include <stdio.h>
2

3 int main() {
4 int dolzina;
5 scanf("%d", &dolzina);
6 for (int stevec=0; stevec < dolzina; stevec++) {
7 printf("-");
8 }
9 printf(">\n");

10 return 0;
11 }

Zgornji program sprejme število in nariše puščico te dolžine. Tu uporabimo še en trik,
in sicer v funkciji printf znotraj zanke ne dodamo \n, s čimer dosežemo to, da so v
izhodu znaki - eden zraven drugega v isti vrstici in ne vsak v svoji.

2.2 Branje števil v zanki
Ena od moči računalnikov je zelo hitra obdelava velike količine podatkov, računalnik bo
na primer zlahka seštel tisoč števil, medtem ko bi bilo to početi na roke precej zamudno.
Poglejmo si, kako bi napisali program, ki bi nekaj izračunal z več števili.

1 #include <stdio.h>
2

3 int main() {
4 int n;
5 scanf("%d", &n);
6 int vsota = 0;
7 for (int i=0; i < n; i++) {
8 int sestevanec;

3

9 scanf("%d", &sestevanec);
10 vsota += sestevanec;
11 }
12 printf("%d\n", vsota);
13 return 0;
14 }

V zgornjem primeru prvo preberemo število n, nato pa ustvarimo spremenljivko vsota,
ki jo takoj nastavimo na 0. V tej spremenljivki bomo hranili vsoto števil, ki smo jih
do sedaj videli na vhodu (razen n), na koncu programa bo torej enaka vsoti vseh takih
števil.

Opazimo, da v zanki namesto stevec sedaj uporabljamo i, ki je tradicionalna izbira
za spremenljivko v zanki. V notranjosti zanke so zdaj trije ukazi. Najprej naredimo novo
spremenljivko, ki jo poimenujemo sestevanec in preberemo naslednje število iz vhoda.
Nato pa z okrajšavo vsota += sestevanec prištejemo spremenljivki vsota spremenljiv-
ko sestevanec. Na daljše bi to lahko napisali kot vsota = vsota + sestevanec. V
vsaki iteraciji tako prištejemo ravno prebrano število k vsoti, na koncu pa bomo izpisali
vsoto vseh.

2.3 Zanka z drugačnim korakom in začetkom
Do zdaj so vse naše zanke takole: for (int i=0; i < 10; i++), torej so začele z nič in
se nekajkrat ponovile. C++ pa nam dovoli, da lahko z našimi zankami naredimo veliko
več. Kot primer si poglejmo zanko, ki izpiše vsa soda števila med 1 in 100.

Pozorno poglejmo števila, ki jih moramo izpisati. Ker 1 ni sodo, bo prvo izpisano
število 2. Število 3 prav tako ni sodo, tako da bomo izpisali 4, po tem pa 6, 8, 10 in tako
dalje. Vidimo, da vsak korak povečamo izpisano število za 2, napišimo torej program.

1 #include <stdio.h>
2

3 int main() {
4 for (int i=2; i<=100; i += 2) {
5 printf("%d\n", i);
6 }
7 return 0;
8 }

Ker se želena števila začnejo z dva, bomo v začetni del zanke vpisali int i=2. Ker
želimo izpisati števila med 1 in 100 in ne med 1 in 99, bomo v pogojnem delu uporabili
znak manjše ali enako, i<=100 (pogoj i<100 ne bi veljal za število 100). Ker želimo
povečati naše število za 2 vsak korak, smo v polje za korak napisali i += 2. Edina

4

stvar, ki jo naredimo v notranjosti napisane zanke pa je, da izpišemo trenutno vrednost
spremenljivke i.

5

	Sintaksa
	Primeri uporabe
	Spreminjanje dolžine zanke
	Branje števil v zanki
	Zanka z drugačnim korakom in začetkom

