
CEOI 2014
Day 2

Task: cake
Spoiler

Solution

You cannot eat your cake and have it.
— JAMES JOYCE, »Ulysses« (1922)

All were wrong, so Shem himself, the doctator, took
the cake, the correct solution being – all give it up?

— JAMES JOYCE, »Finnegans Wake« (1939)

Subtask 1

For every cake we store its current rank (ordered by deliciousness). The ranks can be
updated trivially in O(N). Eating the cakes can be simulated in O(N), too. We get a time
complexity of O(NQ).

Subtask 2

Updating the ranks can be implemented more efficiently, if we compute a new scale of
deliciousness which can be used to compare the cakes at different times. After each en-
hancement we introduce a new number measuring the new deliciousness. This scale can
be computed in O(emaxE + N log N) where emax = 10 and E is the number of enhance-
ments. This rescaling will be done in all the following solutions. Afterwards we process
the queries: Every enhancement can be performed O(1) by simply setting the deliciousness
to the next value computed while constructing the scale. When still simulating the eating
process, we get a complexity of O(FN + emaxE + N log N) where F is the number of queries
of type “F”.

Subtask 3

To solve the third subtask we can store the order in which the cakes get eaten. Then using a
binary search we can answer to queries of type “F” in O(log N). However, in the worst case
updating requires linear time. We get a complexity of O((N + F) log N + (N + emax)E).

Full solutions

Segment tree

We create two segment trees with the same structure: one tree for the cakes on the left side
of the initial cake and one tree for the cakes on the right side. The leafs represent the cakes
ordered increasingly by the distance to the initial cake. We want to implement two types of
queries:

• maxTill(a): What is the largest deliciousness among the cakes up to cake number a?

• initialLengthBelow(d): What is the length of the largest initial sequence of cakes which
are less delicious than d?

1/2



CEOI 2014
Day 2

Task: cake
Spoiler

This can be done with a complexity of O(log n) when storing the greatest and the smallest
deliciousness in every segment. Enhancements can also be performed in logarithmic time.
Now a query “F a” can be answered by computing adding the the number of cakes from
the initial cake to cake number a and

〈tree not containing a〉.initialLengthBelow(〈tree containing a〉.maxTill(〈index of a in the tree)).

We get a complexity of O(Eemax + (N + Q) log N).

Stacks

Instead of segment trees we can also use stacks storing the longest increasing subsequences
of deliciousnesses together with the corresponding positions.

Then maxTill and initialLengthBelow can be implemented using a binary search in the
stacks with time complexity O(log N). For making a cake the eth most delicious one, we
pop all the cakes from the corresponding stack while remembering the last e − 1 most
delicious cakes on the stack until we reach a cake nearer to the initial cake than the cake
we want to enhance. Now we decide whether we have to push this cake on the stack.
Afterwards some of the e− 1 most delicious cakes on the stack we have stored might have
to be pushed onto the stack. While the number of popped cakes can be linear in N, the
number of pushed cakes is bounded from above by emax, and the initial size of the stack is
bounded by N. Thus the amortised time complexity of an enhancement is O(emax). Overall
we get the same complexity as in the previous solution.

2/2


