
Architecture Guide September 13, 2014 current

i

OpenStack Architecture Design Guide
current (2014-09-13)
Copyright © 2014 OpenStack Foundation Some rights reserved.

To reap the benefits of OpenStack, you should plan, design, and architect your cloud
properly, taking user's needs into account and understanding the use cases.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed
on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution ShareAlike 3.0 License.
http://creativecommons.org/licenses/by-sa/3.0/legalcode

http://www.apache.org/licenses/LICENSE-2.0
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Architecture Guide September 13, 2014 current

iii

Table of Contents
Preface .. 5

Conventions ... 5
Document change history .. 5

1. Introduction ... 1
Intended audience ... 1
How this book is organized ... 2
Why and how we wrote this book ... 3
Methodology ... 4

2. General purpose .. 11
User requirements .. 12
Technical considerations ... 16
Operational considerations ... 30
Architecture ... 33
Prescriptive example .. 48

3. Compute focused ... 51
User requirements .. 52
Technical considerations ... 54
Operational considerations ... 64
Architecture ... 66
Prescriptive examples ... 77

4. Storage focused ... 81
User requirements .. 82
Technical considerations ... 83
Operational considerations ... 86
Architecture ... 91
Prescriptive examples ... 102

5. Network focused .. 109
User requirements .. 112
Technical considerations ... 115
Operational considerations ... 123
Architecture ... 124
Prescriptive examples ... 129

6. Multi-site .. 135
User requirements .. 135
Technical considerations ... 140
Operational considerations ... 144
Architecture ... 147
Prescriptive examples ... 150

7. Hybrid .. 157
User requirements .. 158
Technical considerations ... 164

Architecture Guide September 13, 2014 current

iv

Operational considerations ... 170
Architecture ... 172
Prescriptive examples ... 176

8. Massively scalable ... 185
User requirements .. 186
Technical considerations ... 189
Operational considerations ... 192

9. Specialized cases .. 195
Multi-hypervisor example ... 196
Specialized networking example ... 198
Software-defined networking ... 198
Desktop-as-a-Service ... 201
OpenStack on OpenStack ... 203
Specialized hardware ... 207

10. References ... 209
A. Community support ... 211

Documentation .. 211
ask.openstack.org .. 213
OpenStack mailing lists ... 213
The OpenStack wiki ... 213
The Launchpad Bugs area .. 213
The OpenStack IRC channel .. 215
Documentation feedback ... 215
OpenStack distribution packages .. 215

Glossary ... 217

Architecture Guide September 13, 2014 current

5

Preface

Conventions
The OpenStack documentation uses several typesetting conventions.

Notices

Notices take these forms:

Note

A handy tip or reminder.

Important

Something you must be aware of before proceeding.

Warning

Critical information about the risk of data loss or security is-
sues.

Command prompts

$ prompt Any user, including the root user, can run commands that
are prefixed with the $ prompt.

prompt The root user must run commands that are prefixed with
the # prompt. You can also prefix these commands with the
sudo command, if available, to run them.

Document change history
This version of the guide replaces and obsoletes all earlier versions.

The following table describes the most recent changes:

Revision Date Summary of Changes

July 21, 2014 • Initial release.

Architecture Guide September 13, 2014 current

1

1. Introduction

Table of Contents
Intended audience ... 1
How this book is organized ... 2
Why and how we wrote this book ... 3
Methodology ... 4

OpenStack is a leader in the cloud technology gold rush, as organizations
of all stripes discover the increased flexibility and speed to market that
self-service cloud and Infrastructure-as-a-Service (IaaS) provides. To truly
reap those benefits, however, the cloud must be designed and architected
properly.

A well-architected cloud provides a stable IT environment that offers easy
access to needed resources, usage-based expenses, extra capacity on de-
mand, disaster recovery, and a secure environment, but a well-architected
cloud does not magically build itself. It requires careful consideration of a
multitude of factors, both technical and non-technical.

There is no single architecture that is "right" for an OpenStack cloud de-
ployment. OpenStack can be used for any number of different purposes,
and each of them has its own particular requirements and architectural pe-
culiarities.

This book is designed to look at some of the most common uses for Open-
Stack clouds (and even some that are less common, but provide a good
example) and explain what issues need to be considered and why, along
with a wealth of knowledge and advice to help an organization to design
and build a well-architected OpenStack cloud that will fit its unique re-
quirements.

Intended audience
This book has been written for architects and designers of OpenStack
clouds. This book is not intended for people who are deploying Open-
Stack. For a guide on deploying and operating OpenStack, please refer
to the OpenStack Operations Guide (http://docs.openstack.org/open-
stack-ops).

http://docs.openstack.org/openstack-ops
http://docs.openstack.org/openstack-ops

Architecture Guide September 13, 2014 current

2

The reader should have prior knowledge of cloud architecture and princi-
ples, experience in enterprise system design, Linux and virtualization expe-
rience, and a basic understanding of networking principles and protocols.

How this book is organized
This book has been organized into various chapters that help define the
use cases associated with making architectural choices related to an Open-
Stack cloud installation. Each chapter is intended to stand alone to encour-
age individual chapter readability, however each chapter is designed to
contain useful information that may be applicable in situations covered
by other chapters. Cloud architects may use this book as a comprehensive
guide by reading all of the use cases, but it is also possible to review only
the chapters which pertain to a specific use case. When choosing to read
specific use cases, note that it may be necessary to read more than one sec-
tion of the guide to formulate a complete design for the cloud. The use
cases covered in this guide include:

• General purpose: A cloud built with common components that should
address 80% of common use cases.

• Compute focused: A cloud designed to address compute intensive work-
loads such as high performance computing (HPC).

• Storage focused: A cloud focused on storage intensive workloads such
as data analytics with parallel file systems.

• Network focused: A cloud depending on high performance and reliable
networking, such as a content delivery network (CDN).

• Multi-site: A cloud built with multiple sites available for application de-
ployments for geographical, reliability or data locality reasons.

• Hybrid cloud: An architecture where multiple disparate clouds are con-
nected either for failover, hybrid cloud bursting, or availability.

• Massively scalable: An architecture that is intended for cloud service
providers or other extremely large installations.

A chapter titled Specialized cases provides information on architectures
that have not previously been covered in the defined use cases.

Each chapter in the guide is then further broken down into the following
sections:

Architecture Guide September 13, 2014 current

3

• Introduction: Provides an overview of the architectural use case.

• User requirements: Defines the set of user considerations that typically
come into play for that use case.

• Technical considerations: Covers the technical issues that must be ac-
counted when dealing with this use case.

• Operational considerations: Covers the ongoing operational tasks associ-
ated with this use case and architecture.

• Architecture: Covers the overall architecture associated with the use
case.

• Prescriptive examples: Presents one or more scenarios where this archi-
tecture could be deployed.

A glossary covers the terms used in the book.

Why and how we wrote this book
The velocity at which OpenStack environments are moving from proof-
of-concepts to production deployments is leading to increasing questions
and issues related to architecture design considerations. By and large these
considerations are not addressed in the existing documentation, which
typically focuses on the specifics of deployment and configuration options
or operational considerations, rather than the bigger picture.

We wrote this book to guide readers in designing an OpenStack architec-
ture that meets the needs of their organization. This guide concentrates
on identifying important design considerations for common cloud use cas-
es and provides examples based on these design guidelines. This guide
does not aim to provide explicit instructions for installing and configuring
the cloud, but rather focuses on design principles as they relate to user re-
quirements as well as technical and operational considerations. For spe-
cific guidance with installation and configuration there are a number of
resources already available in the OpenStack documentation that help in
that area.

This book was written in a book sprint format, which is a facilitated, rapid
development production method for books. For more information, see the
Book Sprints website (www.booksprints.net).

This book was written in five days during July 2014 while exhausting the
M&M, Mountain Dew and healthy options supply, complete with juggling

Architecture Guide September 13, 2014 current

4

entertainment during lunches at VMware's headquarters in Palo Alto. The
event was also documented on Twitter using the #OpenStackDesign hash-
tag. The Book Sprint was facilitated by Faith Bosworth and Adam Hyde.

We would like to thank VMware for their generous hospitality, as well as
our employers, Cisco, Cloudscaling, Comcast, EMC, Mirantis, Rackspace,
Red Hat, Verizon, and VMware, for enabling us to contribute our time. We
would especially like to thank Anne Gentle and Kenneth Hui for all of their
shepherding and organization in making this happen.

The author team includes:

• Kenneth Hui (EMC) @hui_kenneth

• Alexandra Settle (Rackspace) @dewsday

• Anthony Veiga (Comcast) @daaelar

• Beth Cohen (Verizon) @bfcohen

• Kevin Jackson (Rackspace) @itarchitectkev

• Maish Saidel-Keesing (Cisco) @maishsk

• Nick Chase (Mirantis) @NickChase

• Scott Lowe (VMware) @scott_lowe

• Sean Collins (Comcast) @sc68cal

• Sean Winn (Cloudscaling) @seanmwinn

• Sebastian Gutierrez (Red Hat) @gutseb

• Stephen Gordon (Red Hat) @xsgordon

• Vinny Valdez (Red Hat) @VinnyValdez

Methodology
The magic of the cloud is that it can do anything. It is both robust and flex-
ible, the best of both worlds. Yes, the cloud is highly flexible and it can do
almost anything, but to get the most out of a cloud investment, it is impor-
tant to define how the cloud will be used by creating and testing use cases.

http://twitter.com/hui_kenneth
http://twitter.com/dewsday
http://twitter.com/daaelar
http://twitter.com/bfcohen
http://twitter.com/itarchitectkev
http://twitter.com/maishsk
http://twitter.com/NickChase
http://twitter.com/scott_lowe
http://twitter.com/sc68cal
http://twitter.com/seanmwinn
http://twitter.com/gutseb
http://twitter.com/xsgordon
http://twitter.com/VinnyValdez

Architecture Guide September 13, 2014 current

5

This is the chapter that describes the thought process behind how to de-
sign a cloud architecture that best suits the intended use.

The diagram shows at a very abstract level the process for capturing re-
quirements and building use cases. Once a set of use cases has been de-
fined, it can then be used to design the cloud architecture.

Use case planning can seem counter-intuitive. After all, it takes about five
minutes to sign up for a server with Amazon. Amazon does not know in
advance what any given user is planning on doing with it, right? Wrong.
Amazon’s product management department spends plenty of time figur-
ing out exactly what would be attractive to their typical customer and hon-
ing the service to deliver it. For the enterprise, the planning process is no
different, but instead of planning for an external paying customer, for ex-
ample, the use could be for internal application developers or a web por-
tal. The following is a list of the high level objectives that need to be incor-
porated into the thinking about creating a use case.

Overall business objectives

• Develop clear definition of business goals and requirements

• Increase project support and engagement with business, customers and
end users.

Technology

Architecture Guide September 13, 2014 current

6

• Coordinate the OpenStack architecture across the project and leverage
OpenStack community efforts more effectively.

• Architect for automation as much as possible to speed development and
deployment.

• Use the appropriate tools for the development effort.

• Create better and more test metrics and test harnesses to support con-
tinuous and integrated development, test processes and automation.

Organization

• Better messaging of management support of team efforts

• Develop better cultural understanding of Open Source, cloud architec-
tures, Agile methodologies, continuous development, test and integra-
tion, overall development concepts in general

As an example of how this works, consider a business goal of using the
cloud for the company’s E-commerce website. This goal means planning
for applications that will support thousands of sessions per second, vari-
able workloads, and lots of complex and changing data. By identifying the
key metrics, such as number of concurrent transactions per second, size of
database, and so on, it is possible to then build a method for testing the
assumptions.

Develop functional user scenarios. Develop functional user scenarios
that can be used to develop test cases that can be used to measure over-
all project trajectory. If the organization is not ready to commit to an ap-
plication or applications that can be used to develop user requirements, it
needs to create requirements to build valid test harnesses and develop us-
able metrics. Once the metrics are established, as requirements change, it
is easier to respond to the changes quickly without having to worry overly
much about setting the exact requirements in advance. Think of this as cre-
ating ways to configure the system, rather than redesigning it every time
there is a requirements change.

Limit cloud feature set. Create requirements that address the pain
points, but do not recreate the entire OpenStack tool suite. The require-
ment to build OpenStack, only better, is self-defeating. It is important to
limit scope creep by concentrating on developing a platform that will ad-
dress tool limitations for the requirements, but not recreating the entire
suite of tools. Work with technical product owners to establish critical fea-
tures that are needed for a successful cloud deployment.

Architecture Guide September 13, 2014 current

7

Application cloud readiness
Although the cloud is designed to make things easier, it is important to re-
alize that "using cloud" is more than just firing up an instance and drop-
ping an application on it. The "lift and shift" approach works in certain sit-
uations, but there is a fundamental difference between clouds and tradi-
tional bare-metal-based environments, or even traditional virtualized envi-
ronments.

In traditional environments, with traditional enterprise applications, the
applications and the servers that run on them are "pets". They're lovingly
crafted and cared for, the servers have names like Gandalf or Tardis, and if
they get sick, someone nurses them back to health. All of this is designed
so that the application does not experience an outage.

In cloud environments, on the other hand, servers are more like cattle.
There are thousands of them, they get names like NY-1138-Q, and if they
get sick, they get put down and a sysadmin installs another one. Tradition-
al applications that are unprepared for this kind of environment, naturally
will suffer outages, lost data, or worse.

There are other reasons to design applications with cloud in mind. Some
are defensive, such as the fact that applications cannot be certain of exact-
ly where or on what hardware they will be launched, they need to be flex-
ible, or at least adaptable. Others are proactive. For example, one of the
advantages of using the cloud is scalability, so applications need to be de-
signed in such a way that they can take advantage of those and other op-
portunities.

Determining whether an application is cloud-
ready

There are several factors to take into consideration when looking at
whether an application is a good fit for the cloud.

Structure A large, monolithic, single-tiered lega-
cy application typically isn't a good fit
for the cloud. Efficiencies are gained
when load can be spread over several
instances, so that a failure in one part
of the system can be mitigated with-
out affecting other parts of the system,
or so that scaling can take place where
the app needs it.

Architecture Guide September 13, 2014 current

8

Dependencies Applications that depend on specific
hardware—such as a particular chip set
or an external device such as a finger-
print reader—might not be a good fit
for the cloud, unless those dependen-
cies are specifically addressed. Similarly,
if an application depends on an oper-
ating system or set of libraries that can-
not be used in the cloud, or cannot be
virtualized, that is a problem.

Connectivity Self-contained applications or those
that depend on resources that are not
reachable by the cloud in question,
will not run. In some situations, work
around these issues with custom net-
work setup, but how well this works
depends on the chosen cloud environ-
ment.

Durability and resilience Despite the existence of SLAs, things
break: servers go down, network con-
nections are disrupted, or too many
tenants on a server make a server un-
usable. An application must be sturdy
enough to contend with these issues.

Designing for the cloud

Here are some guidelines to keep in mind when designing an application
for the cloud:

• Be a pessimist: Assume everything fails and design backwards. Love your
chaos monkey.

• Put your eggs in multiple baskets: Leverage multiple providers, geo-
graphic regions and availability zones to accommodate for local avail-
ability issues. Design for portability.

• Think efficiency: Inefficient designs will not scale. Efficient designs be-
come cheaper as they scale. Kill off unneeded components or capacity.

• Be paranoid: Design for defense in depth and zero tolerance by building
in security at every level and between every component. Trust no one.

Architecture Guide September 13, 2014 current

9

• But not too paranoid: Not every application needs the platinum solu-
tion. Architect for different SLA’s, service tiers and security levels.

• Manage the data: Data is usually the most inflexible and complex area
of a cloud and cloud integration architecture. Don’t short change the ef-
fort in analyzing and addressing data needs.

• Hands off: Leverage automation to increase consistency and quality and
reduce response times.

• Divide and conquer: Pursue partitioning and parallel layering wherever
possible. Make components as small and portable as possible. Use load
balancing between layers.

• Think elasticity: Increasing resources should result in a proportional in-
crease in performance and scalability. Decreasing resources should have
the opposite effect.

• Be dynamic: Enable dynamic configuration changes such as auto scaling,
failure recovery and resource discovery to adapt to changing environ-
ments, faults and workload volumes.

• Stay close: Reduce latency by moving highly interactive components and
data near each other.

• Keep it loose: Loose coupling, service interfaces, separation of concerns,
abstraction and well defined API’s deliver flexibility.

• Be cost aware: Autoscaling, data transmission, virtual software licens-
es, reserved instances, and so on can rapidly increase monthly usage
charges. Monitor usage closely.

Architecture Guide September 13, 2014 current

11

2. General purpose

Table of Contents
User requirements .. 12
Technical considerations ... 16
Operational considerations .. 30
Architecture ... 33
Prescriptive example .. 48

An OpenStack general purpose cloud is often considered a starting point
for building a cloud deployment. General purpose clouds, by their nature,
balance the components and do not emphasize (or heavily emphasize) any
particular aspect of the overall computing environment. The expectation
is that the compute, network, and storage components will be given equal
weight in the design. General purpose clouds can be found in private, pub-
lic, and hybrid environments. They lend themselves to many different use
cases but, since they are homogeneous deployments, they are not suited
to specialized environments or edge case situations. Common uses to con-
sider for a general purpose cloud could be, but are not limited to, provid-
ing a simple database, a web application runtime environment, a shared
application development platform, or lab test bed. In other words, any use
case that would benefit from a scale-out rather than a scale-up approach is
a good candidate for a general purpose cloud architecture.

A general purpose cloud, by definition, is something that is designed to
have a range of potential uses or functions; not specialized for a specif-
ic use. General purpose architecture is largely considered a scenario that
would address 80% of the potential use cases. The infrastructure, in itself,
is a specific use case. It is also a good place to start the design process. As
the most basic cloud service model, general purpose clouds are designed
to be platforms suited for general purpose applications.

General purpose clouds are limited to the most basic components, but
they can include additional resources such as:

• Virtual-machine disk image library

• Raw block storage

• File or object storage

Architecture Guide September 13, 2014 current

12

• Firewalls

• Load balancers

• IP addresses

• Network overlays or virtual local area networks (VLANs)

• Software bundles

User requirements
The general purpose cloud is built following the Infrastructure-as-a-Service
(IaaS) model; as a platform best suited for use cases with simple require-
ments. The general purpose cloud user requirements themselves are typi-
cally not complex. However, it is still important to capture them even if the
project has minimum business and technical requirements such as a proof
of concept (PoC) or a small lab platform.

These user considerations are written from the perspective of the organi-
zation that is building the cloud, not from the perspective of the end-users
who will consume cloud services provided by this design.

Cost Financial factors are a primary concern for any
organization. Since general purpose clouds
are considered the baseline from which all
other cloud architecture environments derive,
cost will commonly be an important criteria.
This type of cloud, however, does not always
provide the most cost-effective environment
for a specialized application or situation. Un-
less razor-thin margins and costs have been
mandated as a critical factor, cost should not
be the sole consideration when choosing or
designing a general purpose architecture.

Time to market Another common business factor in building
a general purpose cloud is the ability to deliv-
er a service or product more quickly and flexi-
bly. In the modern hyper-fast business world,
being able to deliver a product in six months
instead of two years is often a major driving
force behind the decision to build a general
purpose cloud. General purpose clouds allow
users to self-provision and gain access to com-

Architecture Guide September 13, 2014 current

13

pute, network, and storage resources on-de-
mand thus decreasing time to market. It may
potentially make more sense to build a gen-
eral purpose PoC as opposed to waiting to fi-
nalize the ultimate use case for the system.
The tradeoff with taking this approach is the
risk that the general purpose cloud is not opti-
mized for the actual final workloads. The final
decision on which approach to take will be de-
pendent on the specifics of the business objec-
tives and time frame for the project.

Revenue opportunity The revenue opportunity for a given cloud will
vary greatly based on the intended use case of
that particular cloud. Some general purpose
clouds are built for commercial customer fac-
ing products, but there are plenty of other
reasons that might make the general purpose
cloud the right choice. A small cloud service
provider (CSP) might want to build a general
purpose cloud rather than a massively scalable
cloud because they do not have the deep fi-
nancial resources needed, or because they do
not or will not know in advance the purposes
for which their customers are going to use the
cloud. For some users, the advantages cloud
itself offers mean an enhancement of revenue
opportunity. For others, the fact that a gener-
al purpose cloud provides only baseline func-
tionality will be a disincentive for use, leading
to a potential stagnation of potential revenue
opportunities.

Legal requirements

Many jurisdictions have legislative and regulatory requirements governing
the storage and management of data in cloud environments. Common ar-
eas of regulation include:

• Data retention policies ensuring storage of persistent data and records
management to meet data archival requirements.

• Data ownership policies governing the possession and responsibility for
data.

Architecture Guide September 13, 2014 current

14

• Data sovereignty policies governing the storage of data in foreign coun-
tries or otherwise separate jurisdictions.

• Data compliance policies governing certain types of information need
to reside in certain locations due to regular issues - and more important
cannot reside in other locations for the same reason.

Examples of such legal frameworks include the data protection framework
of the European Union and the requirements of the Financial Industry Reg-
ulatory Authority in the United States. Consult a local regulatory body for
more information.

Technical requirements

Technical cloud architecture requirements should be weighted against the
business requirements.

Performance As a baseline product, general purpose
clouds do not provide optimized per-
formance for any particular function.
While a general purpose cloud should
provide enough performance to satis-
fy average user considerations, perfor-
mance is not a general purpose cloud
customer driver.

No predefined usage model The lack of a pre-defined usage mod-
el enables the user to run a wide vari-
ety of applications without having to
know the application requirements in
advance. This provides a degree of in-
dependence and flexibility that no oth-
er cloud scenarios are able to provide.

On-demand and self-service ap-
plication

By definition, a cloud provides end
users with the ability to self-provision
computing power, storage, networks,
and software in a simple and flexible
way. The user must be able to scale
their resources up to a substantial level
without disrupting the underlying host
operations. One of the benefits of us-
ing a general purpose cloud architec-
ture is the ability to start with limited

http://ec.europa.eu/justice/data-protection/
http://www.finra.org/Industry/Regulation/FINRARules/
http://www.finra.org/Industry/Regulation/FINRARules/

Architecture Guide September 13, 2014 current

15

resources and increase them over time
as the user demand grows.

Public cloud For a company interested in building a
commercial public cloud offering based
on OpenStack, the general purpose
architecture model might be the best
choice because the designers are not
going to know the purposes or work-
loads for which the end users will use
the cloud.

Internal consumption (private)
cloud

Organizations need to determine if it
makes the most sense to create their
own clouds internally. The main advan-
tage of a private cloud is that it allows
the organization to maintain complete
control over all the architecture and
the cloud components. One caution is
to think about the possibility that users
will want to combine using the inter-
nal cloud with access to an external
cloud. If that case is likely, it might be
worth exploring the possibility of tak-
ing a multi-cloud approach with regard
to at least some of the architectural el-
ements. Designs that incorporate the
use of multiple clouds, such as a private
cloud and a public cloud offering, are
described in the "Multi-Cloud" scenario,
see Chapter 6, “Multi-site” [135].

Security Security should be implemented ac-
cording to asset, threat, and vulnerabil-
ity risk assessment matrices. For cloud
domains that require increased com-
puter security, network security, or in-
formation security, general purpose
cloud is not considered an appropriate
choice.

Architecture Guide September 13, 2014 current

16

Technical considerations
When designing a general purpose cloud, there is an implied requirement
to design for all of the base services generally associated with providing
Infrastructure-as-a-Service: compute, network and storage. Each of these
services have different resource requirements. As a result, it is important
to make design decisions relating directly to the service currently under
design, while providing a balanced infrastructure that provides for all ser-
vices.

When designing an OpenStack cloud as a general purpose cloud, the hard-
ware selection process can be lengthy and involved due to the sheer mass
of services which need to be designed and the unique characteristics and
requirements of each service within the cloud. Hardware designs need to
be generated for each type of resource pool; specifically, compute, net-
work, and storage. In addition to the hardware designs, which affect the
resource nodes themselves, there are also a number of additional hard-
ware decisions to be made related to network architecture and facilities
planning. These factors play heavily into the overall architecture of an
OpenStack cloud.

Designing compute resources
It is recommended to design compute resources as pools of resources
which will be addressed on-demand. When designing compute resource
pools, a number of factors impact your design decisions. For example, de-
cisions related to processors, memory, and storage within each hypervisor
are just one element of designing compute resources. In addition, it is nec-
essary to decide whether compute resources will be provided in a single
pool or in multiple pools.

To design for the best use of available resources by applications running in
the cloud, it is recommended to design more than one compute resource
pool. Each independent resource pool should be designed to provide ser-
vice for specific flavors of instances or groupings of flavors. For the pur-
pose of this book, "instance" refers to a virtual machines and the operating
system running on the virtual machine. Designing multiple resource pools
helps to ensure that, as instances are scheduled onto compute hypervisors,
each independent node's resources will be allocated in a way that makes
the most efficient use of available hardware. This is commonly referred to
as bin packing.

Using a consistent hardware design among the nodes that are placed with-
in a resource pool also helps support bin packing. Hardware nodes select-

Architecture Guide September 13, 2014 current

17

ed for being a part of a compute resource pool should share a common
processor, memory, and storage layout. By choosing a common hardware
design, it becomes easier to deploy, support and maintain those nodes
throughout their life cycle in the cloud.

OpenStack provides the ability to configure overcommit ratio—the ratio
of virtual resources available for allocation to physical resources present—
for both CPU and memory. The default CPU overcommit ratio is 16:1 and
the default memory overcommit ratio is 1.5:1. Determine the tuning of the
overcommit ratios for both of these options during the design phase, as
this has a direct impact on the hardware layout of your compute nodes.

As an example, consider that a m1.small instance uses 1 vCPU, 20 GB of
ephemeral storage and 2,048 MB of RAM. When designing a hardware
node as a compute resource pool to service instances, take into consider-
ation the number of processor cores available on the node as well as the
required disk and memory to service instances running at capacity. For a
server with 2 CPUs of 10 cores each, with hyperthreading turned on, the
default CPU overcommit ratio of 16:1 would allow for 640 (2 x 10 x 2 x 16)
total m1.small instances. By the same reasoning, using the default mem-
ory overcommit ratio of 1.5:1 you can determine that the server will need
at least 853GB (640 x 2,048 MB % 1.5) of RAM. When sizing nodes for
memory, it is also important to consider the additional memory required
to service operating system and service needs.

Processor selection is an extremely important consideration in hardware
design, especially when comparing the features and performance charac-
teristics of different processors. Some newly released processors include
features specific to virtualized compute hosts including hardware assisted
virtualization and technology related to memory paging (also known as
EPT shadowing). These features have a tremendous positive impact on the
performance of virtual machines running in the cloud.

In addition to the impact on actual compute services, it is also important
to consider the compute requirements of resource nodes within the cloud.
Resource nodes refers to non-hypervisor nodes providing controller, ob-
ject storage, block storage, or networking services in the cloud. The num-
ber of processor cores and threads has a direct correlation to the number
of worker threads which can be run on a resource node. It is important to
ensure sufficient compute capacity and memory is planned on resource
nodes.

Workload profiles are unpredictable in a general purpose cloud, so it may
be difficult to design for every specific use case in mind. Additional com-

Architecture Guide September 13, 2014 current

18

pute resource pools can be added to the cloud at a later time, so this un-
predictability should not be a problem. In some cases, the demand on cer-
tain instance types or flavors may not justify an individual hardware de-
sign. In either of these cases, start by providing hardware designs which
will be capable of servicing the most common instance requests first, look-
ing to add additional hardware designs to the overall architecture in the
form of new hardware node designs and resource pools as they become
justified at a later time.

Designing network resources

An OpenStack cloud traditionally has multiple network segments, each of
which provides access to resources within the cloud to both operators and
tenants. In addition, the network services themselves also require network
communication paths which should also be separated from the other net-
works. When designing network services for a general purpose cloud, it
is recommended to plan for either a physical or logical separation of net-
work segments which will be used by operators and tenants. It is further
suggested to create an additional network segment for access to internal
services such as the message bus and database used by the various cloud
services. Segregating these services onto separate networks helps to pro-
tect sensitive data and also protects against unauthorized access to ser-
vices.

Based on the requirements of instances being serviced in the cloud, the
next design choice which will affect your design is the choice of network
service which will be used to service instances in the cloud. The choice be-
tween legacy networking (nova-network), as a part of OpenStack Com-
pute, and OpenStack Networking (neutron), has tremendous implications
and will have a huge impact on the architecture and design of the cloud
network infrastructure.

The legacy networking (nova-network) service is primarily a layer-2 net-
working service that functions in two modes. In legacy networking, the
two modes differ in their use of VLANs. When using legacy networking in
a flat network mode, all network hardware nodes and devices throughout
the cloud are connected to a single layer-2 network segment that provides
access to application data.

When the network devices in the cloud support segmentation using
VLANs, legacy networking can operate in the second mode. In this design
model, each tenant within the cloud is assigned a network subnet which
is mapped to a VLAN on the physical network. It is especially important
to remember the maximum number of 4096 VLANs which can be used

Architecture Guide September 13, 2014 current

19

within a spanning tree domain. These limitations place hard limits on the
amount of growth possible within the data center. When designing a gen-
eral purpose cloud intended to support multiple tenants, it is especially rec-
ommended to use legacy networking with VLANs, and not in flat network
mode.

Another consideration regarding network is the fact that legacy network-
ing is entirely managed by the cloud operator; tenants do not have con-
trol over network resources. If tenants require the ability to manage and
create network resources such as network segments and subnets, it will be
necessary to install the OpenStack Networking service to provide network
access to instances.

OpenStack Networking is a first class networking service that gives full con-
trol over creation of virtual network resources to tenants. This is often ac-
complished in the form of tunneling protocols which will establish encap-
sulated communication paths over existing network infrastructure in order
to segment tenant traffic. These methods vary depending on the specific
implementation, but some of the more common methods include tunnel-
ing over GRE, encapsulating with VXLAN, and VLAN tags.

Initially, it is suggested to design at least three network segments, the first
of which will be used for access to the cloud’s REST APIs by tenants and op-
erators. This is generally referred to as a public network. In most cases, the
controller nodes and swift proxies within the cloud will be the only devices
necessary to connect to this network segment. In some cases, this network
might also be serviced by hardware load balancers and other network de-
vices.

The next segment is used by cloud administrators to manage hardware re-
sources and is also used by configuration management tools when deploy-
ing software and services onto new hardware. In some cases, this network
segment might also be used for internal services, including the message
bus and database services, to communicate with each other. Due to the
highly secure nature of this network segment, it may be desirable to se-
cure this network from unauthorized access. This network will likely need
to communicate with every hardware node within the cloud.

The last network segment is used by applications and consumers to pro-
vide access to the physical network and also for users accessing applica-
tions running within the cloud. This network is generally segregated from
the one used to access the cloud APIs and is not capable of communicat-
ing directly with the hardware resources in the cloud. Compute resource
nodes will need to communicate on this network segment, as will any net-

Architecture Guide September 13, 2014 current

20

work gateway services which allow application data to access the physical
network outside of the cloud.

Designing storage resources

OpenStack has two independent storage services to consider, each with its
own specific design requirements and goals. In addition to services which
provide storage as their primary function, there are additional design con-
siderations with regard to compute and controller nodes which will affect
the overall cloud architecture.

Designing OpenStack Object Storage

When designing hardware resources for OpenStack Object Storage, the
primary goal is to maximize the amount of storage in each resource node
while also ensuring that the cost per terabyte is kept to a minimum. This
often involves utilizing servers which can hold a large number of spinning
disks. Whether choosing to use 2U server form factors with directly at-
tached storage or an external chassis that holds a larger number of drives,
the main goal is to maximize the storage available in each node.

It is not recommended to invest in enterprise class drives for an OpenStack
Object Storage cluster. The consistency and partition tolerance character-
istics of OpenStack Object Storage will ensure that data stays up to date
and survives hardware faults without the use of any specialized data repli-
cation devices.

A great benefit of OpenStack Object Storage is the ability to mix and
match drives by utilizing weighting within the swift ring. When designing
your swift storage cluster, it is recommended to make use of the most cost
effective storage solution available at the time. Many server chassis on the
market can hold 60 or more drives in 4U of rack space, therefore it is rec-
ommended to maximize the amount of storage per rack unit at the best
cost per terabyte. Furthermore, the use of RAID controllers is not recom-
mended in an object storage node.

In order to achieve this durability and availability of data stored as objects,
it is important to design object storage resource pools in a way that pro-
vides the suggested availability that the service can provide. Beyond de-
signing at the hardware node level, it is important to consider rack-level
and zone-level designs to accommodate the number of replicas configured
to be stored in the Object Storage service (the default number of replicas is
three). Each replica of data should exist in its own availability zone with its

Architecture Guide September 13, 2014 current

21

own power, cooling, and network resources available to service that spe-
cific zone.

Object storage nodes should be designed so that the number of requests
does not hinder the performance of the cluster. The object storage service
is a chatty protocol, therefore making use of multiple processors that have
higher core counts will ensure the IO requests do not inundate the server.

Designing OpenStack Block Storage

When designing OpenStack Block Storage resource nodes, it is helpful
to understand the workloads and requirements that will drive the use of
block storage in the cloud. In a general purpose cloud these use patterns
are often unknown. It is recommended to design block storage pools so
that tenants can choose the appropriate storage solution for their appli-
cations. By creating multiple storage pools of different types, in conjunc-
tion with configuring an advanced storage scheduler for the block storage
service, it is possible to provide tenants with a large catalog of storage ser-
vices with a variety of performance levels and redundancy options.

In addition to directly attached storage populated in servers, block stor-
age can also take advantage of a number of enterprise storage solutions.
These are addressed via a plug-in driver developed by the hardware ven-
dor. A large number of enterprise storage plug-in drivers ship out-of-the-
box with OpenStack Block Storage (and many more available via third par-
ty channels). While a general purpose cloud would likely use directly at-
tached storage in the majority of block storage nodes, it may also be nec-
essary to provide additional levels of service to tenants which can only be
provided by enterprise class storage solutions.

The determination to use a RAID controller card in block storage nodes is
impacted primarily by the redundancy and availability requirements of the
application. Applications which have a higher demand on input-output per
second (IOPS) will influence both the choice to use a RAID controller and
the level of RAID configured on the volume. Where performance is a con-
sideration, it is suggested to make use of higher performing RAID volumes.
In contrast, where redundancy of block storage volumes is more important
it is recommended to make use of a redundant RAID configuration such
as RAID 5 or RAID 6. Some specialized features, such as automated repli-
cation of block storage volumes, may require the use of third-party plug-
ins and enterprise block storage solutions in order to provide the high de-
mand on storage. Furthermore, where extreme performance is a require-
ment it may also be necessary to make use of high speed SSD disk drives'
high performing flash storage solutions.

Architecture Guide September 13, 2014 current

22

Software selection

The software selection process can play a large role in the architecture of a
general purpose cloud. Choice of operating system, selection of OpenStack
software components, choice of hypervisor and selection of supplemental
software will have a large impact on the design of the cloud.

Operating system (OS) selection plays a large role in the design and archi-
tecture of a cloud. There are a number of OSes which have native support
for OpenStack including Ubuntu, Red Hat Enterprise Linux (RHEL), Cen-
tOS, and SUSE Linux Enterprise Server (SLES). "Native support" in this con-
text means that the distribution provides distribution-native packages by
which to install OpenStack in their repositories. Note that "native support"
is not a constraint on the choice of OS; users are free to choose just about
any Linux distribution (or even Microsoft Windows) and install OpenStack
directly from source (or compile their own packages). However, the real-
ity is that many organizations will prefer to install OpenStack from distri-
bution-supplied packages or repositories (although using the distribution
vendor's OpenStack packages might be a requirement for support).

OS selection also directly influences hypervisor selection. A cloud architect
who selects Ubuntu, RHEL, or SLES has some flexibility in hypervisor; KVM,
Xen, and LXC are supported virtualization methods available under Open-
Stack Compute (nova) on these Linux distributions. A cloud architect who
selects Hyper-V, on the other hand, is limited to Windows Server. Similar-
ly, a cloud architect who selects XenServer is limited to the CentOS-based
dom0 operating system provided with XenServer.

The primary factors that play into OS-hypervisor selection include:

User requirements The selection of OS-hypervisor combination first
and foremost needs to support the user require-
ments.

Support The selected OS-hypervisor combination needs to
be supported by OpenStack.

Interoperability The OS-hypervisor needs to be interoperable
with other features and services in the Open-
Stack design in order to meet the user require-
ments.

Architecture Guide September 13, 2014 current

23

Hypervisor
OpenStack supports a wide variety of hypervisors, one or more of which
can be used in a single cloud. These hypervisors include:

• KVM (and QEMU)

• XCP/XenServer

• vSphere (vCenter and ESXi)

• Hyper-V

• LXC

• Docker

• Bare-metal

A complete list of supported hypervisors and their capabilities can be
found at https://wiki.openstack.org/wiki/HypervisorSupportMatrix.

General purpose clouds should make use of hypervisors that support the
most general purpose use cases, such as KVM and Xen. More specific hy-
pervisors should then be chosen to account for specific functionality or a
supported feature requirement. In some cases, there may also be a man-
dated requirement to run software on a certified hypervisor including solu-
tions from VMware, Microsoft, and Citrix.

The features offered through the OpenStack cloud platform determine the
best choice of a hypervisor. As an example, for a general purpose cloud
that predominantly supports a Microsoft-based migration, or is managed
by staff that has a particular skill for managing certain hypervisors and op-
erating systems, Hyper-V might be the best available choice. While the de-
cision to use Hyper-V does not limit the ability to run alternative operat-
ing systems, be mindful of those that are deemed supported. Each differ-
ent hypervisor also has their own hardware requirements which may affect
the decisions around designing a general purpose cloud. For example, to
utilize the live migration feature of VMware, vMotion, this requires an in-
stallation of vCenter/vSphere and the use of the ESXi hypervisor, which in-
creases the infrastructure requirements.

In a mixed hypervisor environment, specific aggregates of compute re-
sources, each with defined capabilities, enable workloads to utilize soft-
ware and hardware specific to their particular requirements. This function-
ality can be exposed explicitly to the end user, or accessed through defined
metadata within a particular flavor of an instance.

https://wiki.openstack.org/wiki/HypervisorSupportMatrix

Architecture Guide September 13, 2014 current

24

OpenStack components
A general purpose OpenStack cloud design should incorporate the core
OpenStack services to provide a wide range of services to end-users. The
OpenStack core services recommended in a general purpose cloud are:

• OpenStack Compute (nova)

• OpenStack Networking (neutron)

• OpenStack Image Service (glance)

• OpenStack Identity (keystone)

• OpenStack dashboard (horizon)

• Telemetry module (ceilometer)

A general purpose cloud may also include OpenStack Object Storage
(swift). OpenStack Block Storage (cinder) may be selected to provide per-
sistent storage to applications and instances although, depending on the
use case, this could be optional.

Supplemental software
A general purpose OpenStack deployment consists of more than just
OpenStack-specific components. A typical deployment involves services
that provide supporting functionality, including databases and message
queues, and may also involve software to provide high availability of the
OpenStack environment. Design decisions around the underlying message
queue might affect the required number of controller services, as well as
the technology to provide highly resilient database functionality, such as
MariaDB with Galera. In such a scenario, replication of services relies on
quorum. Therefore, the underlying database nodes, for example, should
consist of at least 3 nodes to account for the recovery of a failed Galera
node. When increasing the number of nodes to support a feature of the
software, consideration of rack space and switch port density becomes im-
portant.

Where many general purpose deployments use hardware load balancers
to provide highly available API access and SSL termination, software so-
lutions, for example HAProxy, can also be considered. It is vital to ensure
that such software implementations are also made highly available. This
high availability can be achieved by using software such as Keepalived or
Pacemaker with Corosync. Pacemaker and Corosync can provide active-ac-

Architecture Guide September 13, 2014 current

25

tive or active-passive highly available configuration depending on the spe-
cific service in the OpenStack environment. Using this software can affect
the design as it assumes at least a 2-node controller infrastructure where
one of those nodes may be running certain services in standby mode.

Memcached is a distributed memory object caching system, and Redis is
a key-value store. Both are usually deployed on general purpose clouds
to assist in alleviating load to the Identity service. The memcached service
caches tokens, and due to its distributed nature it can help alleviate some
bottlenecks to the underlying authentication system. Using memcached or
Redis does not affect the overall design of your architecture as they tend
to be deployed onto the infrastructure nodes providing the OpenStack ser-
vices.

Performance
Performance of an OpenStack deployment is dependent on a number of
factors related to the infrastructure and controller services. The user re-
quirements can be split into general network performance, performance
of compute resources, and performance of storage systems.

Controller infrastructure
The Controller infrastructure nodes provide management services to the
end-user as well as providing services internally for the operating of the
cloud. The Controllers typically run message queuing services that carry
system messages between each service. Performance issues related to the
message bus would lead to delays in sending that message to where it
needs to go. The result of this condition would be delays in operation func-
tions such as spinning up and deleting instances, provisioning new stor-
age volumes and managing network resources. Such delays could adverse-
ly affect an application’s ability to react to certain conditions, especially
when using auto-scaling features. It is important to properly design the
hardware used to run the controller infrastructure as outlined above in the
Hardware Selection section.

Performance of the controller services is not just limited to processing pow-
er, but restrictions may emerge in serving concurrent users. Ensure that
the APIs and Horizon services are load tested to ensure that you are able
to serve your customers. Particular attention should be made to the Open-
Stack Identity Service (Keystone), which provides the authentication and
authorization for all services, both internally to OpenStack itself and to
end-users. This service can lead to a degradation of overall performance if
this is not sized appropriately.

Architecture Guide September 13, 2014 current

26

Network performance

In a general purpose OpenStack cloud, the requirements of the network
help determine its performance capabilities. For example, small deploy-
ments may employ 1 Gigabit Ethernet (GbE) networking, whereas larger
installations serving multiple departments or many users would be better
architected with 10 GbE networking. The performance of the running in-
stances will be limited by these speeds. It is possible to design OpenStack
environments that run a mix of networking capabilities. By utilizing the
different interface speeds, the users of the OpenStack environment can
choose networks that are fit for their purpose. For example, web applica-
tion instances may run on a public network presented through OpenStack
Networking that has 1 GbE capability, whereas the back-end database uses
an OpenStack Networking network that has 10 GbE capability to replicate
its data or, in some cases, the design may incorporate link aggregation for
greater throughput.

Network performance can be boosted considerably by implementing hard-
ware load balancers to provide front-end service to the cloud APIs. The
hardware load balancers also perform SSL termination if that is a require-
ment of your environment. When implementing SSL offloading, it is impor-
tant to understand the SSL offloading capabilities of the devices selected.

Compute host

The choice of hardware specifications used in compute nodes including
CPU, memory and disk type directly affects the performance of the in-
stances. Other factors which can directly affect performance include tun-
able parameters within the OpenStack services, for example the overcom-
mit ratio applied to resources. The defaults in OpenStack Compute set a
16:1 over-commit of the CPU and 1.5 over-commit of the memory. Running
at such high ratios leads to an increase in "noisy-neighbor" activity. Care
must be taken when sizing your Compute environment to avoid this sce-
nario. For running general purpose OpenStack environments it is possible
to keep to the defaults, but make sure to monitor your environment as us-
age increases.

Storage performance

When considering performance of OpenStack Block Storage, hardware
and architecture choice is important. Block Storage can use enterprise
back-end systems such as NetApp or EMC, use scale out storage such as
GlusterFS and Ceph, or simply use the capabilities of directly attached stor-

Architecture Guide September 13, 2014 current

27

age in the nodes themselves. Block Storage may be deployed so that traffic
traverses the host network, which could affect, and be adversely affected
by, the front-side API traffic performance. As such, consider using a ded-
icated data storage network with dedicated interfaces on the Controller
and Compute hosts.

When considering performance of OpenStack Object Storage, a number of
design choices will affect performance. A user’s access to the Object Stor-
age is through the proxy services, which typically sit behind hardware load
balancers. By the very nature of a highly resilient storage system, replica-
tion of the data would affect performance of the overall system. In this
case, 10 GbE (or better) networking is recommended throughout the stor-
age network architecture.

Availability

In OpenStack, the infrastructure is integral to providing services and should
always be available, especially when operating with SLAs. Ensuring net-
work availability is accomplished by designing the network architecture
so that no single point of failure exists. A consideration of the number of
switches, routes and redundancies of power should be factored into core
infrastructure, as well as the associated bonding of networks to provide di-
verse routes to your highly available switch infrastructure.

The OpenStack services themselves should be deployed across multiple
servers that do not represent a single point of failure. Ensuring API avail-
ability can be achieved by placing these services behind highly available
load balancers that have multiple OpenStack servers as members.

OpenStack lends itself to deployment in a highly available manner where
it is expected that at least 2 servers be utilized. These can run all the ser-
vices involved from the message queuing service, for example RabbitMQ
or QPID, and an appropriately deployed database service such as MySQL
or MariaDB. As services in the cloud are scaled out, back-end services will
need to scale too. Monitoring and reporting on server utilization and re-
sponse times, as well as load testing your systems, will help determine scale
out decisions.

Care must be taken when deciding network functionality. Currently, Open-
Stack supports both the legacy networking (nova-network) system and
the newer, extensible OpenStack Networking. Both have their pros and
cons when it comes to providing highly available access. Legacy network-
ing, which provides networking access maintained in the OpenStack Com-
pute code, provides a feature that removes a single point of failure when

Architecture Guide September 13, 2014 current

28

it comes to routing, and this feature is currently missing in OpenStack Net-
working. The effect of legacy networking’s multi-host functionality restricts
failure domains to the host running that instance.

On the other hand, when using OpenStack Networking, the OpenStack
controller servers or separate Networking hosts handle routing. For a de-
ployment that requires features available in only Networking, it is possi-
ble to remove this restriction by using third party software that helps main-
tain highly available L3 routes. Doing so allows for common APIs to con-
trol network hardware, or to provide complex multi-tier web applications
in a secure manner. It is also possible to completely remove routing from
Networking, and instead rely on hardware routing capabilities. In this case,
the switching infrastructure must support L3 routing.

OpenStack Networking (neutron) and legacy networking (nova-network)
both have their advantages and disadvantages. They are both valid and
supported options that fit different network deployment models described
in the OpenStack Operations Guide.

Ensure your deployment has adequate back-up capabilities. As an exam-
ple, in a deployment that has two infrastructure controller nodes, the de-
sign should include controller availability. In the event of the loss of a sin-
gle controller, cloud services will run from a single controller in the event of
failure. Where the design has higher availability requirements, it is impor-
tant to meet those requirements by designing the proper redundancy and
availability of controller nodes.

Application design must also be factored into the capabilities of the under-
lying cloud infrastructure. If the compute hosts do not provide a seamless
live migration capability, then it must be expected that when a compute
host fails, that instance and any data local to that instance will be deleted.
Conversely, when providing an expectation to users that instances have a
high-level of uptime guarantees, the infrastructure must be deployed in a
way that eliminates any single point of failure when a compute host disap-
pears. This may include utilizing shared file systems on enterprise storage
or OpenStack Block storage to provide a level of guarantee to match ser-
vice features.

For more information on high availability in OpenStack, see the OpenStack
High Availability Guide.

Security
A security domain comprises users, applications, servers or networks that
share common trust requirements and expectations within a system. Typ-

http://docs.openstack.org/openstack-ops/content/network_design.html#network_deployment_options
http://docs.openstack.org/high-availability-guide
http://docs.openstack.org/high-availability-guide

Architecture Guide September 13, 2014 current

29

ically they have the same authentication and authorization requirements
and users.

These security domains are:

• Public

• Guest

• Management

• Data

These security domains can be mapped to an OpenStack deployment indi-
vidually, or combined. For example, some deployment topologies combine
both guest and data domains onto one physical network, whereas in other
cases these networks are physically separated. In each case, the cloud op-
erator should be aware of the appropriate security concerns. Security do-
mains should be mapped out against your specific OpenStack deployment
topology. The domains and their trust requirements depend upon whether
the cloud instance is public, private, or hybrid.

The public security domain is an entirely untrusted area of the cloud infras-
tructure. It can refer to the Internet as a whole or simply to networks over
which you have no authority. This domain should always be considered un-
trusted.

Typically used for compute instance-to-instance traffic, the guest securi-
ty domain handles compute data generated by instances on the cloud
but not services that support the operation of the cloud, such as API calls.
Public cloud providers and private cloud providers who do not have strin-
gent controls on instance use or who allow unrestricted Internet access
to instances should consider this domain to be untrusted. Private cloud
providers may want to consider this network as internal and therefore
trusted only if they have controls in place to assert that they trust instances
and all their tenants.

The management security domain is where services interact. Sometimes
referred to as the "control plane", the networks in this domain transport
confidential data such as configuration parameters, user names, and pass-
words. In most deployments this domain is considered trusted.

The data security domain is concerned primarily with information pertain-
ing to the storage services within OpenStack. Much of the data that cross-

Architecture Guide September 13, 2014 current

30

es this network has high integrity and confidentiality requirements and,
depending on the type of deployment, may also have strong availability re-
quirements. The trust level of this network is heavily dependent on other
deployment decisions.

When deploying OpenStack in an enterprise as a private cloud it is usual-
ly behind the firewall and within the trusted network alongside existing
systems. Users of the cloud are, traditionally, employees that are bound
by the security requirements set forth by the company. This tends to push
most of the security domains towards a more trusted model. However,
when deploying OpenStack in a public facing role, no assumptions can be
made and the attack vectors significantly increase. For example, the API
endpoints, along with the software behind them, become vulnerable to
bad actors wanting to gain unauthorized access or prevent access to ser-
vices, which could lead to loss of data, functionality, and reputation. These
services must be protected against through auditing and appropriate filter-
ing.

Consideration must be taken when managing the users of the system for
both public and private clouds. The identity service allows for LDAP to be
part of the authentication process. Including such systems in an OpenStack
deployment may ease user management if integrating into existing sys-
tems.

It's important to understand that user authentication requests include sen-
sitive information including user names, passwords and authentication to-
kens. For this reason, placing the API services behind hardware that per-
forms SSL termination is strongly recommended.

For more information OpenStack Security, see the OpenStack Security
Guide

Operational considerations
Many operational factors will affect general purpose cloud design choic-
es. In larger installations, it is not uncommon for operations staff to be
tasked with maintaining cloud environments. This differs from the opera-
tions staff that is responsible for building or designing the infrastructure. It
is important to include the operations function in the planning and design
phases of the build out.

Service Level Agreements (SLAs) are contractual obligations that provide
assurances for service availability. SLAs define levels of availability that

http://docs.openstack.org/security-guide/
http://docs.openstack.org/security-guide/

Architecture Guide September 13, 2014 current

31

drive the technical design, often with penalties for not meeting the con-
tractual obligations. The strictness of the SLA dictates the level of redun-
dancy and resiliency in the OpenStack cloud design. Knowing when and
where to implement redundancy and high availability is directly affected
by expectations set by the terms of the SLA. Some of the SLA terms that
will affect the design include:

• Guarantees for API availability imply multiple infrastructure services com-
bined with highly available load balancers.

• Network uptime guarantees will affect the switch design and might re-
quire redundant switching and power.

• Network security policies requirements need to be factored in to deploy-
ments.

Support and maintainability

OpenStack cloud management requires operations staff to be able to un-
derstand and comprehend design architecture content on some level. The
level of skills and the level of separation of the operations and engineer-
ing staff are dependent on the size and purpose of the installation. A large
cloud service provider or a telecom provider is more likely to be managed
by a specially trained, dedicated operations organization. A smaller imple-
mentation is more likely to rely on a smaller support staff that might need
to take on the combined engineering, design and operations functions.

Furthermore, maintaining OpenStack installations requires a variety of
technical skills. Some of these skills may include the ability to debug Python
log output to a basic level and an understanding of networking concepts.

Consider incorporating features into the architecture and design that re-
duce the operations burden. This is accomplished by automating some of
the operations functions. In some cases it may be beneficial to use a third
party management company with special expertise in managing Open-
Stack deployments.

Monitoring

Like any other infrastructure deployment, OpenStack clouds need an ap-
propriate monitoring platform to ensure any errors are caught and man-
aged appropriately. Consider leveraging any existing monitoring system
to see if it will be able to effectively monitor an OpenStack environment.

Architecture Guide September 13, 2014 current

32

While there are many aspects that need to be monitored, specific metrics
that are critically important to capture include image disk utilization, or re-
sponse time to the Compute API.

Downtime

No matter how robust the architecture is, at some point components will
fail. Designing for high availability (HA) can have significant cost ramifica-
tions, therefore the resiliency of the overall system and the individual com-
ponents is going to be dictated by the requirements of the SLA. Down-
time planning includes creating processes and architectures that support
planned (maintenance) and unplanned (system faults) downtime.

An example of an operational consideration is the recovery of a failed
compute host. This might mean requiring the restoration of instances from
a snapshot or respawning an instance on another available compute host.
This could have consequences on the overall application design. A general
purpose cloud should not need to provide an ability to migrate instances
from one host to another. If the expectation is that the application will be
designed to tolerate failure, additional considerations need to be made
around supporting instance migration. In this scenario, extra supporting
services, including shared storage attached to compute hosts, might need
to be deployed.

Capacity planning

Capacity planning for future growth is a critically important and often
overlooked consideration. Capacity constraints in a general purpose cloud
environment include compute and storage limits. There is a relationship
between the size of the compute environment and the supporting Open-
Stack infrastructure controller nodes required to support it. As the size of
the supporting compute environment increases, the network traffic and
messages will increase which will add load to the controller or networking
nodes. While no hard and fast rule exists, effective monitoring of the envi-
ronment will help with capacity decisions on when to scale the back-end in-
frastructure as part of the scaling of the compute resources.

Adding extra compute capacity to an OpenStack cloud is a horizontally
scaling process as consistently configured compute nodes automatically
attach to an OpenStack cloud. Be mindful of any additional work that is
needed to place the nodes into appropriate availability zones and host ag-
gregates. Make sure to use identical or functionally compatible CPUs when
adding additional compute nodes to the environment otherwise live mi-

Architecture Guide September 13, 2014 current

33

gration features will break. Scaling out compute hosts will directly affect
network and other datacenter resources so it will be necessary to add rack
capacity or network switches.

Another option is to assess the average workloads and increase the num-
ber of instances that can run within the compute environment by adjust-
ing the overcommit ratio. While only appropriate in some environments,
it's important to remember that changing the CPU overcommit ratio can
have a detrimental effect and cause a potential increase in noisy neighbor.
The added risk of increasing the overcommit ratio is more instances will fail
when a compute host fails.

Compute host components can also be upgraded to account for increas-
es in demand; this is known as vertical scaling. Upgrading CPUs with more
cores, or increasing the overall server memory, can add extra needed ca-
pacity depending on whether the running applications are more CPU in-
tensive or memory intensive.

Insufficient disk capacity could also have a negative effect on overall per-
formance including CPU and memory usage. Depending on the back-end
architecture of the OpenStack Block Storage layer, capacity might include
adding disk shelves to enterprise storage systems or installing additional
block storage nodes. It may also be necessary to upgrade directly attached
storage installed in compute hosts or add capacity to the shared storage to
provide additional ephemeral storage to instances.

For a deeper discussion on many of these topics, refer to the OpenStack
Operations Guide.

Architecture
Hardware selection involves three key areas:

• Compute

• Network

• Storage

For each of these areas, the selection of hardware for a general purpose
OpenStack cloud must reflect the fact that a the cloud has no pre-defined
usage model. This means that there will be a wide variety of applications
running on this cloud that will have varying resource usage requirements.
Some applications will be RAM-intensive, some applications will be CPU-in-

http://docs.openstack.org/ops
http://docs.openstack.org/ops

Architecture Guide September 13, 2014 current

34

tensive, while others will be storage-intensive. Therefore, choosing hard-
ware for a general purpose OpenStack cloud must provide balanced access
to all major resources.

Certain hardware form factors may be better suited for use in a general
purpose OpenStack cloud because of the need for an equal or nearly equal
balance of resources. Server hardware for a general purpose OpenStack ar-
chitecture design must provide an equal or nearly equal balance of com-
pute capacity (RAM and CPU), network capacity (number and speed of
links), and storage capacity (gigabytes or terabytes as well as Input/Out-
put Operations Per Second (IOPS).

Server hardware is evaluated around four conflicting dimensions:

Server density A measure of how many servers can fit into a giv-
en measure of physical space, such as a rack unit
[U].

Resource capacity The number of CPU cores, how much RAM, or
how much storage a given server will deliver.

Expandability The number of additional resources that can be
added to a server before it has reached its limit.

Cost The relative purchase price of the hardware
weighted against the level of design effort need-
ed to build the system.

Increasing server density means sacrificing resource capacity or expandabil-
ity, however, increasing resource capacity and expandability increases cost
and decreases server density. As a result, determining the best server hard-
ware for a general purpose OpenStack architecture means understanding
how choice of form factor will impact the rest of the design.

• Blade servers typically support dual-socket multi-core CPUs, which is the
configuration generally considered to be the "sweet spot" for a gener-
al purpose cloud deployment. Blades also offer outstanding density. As
an example, both HP BladeSystem and Dell PowerEdge M1000e support
up to 16 servers in only 10 rack units. However, the blade servers them-
selves often have limited storage and networking capacity. Additionally,
the expandability of many blade servers can be limited.

• 1U rack-mounted servers occupy only a single rack unit. Their benefits in-
clude high density, support for dual-socket multi-core CPUs, and support

Architecture Guide September 13, 2014 current

35

for reasonable RAM amounts. This form factor offers limited storage ca-
pacity, limited network capacity, and limited expandability.

• 2U rack-mounted servers offer the expanded storage and networking
capacity that 1U servers tend to lack, but with a corresponding decrease
in server density (half the density offered by 1U rack-mounted servers).

• Larger rack-mounted servers, such as 4U servers, will tend to offer even
greater CPU capacity, often supporting four or even eight CPU sock-
ets. These servers often have much greater expandability so will provide
the best option for upgradability. This means, however, that the servers
have a much lower server density and a much greater hardware cost.

• "Sled servers" are rack-mounted servers that support multiple indepen-
dent servers in a single 2U or 3U enclosure. This form factor offers in-
creased density over typical 1U-2U rack-mounted servers but tends to
suffer from limitations in the amount of storage or network capacity
each individual server supports.

Given the wide selection of hardware and general user requirements, the
best form factor for the server hardware supporting a general purpose
OpenStack cloud is driven by outside business and cost factors. No single
reference architecture will apply to all implementations; the decision must
flow out of the user requirements, technical considerations, and opera-
tional considerations. Here are some of the key factors that influence the
selection of server hardware:

Instance density Sizing is an important consideration for a
general purpose OpenStack cloud. The ex-
pected or anticipated number of instances
that each hypervisor can host is a common
metric used in sizing the deployment. The se-
lected server hardware needs to support the
expected or anticipated instance density.

Host density Physical data centers have limited physical
space, power, and cooling. The number of
hosts (or hypervisors) that can be fitted into
a given metric (rack, rack unit, or floor tile)
is another important method of sizing. Floor
weight is an often overlooked consideration.
The data center floor must be able to sup-
port the weight of the proposed number of
hosts within a rack or set of racks. These fac-
tors need to be applied as part of the host

Architecture Guide September 13, 2014 current

36

density calculation and server hardware se-
lection.

Power density Data centers have a specified amount of
power fed to a given rack or set of racks.
Older data centers may have a power den-
sity as power as low as 20 AMPs per rack,
while more recent data centers can be archi-
tected to support power densities as high as
120 AMP per rack. The selected server hard-
ware must take power density into account.

Network connectivity The selected server hardware must have the
appropriate number of network connec-
tions, as well as the right type of network
connections, in order to support the pro-
posed architecture. Ensure that, at a mini-
mum, there are at least two diverse network
connections coming into each rack. For archi-
tectures requiring even more redundancy, it
might be necessary to confirm that the net-
work connections are from diverse telecom
providers. Many data centers have that ca-
pacity available.

The selection of certain form factors or architectures will affect the selec-
tion of server hardware. For example, if the design calls for a scale-out stor-
age architecture (such as leveraging Ceph, Gluster, or a similar commercial
solution), then the server hardware selection will need to be carefully con-
sidered to match the requirements set by the commercial solution. Ensure
that the selected server hardware is configured to support enough storage
capacity (or storage expandability) to match the requirements of selected
scale-out storage solution. For example, if a centralized storage solution is
required, such as a centralized storage array from a storage vendor that
has InfiniBand or FDDI connections, the server hardware will need to have
appropriate network adapters installed to be compatible with the storage
array vendor's specifications.

Similarly, the network architecture will have an impact on the server hard-
ware selection and vice versa. For example, make sure that the server is
configured with enough additional network ports and expansion cards to
support all of the networks required. There is variability in network expan-
sion cards, so it is important to be aware of potential impacts or interoper-
ability issues with other components in the architecture. This is especially

Architecture Guide September 13, 2014 current

37

true if the architecture uses InfiniBand or another less commonly used net-
working protocol.

Selecting storage hardware

The selection of storage hardware is largely determined by the proposed
storage architecture. Factors that need to be incorporated into the storage
architecture include:

Cost Storage can be a significant portion of the overall sys-
tem cost that should be factored into the design deci-
sion. For an organization that is concerned with ven-
dor support, a commercial storage solution is advis-
able, although it is comes with a higher price tag. If ini-
tial capital expenditure requires minimization, design-
ing a system based on commodity hardware would ap-
ply. The trade-off is potentially higher support costs
and a greater risk of incompatibility and interoperabili-
ty issues.

Performance Storage performance, measured by observing the la-
tency of storage I-O requests, is not a critical factor for
a general purpose OpenStack cloud as overall systems
performance is not a design priority.

Scalability The term "scalability" refers to how well the storage so-
lution performs as it expands up to its maximum de-
signed size. A solution that continues to perform well
at maximum expansion is considered scalable. A stor-
age solution that performs well in small configurations
but has degrading performance as it expands was not
designed to be not scalable. Scalability, along with ex-
pandability, is a major consideration in a general pur-
pose OpenStack cloud. It might be difficult to predict
the final intended size of the implementation because
there are no established usage patterns for a general
purpose cloud. Therefore, it may become necessary to
expand the initial deployment in order to accommo-
date growth and user demand. The ability of the stor-
age solution to continue to perform well as it expands
is important.

Expandability This refers to the overall ability of the solution to
grow. A storage solution that expands to 50 PB is con-

Architecture Guide September 13, 2014 current

38

sidered more expandable than a solution that only
scales to 10 PB. This metric is related to, but different,
from scalability, which is a measure of the solution's
performance as it expands. Expandability is a major
architecture factor for storage solutions with general
purpose OpenStack cloud. For example, the storage
architecture for a cloud that is intended for a develop-
ment platform may not have the same expandability
and scalability requirements as a cloud that is intended
for a commercial product.

Storage hardware architecture is largely determined by the selected stor-
age architecture. The selection of storage architecture, as well as the corre-
sponding storage hardware, is determined by evaluating possible solutions
against the critical factors, the user requirements, technical considerations,
and operational considerations. A combination of all the factors and con-
siderations will determine which approach will be best.

Using a scale-out storage solution with direct-attached storage (DAS) in
the servers is well suited for a general purpose OpenStack cloud. In this
scenario, it is possible to populate storage in either the compute hosts simi-
lar to a grid computing solution or into hosts dedicated to providing block
storage exclusively. When deploying storage in the compute hosts, appro-
priate hardware which can support both the storage and compute services
on the same hardware will be required. This approach is referred to as a
grid computing architecture because there is a grid of modules that have
both compute and storage in a single box.

Understanding the requirements of cloud services will help determine if
Ceph, Gluster, or a similar scale-out solution should be used. It can then be
further determined if a single, highly expandable and highly vertical, scal-
able, centralized storage array should be included in the design. Once the
approach has been determined, the storage hardware needs to be chosen
based on this criteria. If a centralized storage array fits the requirements
best, then the array vendor will determine the hardware. For cost reasons
it may be decided to build an open source storage array using solutions
such as OpenFiler, Nexenta Open Source, or BackBlaze Open Source.

This list expands upon the potential impacts for including a particular stor-
age architecture (and corresponding storage hardware) into the design for
a general purpose OpenStack cloud:

Connectivity Ensure that, if storage protocols other
than Ethernet are part of the storage
solution, the appropriate hardware has

Architecture Guide September 13, 2014 current

39

been selected. Some examples include
InfiniBand, FDDI and Fibre Channel. If
a centralized storage array is selected,
ensure that the hypervisor will be able
to connect to that storage array for im-
age storage.

Usage How the particular storage architecture
will be used is critical for determining
the architecture. Some of the configu-
rations that will influence the architec-
ture include whether it will be used by
the hypervisors for ephemeral instance
storage or if OpenStack Object Stor-
age will use it for object storage. All
of these usage models are affected by
the selection of particular storage archi-
tecture and the corresponding storage
hardware to support that architecture.

Instance and image locations Where instances and images will be
stored will influence the architecture.
For example, instances can be stored in
a number of options. OpenStack Block
Storage is a good location for instances
because it is persistent block storage,
however, OpenStack Object Storage
can be used if storage latency is less of
a concern. The same argument applies
to the appropriate image storage loca-
tion.

Server hardware If the solution is a scale-out storage ar-
chitecture that includes DAS, naturally
that will affect the server hardware se-
lection. This could ripple into the deci-
sions that affect host density, instance
density, power density, OS-hypervisor,
management tools and others.

General purpose OpenStack cloud has multiple options. As a result, there
is no single decision that will apply to all implementations. The key factors
that will have an influence on selection of storage hardware for a general
purpose OpenStack cloud are as follows:

Architecture Guide September 13, 2014 current

40

Capacity Hardware resources selected for the resource nodes
should be capable of supporting enough storage
for the cloud services that will use them. It is impor-
tant to clearly define the initial requirements and
ensure that the design can support adding capaci-
ty as resources are used in the cloud, as workloads
are relatively unknown. Hardware nodes selected
for object storage should be capable of supporting
a large number of inexpensive disks and should not
have any reliance on RAID controller cards. Hard-
ware nodes selected for block storage should be ca-
pable of supporting higher speed storage solutions
and RAID controller cards to provide performance
and redundancy to storage at the hardware level.
Selecting hardware RAID controllers that can auto-
matically repair damaged arrays will further assist
with replacing and repairing degraded or destroyed
storage devices within the cloud.

Performance Disks selected for the object storage service do not
need to be fast performing disks. It is recommend-
ed that object storage nodes take advantage of the
best cost per terabyte available for storage at the
time of acquisition and avoid enterprise class drives.
In contrast, disks chosen for the block storage ser-
vice should take advantage of performance boost-
ing features and may entail the use of SSDs or flash
storage to provide for high performing block stor-
age pools. Storage performance of ephemeral disks
used for instances should also be taken into con-
sideration. If compute pools are expected to have
a high utilization of ephemeral storage or requires
very high performance, it would be advantageous
to deploy similar hardware solutions to block stor-
age in order to increase the storage performance.

Fault tolerance Object storage resource nodes have no require-
ments for hardware fault tolerance or RAID con-
trollers. It is not necessary to plan for fault toler-
ance within the object storage hardware because
the object storage service provides replication be-
tween zones as a feature of the service. Block stor-
age nodes, compute nodes and cloud controllers
should all have fault tolerance built in at the hard-

Architecture Guide September 13, 2014 current

41

ware level by making use of hardware RAID con-
trollers and varying levels of RAID configuration.
The level of RAID chosen should be consistent with
the performance and availability requirements of
the cloud.

Selecting networking hardware

As is the case with storage architecture, selecting a network architecture
often determines which network hardware will be used. The networking
software in use is determined by the selected networking hardware. Some
design impacts are obvious, for example, selecting networking hardware
that only supports Gigabit Ethernet (GbE) will naturally have an impact on
many different areas of the overall design. Similarly, deciding to use 10 Gi-
gabit Ethernet (10 GbE) has a number of impacts on various areas of the
overall design.

As an example, selecting Cisco networking hardware implies that the ar-
chitecture will be using Cisco networking software like IOS or NX-OS. Con-
versely, selecting Arista networking hardware means the network devices
will use the Arista networking software called Extensible Operating Sys-
tem (EOS). In addition, there are more subtle design impacts that need to
be considered. The selection of certain networking hardware (and there-
fore the networking software) could affect the management tools that
can be used. There are exceptions to this; the rise of "open" networking
software that supports a range of networking hardware means that there
are instances where the relationship between networking hardware and
networking software are not as tightly defined. An example of this type
of software is Cumulus Linux, which is capable of running on a number of
switch vendor’s hardware solutions.

Some of the key considerations that should be included in the selection of
networking hardware include:

Port count The design will require networking hardware
that has the requisite port count.

Port density The network design will be affected by the
physical space that is required to provide the
requisite port count. A switch that can pro-
vide 48 10 GbE ports in 1U has a much high-
er port density than a switch that provides 24
10 GbE ports in 2U. A higher port density is pre-
ferred, as it leaves more rack space for compute

Architecture Guide September 13, 2014 current

42

or storage components that may be required
by the design. This can also lead into concerns
about fault domains and power density that
should be considered. Higher density switches
are more expensive and should also be consid-
ered, as it is important not to over design the
network if it is not required.

Port speed The networking hardware must support the
proposed network speed, for example: 1 GbE,
10 GbE, or 40 GbE (or even 100 GbE).

Redundancy The level of network hardware redundan-
cy required is influenced by the user require-
ments for high availability and cost consider-
ations. Network redundancy can be achieved
by adding redundant power supplies or paired
switches. If this is a requirement, the hardware
will need to support this configuration. User re-
quirements will determine if a completely re-
dundant network infrastructure is required.

Power requirements Make sure that the physical data center pro-
vides the necessary power for the selected net-
work hardware. This is not an issue for top of
rack (ToR) switches, but may be an issue for
spine switches in a leaf and spine fabric, or end
of row (EoR) switches.

There is no single best practice architecture for the networking hardware
supporting a general purpose OpenStack cloud that will apply to all imple-
mentations. Some of the key factors that will have a strong influence on
selection of networking hardware include:

Connectivity All nodes within an OpenStack cloud require some form
of network connectivity. In some cases, nodes require
access to more than one network segment. The design
must encompass sufficient network capacity and band-
width to ensure that all communications within the
cloud, both north-south and east-west traffic have suffi-
cient resources available.

Scalability The chosen network design should encompass a phys-
ical and logical network design that can be easily ex-
panded upon. Network hardware should offer the ap-

Architecture Guide September 13, 2014 current

43

propriate types of interfaces and speeds that are re-
quired by the hardware nodes.

Availability To ensure that access to nodes within the cloud is not
interrupted, it is recommended that the network archi-
tecture identify any single points of failure and provide
some level of redundancy or fault tolerance. With re-
gard to the network infrastructure itself, this often in-
volves use of networking protocols such as LACP, VR-
RP or others to achieve a highly available network con-
nection. In addition, it is important to consider the net-
working implications on API availability. In order to en-
sure that the APIs, and potentially other services in the
cloud are highly available, it is recommended to design
load balancing solutions within the network architec-
ture to accommodate for these requirements.

Software selection
Software selection for a general purpose OpenStack architecture design
needs to include these three areas:

• Operating system (OS) and hypervisor

• OpenStack components

• Supplemental software

Operating system and hypervisor
The selection of operating system (OS) and hypervisor has a tremendous
impact on the overall design. Selecting a particular operating system and
hypervisor can also directly affect server hardware selection. It is recom-
mended to make sure the storage hardware selection and topology sup-
port the selected operating system and hypervisor combination. Finally, it
is important to ensure that the networking hardware selection and topol-
ogy will work with the chosen operating system and hypervisor combina-
tion. For example, if the design uses Link Aggregation Control Protocol
(LACP), the OS and hypervisor both need to support it.

Some areas that could be impacted by the selection of OS and hypervisor
include:

Cost Selecting a commercially supported hypervi-
sor, such as Microsoft Hyper-V, will result in

Architecture Guide September 13, 2014 current

44

a different cost model rather than commu-
nity-supported open source hypervisors in-
cluding KVM, Kinstance or Xen. When com-
paring open source OS solutions, choosing
Ubuntu over Red Hat (or vice versa) will
have an impact on cost due to support con-
tracts. On the other hand, business or appli-
cation requirements may dictate a specific
or commercially supported hypervisor.

Supportability Depending on the selected hypervisor, the
staff should have the appropriate training
and knowledge to support the selected OS
and hypervisor combination. If they do not,
training will need to be provided which
could have a cost impact on the design.

Management tools The management tools used for Ubuntu
and Kinstance differ from the management
tools for VMware vSphere. Although both
OS and hypervisor combinations are sup-
ported by OpenStack, there will be very dif-
ferent impacts to the rest of the design as a
result of the selection of one combination
versus the other.

Scale and performance Ensure that selected OS and hypervisor
combinations meet the appropriate scale
and performance requirements. The chosen
architecture will need to meet the targeted
instance-host ratios with the selected OS-
hypervisor combinations.

Security Ensure that the design can accommodate
the regular periodic installation of applica-
tion security patches while maintaining the
required workloads. The frequency of secu-
rity patches for the proposed OS-hypervi-
sor combination will have an impact on per-
formance and the patch installation process
could affect maintenance windows.

Supported features Determine which features of OpenStack are
required. This will often determine the se-
lection of the OS-hypervisor combination.

Architecture Guide September 13, 2014 current

45

Certain features are only available with spe-
cific OSs or hypervisors. For example, if cer-
tain features are not available, the design
might need to be modified to meet the us-
er requirements.

Interoperability Consideration should be given to the ability
of the selected OS-hypervisor combination
to interoperate or co-exist with other OS-
hypervisors as well as other software solu-
tions in the overall design (if required). Op-
erational troubleshooting tools for one OS-
hypervisor combination may differ from the
tools used for another OS-hypervisor combi-
nation and, as a result, the design will need
to address if the two sets of tools need to
interoperate.

OpenStack components
The selection of which OpenStack components are included has a signif-
icant impact on the overall design. While there are certain components
that will always be present, (Compute and Image Service, for example)
there are other services that may not be required. As an example, a certain
design might not need Orchestration. Omitting Orchestration would not
have a significant impact on the overall design of a cloud; however, if the
architecture uses a replacement for OpenStack Object Storage for its stor-
age component, it could potentially have significant impacts on the rest of
the design.

The exclusion of certain OpenStack components might also limit or con-
strain the functionality of other components. If the architecture includes
Orchestration but excludes Telemetry, then the design will not be able to
take advantage of Orchestrations' auto scaling functionality (which relies
on information from Telemetry). It is important to research the compo-
nent interdependencies in conjunction with the technical requirements
before deciding what components need to be included and what compo-
nents can be dropped from the final architecture.

Supplemental components
While OpenStack is a fairly complete collection of software projects for
building a platform for cloud services, there are invariably additional pieces
of software that need to be considered in any given OpenStack design.

Architecture Guide September 13, 2014 current

46

Networking software

OpenStack Networking provides a wide variety of networking services for
instances. There are many additional networking software packages that
might be useful to manage the OpenStack components themselves. Some
examples include software to provide load balancing, network redundan-
cy protocols, and routing daemons. Some of these software packages are
described in more detail in the OpenStack High Availability Guide (refer to
the Network controller cluster stack chapter of the OpenStack High Avail-
ability Guide).

For a general purpose OpenStack cloud, the OpenStack infrastructure com-
ponents will need to be highly available. If the design does not include
hardware load balancing, networking software packages like HAProxy will
need to be included.

Management software

The selected supplemental software solution impacts and affects the over-
all OpenStack cloud design. This includes software for providing clustering,
logging, monitoring and alerting.

Inclusion of clustering software, such as Corosync or Pacemaker, is deter-
mined primarily by the availability requirements. Therefore, the impact
of including (or not including) these software packages is primarily deter-
mined by the availability of the cloud infrastructure and the complexity
of supporting the configuration after it is deployed. The OpenStack High
Availability Guide provides more details on the installation and configura-
tion of Corosync and Pacemaker, should these packages need to be includ-
ed in the design.

Requirements for logging, monitoring, and alerting are determined by op-
erational considerations. Each of these sub-categories includes a number of
various options. For example, in the logging sub-category one might con-
sider Logstash, Splunk, instanceware Log Insight, or some other log aggre-
gation-consolidation tool. Logs should be stored in a centralized location
to make it easier to perform analytics against the data. Log data analytics
engines can also provide automation and issue notification by providing a
mechanism to both alert and automatically attempt to remediate some of
the more commonly known issues.

If any of these software packages are required, then the design must ac-
count for the additional resource consumption (CPU, RAM, storage, and

http://docs.openstack.org/high-availability-guide/content/ch-network.html
http://docs.openstack.org/high-availability-guide/
http://docs.openstack.org/high-availability-guide/

Architecture Guide September 13, 2014 current

47

network bandwidth for a log aggregation solution, for example). Some
other potential design impacts include:

• OS-hypervisor combination: Ensure that the selected logging, monitor-
ing, or alerting tools support the proposed OS-hypervisor combination.

• Network hardware: The network hardware selection needs to be sup-
ported by the logging, monitoring, and alerting software.

Database software

A large majority of the OpenStack components require access to back-end
database services to store state and configuration information. Selection
of an appropriate back-end database that will satisfy the availability and
fault tolerance requirements of the OpenStack services is required. Open-
Stack services supports connecting to any database that is supported by
the SQLAlchemy python drivers, however, most common database deploy-
ments make use of MySQL or variations of it. It is recommended that the
database which provides back-end service within a general purpose cloud
be made highly available when using an available technology which can ac-
complish that goal. Some of the more common software solutions used in-
clude Galera, MariaDB and MySQL with multi-master replication.

Addressing performance-sensitive workloads

Although one of the key defining factors for a general purpose Open-
Stack cloud is that performance is not a determining factor, there may
still be some performance-sensitive workloads deployed on the general
purpose OpenStack cloud. For design guidance on performance-sensitive
workloads, it is recommended to refer to the focused scenarios later in this
guide. The resource-focused guides can be used as a supplement to this
guide to help with decisions regarding performance-sensitive workloads.

Compute-focused workloads

In an OpenStack cloud that is compute-focused, there are some design
choices that can help accommodate those workloads. Compute-focused
workloads are generally those that would place a higher demand on CPU
and memory resources with lower priority given to storage and network
performance, other than what is required to support the intended com-
pute workloads. For guidance on designing for this type of cloud, please
refer to Chapter 3, “Compute focused” [51].

Architecture Guide September 13, 2014 current

48

Network-focused workloads

In a network-focused OpenStack cloud some design choices can improve
the performance of these types of workloads. Network-focused workloads
have extreme demands on network bandwidth and services that require
specialized consideration and planning. For guidance on designing for this
type of cloud, please refer to Chapter 5, “Network focused” [109].

Storage-focused workloads

Storage focused OpenStack clouds need to be designed to accommodate
workloads that have extreme demands on either object or block storage
services that require specialized consideration and planning. For guidance
on designing for this type of cloud, please refer to Chapter 4, “Storage fo-
cused” [81].

Prescriptive example
An online classified advertising company wants to run web applications
consisting of Tomcat, Nginx and MariaDB in a private cloud. In order to
meet policy requirements, the cloud infrastructure will run in their own da-
ta center. They have predictable load requirements but require an element
of scaling to cope with nightly increases in demand. Their current environ-
ment is not flexible enough to align with their goal of running an open
source API driven environment. Their current environment consists of the
following:

• Between 120 and 140 installations of Nginx and Tomcat, each with 2 vC-
PUs and 4 GB of RAM

• A three-node MariaDB and Galera cluster, each with 4 vCPUs and 8 GB
RAM

The company runs hardware load balancers and multiple web applications
serving the sites. The company orchestrates their environment using a
combination of scripts and Puppet. The websites generate a large amount
of log data each day that needs to be archived.

The solution would consist of the following OpenStack components:

• A firewall, switches and load balancers on the public facing network
connections.

Architecture Guide September 13, 2014 current

49

• OpenStack Controller services running Image, Identity, Networking and
supporting services such as MariaDB and RabbitMQ. The controllers will
run in a highly available configuration on at least three controller nodes.

• OpenStack Compute nodes running the KVM hypervisor.

• OpenStack Block Storage for use by compute instances that require per-
sistent storage such as databases for dynamic sites.

• OpenStack Object Storage for serving static objects such as images.

Running up to 140 web instances and the small number of MariaDB in-
stances requires 292 vCPUs available, as well as 584 GB RAM. On a typical
1U server using dual-socket hex-core Intel CPUs with Hyperthreading, and
assuming 2:1 CPU overcommit ratio, this would require 8 OpenStack Com-
pute nodes.

The web application instances run from local storage on each of the Open-
Stack Compute nodes. The web application instances are stateless, mean-

Architecture Guide September 13, 2014 current

50

ing that any of the instances can fail and the application will continue to
function.

MariaDB server instances store their data on shared enterprise storage,
such as NetApp or Solidfire devices. If a MariaDB instance fails, storage
would be expected to be re-attached to another instance and rejoined to
the Galera cluster.

Logs from the web application servers are shipped to OpenStack Object
Storage for later processing and archiving.

In this scenario, additional capabilities can be realized by moving static
web content to be served from OpenStack Object Storage containers, and
backing the OpenStack Image Service with OpenStack Object Storage.
Note that an increase in OpenStack Object Storage means that network
bandwidth needs to be taken in to consideration. It is best to run Open-
Stack Object Storage with network connections offering 10 GbE or better
connectivity.

There is also a potential to leverage the Orchestration and Telemetry mod-
ules to provide an auto-scaling, orchestrated web application environment.
Defining the web applications in Heat Orchestration Templates (HOT)
would negate the reliance on the scripted Puppet solution currently em-
ployed.

OpenStack Networking can be used to control hardware load balancers
through the use of plug-ins and the Networking API. This would allow a
user to control hardware load balance pools and instances as members in
these pools, but their use in production environments must be carefully
weighed against current stability.

Architecture Guide September 13, 2014 current

51

3. Compute focused

Table of Contents
User requirements .. 52
Technical considerations ... 54
Operational considerations .. 64
Architecture ... 66
Prescriptive examples ... 77

A compute-focused cloud is a specialized subset of the general purpose
OpenStack cloud architecture. Unlike the general purpose OpenStack ar-
chitecture, which is built to host a wide variety of workloads and appli-
cations and does not heavily tax any particular computing aspect, a com-
pute-focused cloud is built and designed specifically to support compute in-
tensive workloads. As such, the design must be specifically tailored to sup-
port hosting compute intensive workloads. Compute intensive workloads
may be CPU intensive, RAM intensive, or both. However, they are not typ-
ically storage intensive or network intensive. Compute-focused workloads
may include the following use cases:

• High performance computing (HPC)

• Big data analytics using Hadoop or other distributed data stores

• Continuous integration/continuous deployment (CI/CD)

• Platform-as-a-Service (PaaS)

• Signal processing for network function virtualization (NFV)

Based on the use case requirements, such clouds might need to provide
additional services such as a virtual machine disk library, file or object stor-
age, firewalls, load balancers, IP addresses, and network connectivity in
the form of overlays or virtual local area networks (VLANs). A compute-fo-
cused OpenStack cloud will not typically use raw block storage services
since the applications hosted on a compute-focused OpenStack cloud gen-
erally do not need persistent block storage.

Architecture Guide September 13, 2014 current

52

User requirements
Compute intensive workloads are defined by their high utilization of CPU,
RAM, or both. User requirements will determine if a cloud must be built to
accommodate anticipated performance demands.

Cost Cost is not generally a primary concern for a
compute-focused cloud, however some orga-
nizations might be concerned with cost avoid-
ance. Repurposing existing resources to tackle
compute-intensive tasks instead of needing to
acquire additional resources may offer cost re-
duction opportunities.

Time to market Compute-focused clouds can be used to deliv-
er products more quickly, for example, speed-
ing up a company's software development life
cycle (SDLC) for building products and applica-
tions.

Revenue opportunity Companies that are interested in building ser-
vices or products that rely on the power of
the compute resources will benefit from a
compute-focused cloud. Examples include the
analysis of large data sets (via Hadoop or Cas-
sandra) or completing computational inten-
sive tasks such as rendering, scientific compu-
tation, or simulations.

Legal requirements

Many jurisdictions have legislative and regulatory requirements governing
the storage and management of data in cloud environments. Common ar-
eas of regulation include:

• Data retention policies ensuring storage of persistent data and records
management to meet data archival requirements.

• Data ownership policies governing the possession and responsibility for
data.

• Data sovereignty policies governing the storage of data in foreign coun-
tries or otherwise separate jurisdictions.

Architecture Guide September 13, 2014 current

53

• Data compliance—certain types of information needs to reside in cer-
tain locations due to regular issues—and more important cannot reside
in other locations for the same reason.

Examples of such legal frameworks include the data protection framework
of the European Union and the requirements of the Financial Industry Reg-
ulatory Authority in the United States. Consult a local regulatory body for
more information.

Technical considerations

The following are some technical requirements that need to be incorporat-
ed into the architecture design.

Performance If a primary technical concern is for the envi-
ronment to deliver high performance capa-
bility, then a compute-focused design is an
obvious choice because it is specifically de-
signed to host compute-intensive workloads.

Workload persistence Workloads can be either short-lived or long
running. Short-lived workloads might include
continuous integration and continuous de-
ployment (CI-CD) jobs, where large numbers
of compute instances are created simulta-
neously to perform a set of compute-inten-
sive tasks. The results or artifacts are then
copied from the instance into long-term stor-
age before the instance is destroyed. Long-
running workloads, like a Hadoop or high-
performance computing (HPC) cluster, typi-
cally ingest large data sets, perform the com-
putational work on those data sets, then
push the results into long term storage. Un-
like short-lived workloads, when the compu-
tational work is completed, they will remain
idle until the next job is pushed to them.
Long-running workloads are often larger and
more complex, so the effort of building them
is mitigated by keeping them active between
jobs. Another example of long running work-
loads is legacy applications that typically are
persistent over time.

http://ec.europa.eu/justice/data-protection/
http://www.finra.org/Industry/Regulation/FINRARules/
http://www.finra.org/Industry/Regulation/FINRARules/

Architecture Guide September 13, 2014 current

54

Storage Workloads targeted for a compute-focused
OpenStack cloud generally do not require
any persistent block storage (although
some usages of Hadoop with HDFS may dic-
tate the use of persistent block storage). A
shared filesystem or object store will main-
tain the initial data set(s) and serve as the
destination for saving the computational re-
sults. By avoiding the input-output (IO) over-
head, workload performance is significantly
enhanced. Depending on the size of the da-
ta set(s), it might be necessary to scale the
object store or shared file system to match
the storage demand.

User interface Like any other cloud architecture, a com-
pute-focused OpenStack cloud requires an
on-demand and self-service user interface.
End users must be able to provision comput-
ing power, storage, networks and software
simply and flexibly. This includes scaling the
infrastructure up to a substantial level with-
out disrupting host operations.

Security Security is going to be highly dependent on
the business requirements. For example, a
computationally intense drug discovery ap-
plication will obviously have much higher se-
curity requirements than a cloud that is de-
signed for processing market data for a re-
tailer. As a general start, the security recom-
mendations and guidelines provided in the
OpenStack Security Guide are applicable.

Operational considerations
The compute intensive cloud from the operational perspective is similar to
the requirements for the general-purpose cloud. More details on opera-
tional requirements can be found in the general-purpose design section.

Technical considerations
In a compute-focused OpenStack cloud, the type of instance workloads be-
ing provisioned heavily influences technical decision making. For example,

Architecture Guide September 13, 2014 current

55

specific use cases that demand multiple short running jobs present differ-
ent requirements than those that specify long-running jobs, even though
both situations are considered "compute focused."

Public and private clouds require deterministic capacity planning to sup-
port elastic growth in order to meet user SLA expectations. Deterministic
capacity planning is the path to predicting the effort and expense of mak-
ing a given process consistently performant. This process is important be-
cause, when a service becomes a critical part of a user's infrastructure, the
user's fate becomes wedded to the SLAs of the cloud itself. In cloud com-
puting, a service’s performance will not be measured by its average speed
but rather by the consistency of its speed.

There are two aspects of capacity planning to consider: planning the initial
deployment footprint, and planning expansion of it to stay ahead of the
demands of cloud users.

Planning the initial footprint for an OpenStack deployment is typically
done based on existing infrastructure workloads and estimates based on
expected uptake.

The starting point is the core count of the cloud. By applying relevant ra-
tios, the user can gather information about:

• The number of instances expected to be available concurrently: (over-
commit fraction × cores) / virtual cores per instance

• How much storage is required: flavor disk size × number of instances

These ratios can be used to determine the amount of additional infras-
tructure needed to support the cloud. For example, consider a situation in
which you require 1600 instances, each with 2 vCPU and 50 GB of storage.
Assuming the default overcommit rate of 16:1, working out the math pro-
vides an equation of:

• 1600 = (16 x (number of physical cores)) / 2

• storage required = 50 GB x 1600

On the surface, the equations reveal the need for 200 physical cores and
80 TB of storage for /var/lib/nova/instances/. However, it is also
important to look at patterns of usage to estimate the load that the API
services, database servers, and queue servers are likely to encounter.

Consider, for example, the differences between a cloud that supports a
managed web-hosting platform with one running integration tests for a

Architecture Guide September 13, 2014 current

56

development project that creates one instance per code commit. In the
former, the heavy work of creating an instance happens only every few
months, whereas the latter puts constant heavy load on the cloud con-
troller. The average instance lifetime must be considered, as a larger num-
ber generally means less load on the cloud controller.

Aside from the creation and termination of instances, the impact of users
must be considered when accessing the service, particularly on nova-api
and its associated database. Listing instances garners a great deal of in-
formation and, given the frequency with which users run this operation, a
cloud with a large number of users can increase the load significantly. This
can even occur unintentionally. For example, the OpenStack Dashboard
instances tab refreshes the list of instances every 30 seconds, so leaving it
open in a browser window can cause unexpected load.

Consideration of these factors can help determine how many cloud con-
troller cores are required. A server with 8 CPU cores and 8 GB of RAM serv-
er would be sufficient for up to a rack of compute nodes, given the above
caveats.

Key hardware specifications are also crucial to the performance of user in-
stances. Be sure to consider budget and performance needs, including stor-
age performance (spindles/core), memory availability (RAM/core), net-
work bandwidth (Gbps/core), and overall CPU performance (CPU/core).

The cloud resource calculator is a useful tool in examining the impacts
of different hardware and instance load outs. It is available at: https://
github.com/noslzzp/cloud-resource-calculator/blob/master/cloud-re-
source-calculator.ods

Expansion planning

A key challenge faced when planning the expansion of cloud compute ser-
vices is the elastic nature of cloud infrastructure demands. Previously, new
users or customers would be forced to plan for and request the infrastruc-
ture they required ahead of time, allowing time for reactive procurement
processes. Cloud computing users have come to expect the agility provid-
ed by having instant access to new resources as they are required. Conse-
quently, this means planning should be delivered for typical usage, but al-
so more importantly, for sudden bursts in usage.

Planning for expansion can be a delicate balancing act. Planning too con-
servatively can lead to unexpected oversubscription of the cloud and dis-
satisfied users. Planning for cloud expansion too aggressively can lead to

https://github.com/noslzzp/cloud-resource-calculator/blob/master/cloud-resource-calculator.ods
https://github.com/noslzzp/cloud-resource-calculator/blob/master/cloud-resource-calculator.ods
https://github.com/noslzzp/cloud-resource-calculator/blob/master/cloud-resource-calculator.ods

Architecture Guide September 13, 2014 current

57

unexpected underutilization of the cloud and funds spent on operating in-
frastructure that is not being used efficiently.

The key is to carefully monitor the spikes and valleys in cloud usage over
time. The intent is to measure the consistency with which services can be
delivered, not the average speed or capacity of the cloud. Using this infor-
mation to model performance results in capacity enables users to more ac-
curately determine the current and future capacity of the cloud.

CPU and RAM

(Adapted from: http://docs.openstack.org/openstack-ops/con-
tent/compute_nodes.html#cpu_choice)

In current generations, CPUs have up to 12 cores. If an Intel CPU supports
Hyper-Threading, those 12 cores are doubled to 24 cores. If a server is pur-
chased that supports multiple CPUs, the number of cores is further multi-
plied. Hyper-Threading is Intel's proprietary simultaneous multi-threading
implementation, used to improve parallelization on their CPUs. Consider
enabling Hyper-Threading to improve the performance of multithreaded
applications.

Whether the user should enable Hyper-Threading on a CPU depends upon
the use case. For example, disabling Hyper-Threading can be beneficial in
intense computing environments. Performance testing conducted by run-
ning local workloads with both Hyper-Threading on and off can help de-
termine what is more appropriate in any particular case.

If the Libvirt/KVM hypervisor driver are the intended use cases, then the
CPUs used in the compute nodes must support virtualization by way of the
VT-x extensions for Intel chips and AMD-v extensions for AMD chips to pro-
vide full performance.

OpenStack enables the user to overcommit CPU and RAM on compute
nodes. This allows an increase in the number of instances running on the
cloud at the cost of reducing the performance of the instances. OpenStack
Compute uses the following ratios by default:

• CPU allocation ratio: 16:1

• RAM allocation ratio: 1.5:1

The default CPU allocation ratio of 16:1 means that the scheduler allocates
up to 16 virtual cores per physical core. For example, if a physical node has

http://docs.openstack.org/openstack-ops/content/compute_nodes.html#cpu_choice
http://docs.openstack.org/openstack-ops/content/compute_nodes.html#cpu_choice

Architecture Guide September 13, 2014 current

58

12 cores, the scheduler sees 192 available virtual cores. With typical flavor
definitions of 4 virtual cores per instance, this ratio would provide 48 in-
stances on a physical node.

Similarly, the default RAM allocation ratio of 1.5:1 means that the sched-
uler allocates instances to a physical node as long as the total amount of
RAM associated with the instances is less than 1.5 times the amount of
RAM available on the physical node.

For example, if a physical node has 48 GB of RAM, the scheduler allocates
instances to that node until the sum of the RAM associated with the in-
stances reaches 72 GB (such as nine instances, in the case where each in-
stance has 8 GB of RAM).

The appropriate CPU and RAM allocation ratio must be selected based on
particular use cases.

Additional hardware

Certain use cases may benefit from exposure to additional devices on the
compute node. Examples might include:

• High performance computing jobs that benefit from the availability of
graphics processing units (GPUs) for general-purpose computing.

• Cryptographic routines that benefit from the availability of hardware
random number generators to avoid entropy starvation.

• Database management systems that benefit from the availability of SSDs
for ephemeral storage to maximize read/write time when it is required.

Host aggregates are used to group hosts that share similar characteristics,
which can include hardware similarities. The addition of specialized hard-
ware to a cloud deployment is likely to add to the cost of each node, so
careful consideration must be given to whether all compute nodes, or just
a subset which is targetable using flavors, need the additional customiza-
tion to support the desired workloads.

Utilization

Infrastructure-as-a-Service offerings, including OpenStack, use flavors to
provide standardized views of virtual machine resource requirements that
simplify the problem of scheduling instances while making the best use of
the available physical resources.

Architecture Guide September 13, 2014 current

59

In order to facilitate packing of virtual machines onto physical hosts, the
default selection of flavors are constructed so that the second largest fla-
vor is half the size of the largest flavor in every dimension. It has half the
vCPUs, half the vRAM, and half the ephemeral disk space. The next largest
flavor is half that size again. As a result, packing a server for general pur-
pose computing might look conceptually something like this figure:

On the other hand, a CPU optimized packed server might look like the fol-
lowing figure:

Architecture Guide September 13, 2014 current

60

These default flavors are well suited to typical load outs for commodity
server hardware. To maximize utilization, however, it may be necessary to
customize the flavors or create new ones, to better align instance sizes to
the available hardware.

Workload characteristics may also influence hardware choices and flavor
configuration, particularly where they present different ratios of CPU ver-
sus RAM versus HDD requirements.

For more information on Flavors refer to: http://docs.openstack.org/open-
stack-ops/content/flavors.html

http://docs.openstack.org/openstack-ops/content/flavors.html
http://docs.openstack.org/openstack-ops/content/flavors.html

Architecture Guide September 13, 2014 current

61

Performance

The infrastructure of a cloud should not be shared, so that it is possible for
the workloads to consume as many resources as are made available, and
accommodations should be made to provide large scale workloads.

The duration of batch processing differs depending on individual work-
loads that are launched. Time limits range from seconds, minutes to hours,
and as a result it is considered difficult to predict when resources will be
used, for how long, and even which resources will be used.

Security

The security considerations needed for this scenario are similar to those of
the other scenarios discussed in this book.

A security domain comprises users, applications, servers or networks that
share common trust requirements and expectations within a system. Typ-
ically they have the same authentication and authorization requirements
and users.

These security domains are:

1. Public

2. Guest

3. Management

4. Data

These security domains can be mapped individually to the installation, or
they can also be combined. For example, some deployment topologies
combine both guest and data domains onto one physical network, where-
as in other cases these networks are physically separated. In each case, the
cloud operator should be aware of the appropriate security concerns. Se-
curity domains should be mapped out against specific OpenStack deploy-
ment topology. The domains and their trust requirements depend upon
whether the cloud instance is public, private, or hybrid.

The public security domain is an entirely untrusted area of the cloud infras-
tructure. It can refer to the Internet as a whole or simply to networks over
which the user has no authority. This domain should always be considered
untrusted.

Architecture Guide September 13, 2014 current

62

Typically used for compute instance-to-instance traffic, the guest securi-
ty domain handles compute data generated by instances on the cloud;
not services that support the operation of the cloud, for example API calls.
Public cloud providers and private cloud providers who do not have strin-
gent controls on instance use or who allow unrestricted Internet access
to instances should consider this domain to be untrusted. Private cloud
providers may want to consider this network as internal and therefore
trusted only if they have controls in place to assert that they trust instances
and all their tenants.

The management security domain is where services interact. Sometimes
referred to as the "control plane", the networks in this domain transport
confidential data such as configuration parameters, user names, and pass-
words. In most deployments this domain is considered trusted.

The data security domain is concerned primarily with information pertain-
ing to the storage services within OpenStack. Much of the data that cross-
es this network has high integrity and confidentiality requirements and de-
pending on the type of deployment there may also be strong availability
requirements. The trust level of this network is heavily dependent on de-
ployment decisions and as such we do not assign this any default level of
trust.

When deploying OpenStack in an enterprise as a private cloud it is as-
sumed to be behind a firewall and within the trusted network alongside
existing systems. Users of the cloud are typically employees or trusted indi-
viduals that are bound by the security requirements set forth by the com-
pany. This tends to push most of the security domains towards a more
trusted model. However, when deploying OpenStack in a public-facing
role, no assumptions can be made and the attack vectors significantly in-
crease. For example, the API endpoints and the software behind it will be
vulnerable to potentially hostile entities wanting to gain unauthorized ac-
cess or prevent access to services. This can result in loss of reputation and
must be protected against through auditing and appropriate filtering.

Consideration must be taken when managing the users of the system,
whether it is the operation of public or private clouds. The identity service
allows for LDAP to be part of the authentication process, and includes such
systems as an OpenStack deployment that may ease user management if
integrated into existing systems.

It is strongly recommended that the API services are placed behind hard-
ware that performs SSL termination. API services transmit user names,
passwords, and generated tokens between client machines and API end-
points and therefore must be secured.

Architecture Guide September 13, 2014 current

63

More information on OpenStack Security can be found at http://
docs.openstack.org/security-guide/

OpenStack components

Due to the nature of the workloads that will be used in this scenario, a
number of components will be highly beneficial in a Compute-focused
cloud. This includes the typical OpenStack components:

• OpenStack Compute (nova)

• OpenStack Image Service (glance)

• OpenStack Identity (keystone)

Also consider several specialized components:

• Orchestration module (heat)

It is safe to assume that, given the nature of the applications involved in
this scenario, these will be heavily automated deployments. Making use of
Orchestration will be highly beneficial in this case. Deploying a batch of in-
stances and running an automated set of tests can be scripted, however it
makes sense to use the Orchestration module to handle all these actions.

• Telemetry module (ceilometer)

Telemetry and the alarms it generates are required to support autoscaling
of instances using Orchestration. Users that are not using the Orchestra-
tion module do not need to deploy the Telemetry module and may choose
to use other external solutions to fulfill their metering and monitoring re-
quirements.

See also: http://docs.openstack.org/openstack-ops/con-
tent/logging_monitoring.html

• OpenStack Block Storage (cinder)

Due to the burst-able nature of the workloads and the applications and in-
stances that will be used for batch processing, this cloud will utilize mainly
memory or CPU, so the need for add-on storage to each instance is not a
likely requirement. This does not mean that OpenStack Block Storage (cin-
der) will not be used in the infrastructure, but typically it will not be used
as a central component.

http://docs.openstack.org/security-guide/
http://docs.openstack.org/security-guide/
http://docs.openstack.org/openstack-ops/content/logging_monitoring.html
http://docs.openstack.org/openstack-ops/content/logging_monitoring.html

Architecture Guide September 13, 2014 current

64

• Networking

When choosing a networking platform, ensure that it either works with all
desired hypervisor and container technologies and their OpenStack drivers,
or includes an implementation of an ML2 mechanism driver. Networking
platforms that provide ML2 mechanisms drivers can be mixed.

Operational considerations
Operationally, there are a number of considerations that affect the design
of compute-focused OpenStack clouds. Some examples might include en-
forcing strict API availability requirements, understanding and dealing with
failure scenarios, or managing host maintenance schedules.

Service-level agreements (SLAs) are a contractual obligation that gives as-
surances around availability of a provided service. As such, factoring in
promises of availability implies a certain level of redundancy and resiliency
when designing an OpenStack cloud.

• Guarantees for API availability imply multiple infrastructure services com-
bined with appropriately high available load balancers.

• Network uptime guarantees will affect the switch design and might re-
quire redundant switching and power.

• Network security policy requirements need to be factored in to deploy-
ments.

Knowing when and where to implement redundancy and high availability
(HA) is directly affected by terms contained in any associated SLA, if one is
present.

Support and maintainability

OpenStack cloud management requires operations staff to be able to un-
derstand and comprehend design architecture content on some level. The
level of skills and the level of separation of the operations and engineer-
ing staff is dependent on the size and purpose of the installation. A large
cloud service provider or a telecom provider is more inclined to be man-
aged by specially trained dedicated operations organization. A smaller im-
plementation is more inclined to rely on a smaller support staff that might
need to take on the combined engineering, design and operations func-
tions.

Architecture Guide September 13, 2014 current

65

Maintaining OpenStack installations require a variety of technical skills.
Some of these skills may include the ability to debug Python log output to
a basic level as well as an understanding of networking concepts.

Consider incorporating features into the architecture and design that re-
duce the operational burden. Some examples include automating some
of the operations functions, or alternatively exploring the possibility of us-
ing a third party management company with special expertise in managing
OpenStack deployments.

Monitoring

Like any other infrastructure deployment, OpenStack clouds need an ap-
propriate monitoring platform to ensure errors are caught and managed
appropriately. Consider leveraging any existing monitoring system to see
if it will be able to effectively monitor an OpenStack environment. While
there are many aspects that need to be monitored, specific metrics that
are critically important to capture include image disk utilization, or re-
sponse time to the Compute API.

Expected and unexpected server downtime

At some point, servers will fail. The SLAs in place affect how the design has
to address recovery time. Recovery of a failed host may mean restoring in-
stances from a snapshot, or respawning that instance on another available
host, which then has consequences on the overall application design run-
ning on the OpenStack cloud.

It might be acceptable to design a compute-focused cloud without the
ability to migrate instances from one host to another, because the expec-
tation is that the application developer must handle failure within the ap-
plication itself. Conversely, a compute-focused cloud might be provisioned
to provide extra resilience as a requirement of that business. In this sce-
nario, it is expected that extra supporting services are also deployed, such
as shared storage attached to hosts to aid in recovery and resiliency of ser-
vices in order to meet strict SLAs.

Capacity planning

Adding extra capacity to an OpenStack cloud is an easy horizontally scal-
ing process, as consistently configured nodes automatically attach to an
OpenStack cloud. Be mindful, however, of any additional work to place
the nodes into appropriate Availability Zones and Host Aggregates if nec-

Architecture Guide September 13, 2014 current

66

essary. The same (or very similar) CPUs are recommended when adding ex-
tra nodes to the environment because it reduces the chance to break any
live-migration features if they are present. Scaling out hypervisor hosts also
has a direct effect on network and other data center resources, so factor in
this increase when reaching rack capacity or when extra network switches
are required.

Compute hosts can also have internal components changed to account for
increases in demand, a process also known as vertical scaling. Swapping
a CPU for one with more cores, or increasing the memory in a server, can
help add extra needed capacity depending on whether the running appli-
cations are more CPU intensive or memory based (as would be expected in
a compute-focused OpenStack cloud).

Another option is to assess the average workloads and increase the num-
ber of instances that can run within the compute environment by adjust-
ing the overcommit ratio. While only appropriate in some environments,
it's important to remember that changing the CPU overcommit ratio can
have a detrimental effect and cause a potential increase in noisy neighbor.
The added risk of increasing the overcommit ratio is more instances will fail
when a compute host fails. In a compute-focused OpenStack design archi-
tecture, increasing the CPU overcommit ratio increases the potential for
noisy neighbor issues and is not recommended.

Architecture
The hardware selection covers three areas:

• Compute

• Network

• Storage

In a compute-focused OpenStack cloud the hardware selection must re-
flect the workloads being compute intensive. Compute-focused is defined
as having extreme demands on processor and memory resources. The
hardware selection for a compute-focused OpenStack architecture design
must reflect this preference for compute-intensive workloads, as these
workloads are not storage intensive, nor are they consistently network in-
tensive. The network and storage may be heavily utilized while loading a
data set into the computational cluster, but they are not otherwise inten-
sive.

Architecture Guide September 13, 2014 current

67

Compute (server) hardware must be evaluated against four opposing di-
mensions:

Server density A measure of how many servers can fit into a giv-
en measure of physical space, such as a rack unit
[U].

Resource capacity The number of CPU cores, how much RAM, or
how much storage a given server will deliver.

Expandability The number of additional resources that can be
added to a server before it has reached its limit.

Cost The relative purchase price of the hardware
weighted against the level of design effort need-
ed to build the system.

The dimensions need to be weighted against each other to determine the
best design for the desired purpose. For example, increasing server densi-
ty means sacrificing resource capacity or expandability. Increasing resource
capacity and expandability can increase cost but decreases server densi-
ty. Decreasing cost can mean decreasing supportability, server density, re-
source capacity, and expandability.

Selection of hardware for a compute-focused cloud should have an empha-
sis on server hardware that can offer more CPU sockets, more CPU cores,
and more RAM; network connectivity and storage capacity are less critical.
The hardware will need to be configured to provide enough network con-
nectivity and storage capacity to meet minimum user requirements, but
they are not the primary consideration.

Some server hardware form factors are better suited than others, as CPU
and RAM capacity have the highest priority.

• Most blade servers can support dual-socket multi-core CPUs. To avoid
the limit means selecting "full width" or "full height" blades, which con-
sequently loses server density. As an example, using high density blade
servers including HP BladeSystem and Dell PowerEdge M1000e) which
support up to 16 servers in only 10 rack units using half-height blades,
suddenly decreases the density by 50% by selecting full-height blades re-
sulting in only 8 servers per 10 rack units.

• 1U rack-mounted servers (servers that occupy only a single rack unit)
may be able to offer greater server density than a blade server solution.
It is possible to place 40 servers in a rack, providing space for the top of

Architecture Guide September 13, 2014 current

68

rack [ToR] switches, versus 32 "full width" or "full height" blade servers in
a rack), but often are limited to dual-socket, multi-core CPU configura-
tions. Note that, as of the Icehouse release, neither HP, IBM, nor Dell of-
fered 1U rack servers with more than 2 CPU sockets. To obtain greater
than dual-socket support in a 1U rack-mount form factor, customers
need to buy their systems from Original Design Manufacturers (ODMs)
or second-tier manufacturers. This may cause issues for organizations
that have preferred vendor policies or concerns with support and hard-
ware warranties of non-tier 1 vendors.

• 2U rack-mounted servers provide quad-socket, multi-core CPU support,
but with a corresponding decrease in server density (half the density of-
fered by 1U rack-mounted servers).

• Larger rack-mounted servers, such as 4U servers, often provide even
greater CPU capacity, commonly supporting four or even eight CPU
sockets. These servers have greater expandability, but such servers have
much lower server density and usually greater hardware cost.

• "Sled servers" (rack-mounted servers that support multiple independent
servers in a single 2U or 3U enclosure) deliver increased density as com-
pared to typical 1U or 2U rack-mounted servers. For example, many sled
servers offer four independent dual-socket nodes in 2U for a total of
8 CPU sockets in 2U. However, the dual-socket limitation on individual
nodes may not be sufficient to offset their additional cost and configura-
tion complexity.

The following facts will strongly influence server hardware selection for a
compute-focused OpenStack design architecture:

Instance density In this architecture instance density is
considered lower; therefore CPU and
RAM over-subscription ratios are also
lower. More hosts will be required to
support the anticipated scale due to in-
stance density being lower, especially if
the design uses dual-socket hardware
designs.

Host density Another option to address the higher
host count that might be needed with
dual socket designs is to use a quad
socket platform. Taking this approach
will decrease host density, which in-
creases rack count. This configuration

Architecture Guide September 13, 2014 current

69

may affect the network requirements,
the number of power connections, and
possibly impact the cooling require-
ments.

Power and cooling density The power and cooling density require-
ments might be lower than with blade,
sled, or 1U server designs because of
lower host density (by using 2U, 3U or
even 4U server designs). For data cen-
ters with older infrastructure, this may
be a desirable feature.

Compute-focused OpenStack design architecture server hardware selec-
tion results in a "scale up" versus "scale out" decision. Selecting a better so-
lution, smaller number of larger hosts, or a larger number of smaller hosts
depends on a combination of factors: cost, power, cooling, physical rack
and floor space, support-warranty, and manageability.

Storage hardware selection

For a compute-focused OpenStack design architecture, the selection of
storage hardware is not critical as it is not primary criteria, however it is still
important. There are a number of different factors that a cloud architect
must consider:

Cost The overall cost of the solution will play a major role in
what storage architecture (and resulting storage hard-
ware) is selected.

Performance The performance of the solution is also a big role and
can be measured by observing the latency of storage
I-O requests. In a compute-focused OpenStack cloud,
storage latency can be a major consideration. In some
compute-intensive workloads, minimizing the delays
that the CPU experiences while fetching data from the
storage can have a significant impact on the overall
performance of the application.

Scalability This section will refer to the term "scalability" to refer
to how well the storage solution performs as it is ex-
panded up to its maximum size. A storage solution
that performs well in small configurations but has de-
grading performance as it expands would not be con-

Architecture Guide September 13, 2014 current

70

sidered scalable. On the other hand, a solution that
continues to perform well at maximum expansion
would be considered scalable.

Expandability Expandability refers to the overall ability of the solu-
tion to grow. A storage solution that expands to 50
PB is considered more expandable than a solution that
only scales to 10PB. Note that this metric is related to,
but different from, scalability, which is a measure of
the solution's performance as it expands.

For a compute-focused OpenStack cloud, latency of storage is a major con-
sideration. Using solid-state disks (SSDs) to minimize latency for instance
storage and reduce CPU delays caused by waiting for the storage will in-
crease performance. Consider using RAID controller cards in compute hosts
to improve the performance of the underlying disk subsystem.

The selection of storage architecture, and the corresponding storage hard-
ware (if there is the option), is determined by evaluating possible solutions
against the key factors listed above. This will determine if a scale-out solu-
tion (such as Ceph, GlusterFS, or similar) should be used, or if a single, high-
ly expandable and scalable centralized storage array would be a better
choice. If a centralized storage array is the right fit for the requirements,
the hardware will be determined by the array vendor. It is also possible to
build a storage array using commodity hardware with Open Source soft-
ware, but there needs to be access to people with expertise to build such
a system. Conversely, a scale-out storage solution that uses direct-attached
storage (DAS) in the servers may be an appropriate choice. If so, then the
server hardware needs to be configured to support the storage solution.

The following lists some of the potential impacts that may affect a partic-
ular storage architecture, and the corresponding storage hardware, of a
compute-focused OpenStack cloud:

Connectivity Based on the storage solution selected, ensure the
connectivity matches the storage solution require-
ments. If a centralized storage array is selected, it
is important to determine how the hypervisors will
connect to the storage array. Connectivity could af-
fect latency and thus performance, so check that
the network characteristics will minimize latency to
boost the overall performance of the design.

Latency Determine if the use case will have consistent or
highly variable latency.

Architecture Guide September 13, 2014 current

71

Throughput To improve overall performance, make sure that
the storage solution throughout is optimized. While
it is not likely that a compute-focused cloud will
have major data I-O to and from storage, this is an
important factor to consider.

Server Hardware If the solution uses DAS, this impacts, and is not lim-
ited to, the server hardware choice that will ripple
into host density, instance density, power density,
OS-hypervisor, and management tools.

Where instances need to be made highly available, or they need to be ca-
pable of migration between hosts, use of a shared storage file-system to
store instance ephemeral data should be employed to ensure that com-
pute services can run uninterrupted in the event of a node failure.

Selecting networking hardware
Some of the key considerations that should be included in the selection of
networking hardware include:

Port count The design will require networking hardware
that has the requisite port count.

Port density The network design will be affected by the
physical space that is required to provide the
requisite port count. A switch that can provide
48 10 GbE ports in 1U has a much higher port
density than a switch that provides 24 10 GbE
ports in 2U. A higher port density is preferred,
as it leaves more rack space for compute or
storage components that might be required by
the design. This also leads into concerns about
fault domains and power density that must al-
so be considered. Higher density switches are
more expensive and should also be considered,
as it is important not to over design the net-
work if it is not required.

Port speed The networking hardware must support the
proposed network speed, for example: 1 GbE,
10 GbE, or 40 GbE (or even 100 GbE).

Redundancy The level of network hardware redundan-
cy required is influenced by the user require-

Architecture Guide September 13, 2014 current

72

ments for high availability and cost consider-
ations. Network redundancy can be achieved
by adding redundant power supplies or paired
switches. If this is a requirement, the hardware
will need to support this configuration. User re-
quirements will determine if a completely re-
dundant network infrastructure is required.

Power requirements Ensure that the physical data center provides
the necessary power for the selected network
hardware. This is not an issue for top of rack
(ToR) switches, but may be an issue for spine
switches in a leaf and spine fabric, or end of
row (EoR) switches.

It is important to first understand additional factors as well as the use case
because these additional factors heavily influence the cloud network ar-
chitecture. Once these key considerations have been decided, the proper
network can be designed to best serve the workloads being placed in the
cloud.

It is recommended that the network architecture is designed using a scal-
able network model that makes it easy to add capacity and bandwidth.
A good example of such a model is the leaf-spline model. In this type of
network design, it is possible to easily add additional bandwidth as well
as scale out to additional racks of gear. It is important to select network
hardware that will support the required port count, port speed and port
density while also allowing for future growth as workload demands in-
crease. It is also important to evaluate where in the network architecture
it is valuable to provide redundancy. Increased network availability and re-
dundancy comes at a cost, therefore it is recommended to weigh the cost
versus the benefit gained from utilizing and deploying redundant network
switches and using bonded interfaces at the host level.

Software selection

Selecting software to be included in a compute-focused OpenStack archi-
tecture design must include three main areas:

• Operating system (OS) and hypervisor

• OpenStack components

• Supplemental software

Architecture Guide September 13, 2014 current

73

Design decisions made in each of these areas impact the rest of the Open-
Stack architecture design.

Operating system and hypervisor

The selection of operating system (OS) and hypervisor has a significant im-
pact on the end point design. Selecting a particular operating system and
hypervisor could affect server hardware selection. For example, a selected
combination needs to be supported on the selected hardware. Ensuring
the storage hardware selection and topology supports the selected oper-
ating system and hypervisor combination should also be considered. Addi-
tionally, make sure that the networking hardware selection and topology
will work with the chosen operating system and hypervisor combination.
For example, if the design uses Link Aggregation Control Protocol (LACP),
the hypervisor needs to support it.

Some areas that could be impacted by the selection of OS and hypervisor
include:

Cost Selecting a commercially supported hypervi-
sor such as Microsoft Hyper-V will result in
a different cost model rather than chosen
a community-supported open source hy-
pervisor like Kinstance or Xen. Even within
the ranks of open source solutions, choos-
ing Ubuntu over Red Hat (or vice versa) will
have an impact on cost due to support con-
tracts. On the other hand, business or appli-
cation requirements might dictate a specific
or commercially supported hypervisor.

Supportability Depending on the selected hypervisor, the
staff should have the appropriate training
and knowledge to support the selected OS
and hypervisor combination. If they do not,
training will need to be provided which
could have a cost impact on the design.

Management tools The management tools used for Ubuntu
and Kinstance differ from the management
tools for VMware vSphere. Although both
OS and hypervisor combinations are sup-
ported by OpenStack, there will be very dif-
ferent impacts to the rest of the design as a

Architecture Guide September 13, 2014 current

74

result of the selection of one combination
versus the other.

Scale and performance Ensure that selected OS and hypervisor
combinations meet the appropriate scale
and performance requirements. The chosen
architecture will need to meet the targeted
instance-host ratios with the selected OS-
hypervisor combination.

Security Ensure that the design can accommodate
the regular periodic installation of applica-
tion security patches while maintaining the
required workloads. The frequency of secu-
rity patches for the proposed OS-hypervi-
sor combination will have an impact on per-
formance and the patch installation process
could affect maintenance windows.

Supported features Determine what features of OpenStack are
required. This will often determine the se-
lection of the OS-hypervisor combination.
Certain features are only available with spe-
cific OSs or hypervisors. For example, if cer-
tain features are not available, the design
might need to be modified to meet the us-
er requirements.

Interoperability Consideration should be given to the ability
of the selected OS-hypervisor combination
to interoperate or co-exist with other OS-
hypervisors, or other software solutions in
the overall design (if required). Operational
and troubleshooting tools for one OS-hy-
pervisor combination may differ from the
tools used for another OS-hypervisor combi-
nation and, as a result, the design will need
to address if the two sets of tools need to
interoperate.

OpenStack components

The selection of which OpenStack components will actually be included in
the design and deployed has significant impact. There are certain compo-

Architecture Guide September 13, 2014 current

75

nents that will always be present, (Compute and Image Service, for exam-
ple) yet there are other services that might not need to be present. For ex-
ample, a certain design may not require the Orchestration module. Omit-
ting Heat would not typically have a significant impact on the overall de-
sign. However, if the architecture uses a replacement for OpenStack Ob-
ject Storage for its storage component, this could potentially have signifi-
cant impacts on the rest of the design.

For a compute-focused OpenStack design architecture, the following com-
ponents would be used:

• Identity (keystone)

• Dashboard (horizon)

• Compute (nova)

• Object Storage (swift, ceph or a commercial solution)

• Image (glance)

• Networking (neutron)

• Orchestration (heat)

OpenStack Block Storage would potentially not be incorporated into a
compute-focused design due to persistent block storage not being a signif-
icant requirement for the types of workloads that would be deployed on-
to instances running in a compute-focused cloud. However, there may be
some situations where the need for performance dictates that a block stor-
age component be used to improve data I-O.

The exclusion of certain OpenStack components might also limit or con-
strain the functionality of other components. If a design opts to include
the Orchestration module but exclude the Telemetry module, then the
design will not be able to take advantage of Orchestration's auto scaling
functionality (which relies on information from Telemetry). Due to the fact
that you can use Orchestration to spin up a large number of instances to
perform the compute-intensive processing, including Orchestration in a
compute-focused architecture design is strongly recommended.

Supplemental software
While OpenStack is a fairly complete collection of software projects for
building a platform for cloud services, there are invariably additional pieces
of software that might need to be added to any given OpenStack design.

Architecture Guide September 13, 2014 current

76

Networking software

OpenStack Networking provides a wide variety of networking services for
instances. There are many additional networking software packages that
might be useful to manage the OpenStack components themselves. Some
examples include software to provide load balancing, network redundan-
cy protocols, and routing daemons. Some of these software packages are
described in more detail in the OpenStack High Availability Guide (http://
docs.openstack.org/high-availability-guide/content).

For a compute-focused OpenStack cloud, the OpenStack infrastructure
components will need to be highly available. If the design does not include
hardware load balancing, networking software packages like HAProxy will
need to be included.

Management software

The selected supplemental software solution impacts and affects the over-
all OpenStack cloud design. This includes software for providing clustering,
logging, monitoring and alerting.

Inclusion of clustering Software, such as Corosync or Pacemaker, is deter-
mined primarily by the availability design requirements. Therefore, the im-
pact of including (or not including) these software packages is primari-
ly determined by the availability of the cloud infrastructure and the com-
plexity of supporting the configuration after it is deployed. The OpenStack
High Availability Guide provides more details on the installation and con-
figuration of Corosync and Pacemaker, should these packages need to be
included in the design.

Requirements for logging, monitoring, and alerting are determined by op-
erational considerations. Each of these sub-categories includes a number of
various options. For example, in the logging sub-category one might con-
sider Logstash, Splunk, Log Insight, or some other log aggregation-consoli-
dation tool. Logs should be stored in a centralized location to make it easi-
er to perform analytics against the data. Log data analytics engines can al-
so provide automation and issue notification by providing a mechanism to
both alert and automatically attempt to remediate some of the more com-
monly known issues.

If any of these software packages are needed, then the design must ac-
count for the additional resource consumption (CPU, RAM, storage, and
network bandwidth for a log aggregation solution, for example). Some
other potential design impacts include:

http://docs.openstack.org/high-availability-guide/content
http://docs.openstack.org/high-availability-guide/content

Architecture Guide September 13, 2014 current

77

• OS-hypervisor combination: Ensure that the selected logging, monitor-
ing, or alerting tools support the proposed OS-hypervisor combination.

• Network hardware: The network hardware selection needs to be sup-
ported by the logging, monitoring, and alerting software.

Database software

A large majority of the OpenStack components require access to back-end
database services to store state and configuration information. Selection
of an appropriate back-end database that will satisfy the availability and
fault tolerance requirements of the OpenStack services is required. Open-
Stack services support connecting to any database that is supported by
the SQLAlchemy Python drivers, however most common database deploy-
ments make use of MySQL or some variation of it. It is recommended that
the database which provides back-end service within a general purpose
cloud be made highly available using an available technology which can ac-
complish that goal. Some of the more common software solutions used in-
clude Galera, MariaDB and MySQL with multi-master replication.

Prescriptive examples
The Conseil Européen pour la Recherche Nucléaire (CERN), also known as
the European Organization for, Nuclear Research provides particle acceler-
ators and other infrastructure for high-energy physics research.

As of 2011 CERN operated these two compute centers in Europe with
plans to add a third.

Data center Approximate capacity

Geneva, Switzerland • 3.5 Mega Watts

• 91000 cores

• 120 PB HDD

• 100 PB Tape

• 310 TB Memory

Budapest, Hungary • 2.5 Mega Watts

• 20000 cores

• 6 PB HDD

To support a growing number of compute heavy users of experiments re-
lated to the Large Hadron Collider (LHC) CERN ultimately elected to deploy
an OpenStack cloud using Scientific Linux and RDO. This effort aimed to

Architecture Guide September 13, 2014 current

78

simplify the management of the center's compute resources with a view
to doubling compute capacity through the addition of an additional data
center in 2013 while maintaining the same levels of compute staff.

The CERN solution uses cells for segregation of compute resources and to
transparently scale between different data centers. This decision meant
trading off support for security groups and live migration. In addition
some details like flavors needed to be manually replicated across cells. In
spite of these drawbacks cells were determined to provide the required
scale while exposing a single public API endpoint to users.

A compute cell was created for each of the two original data centers and
a third was created when a new data center was added in 2013. Each cell
contains three availability zones to further segregate compute resources
and at least three RabbitMQ message brokers configured to be clustered
with mirrored queues for high availability.

The API cell, which resides behind a HAProxy load balancer, is located in
the data center in Switzerland and directs API calls to compute cells using
a customized variation of the cell scheduler. The customizations allow cer-
tain workloads to be directed to a specific data center or "all" data centers
with cell selection determined by cell RAM availability in the latter case.

Architecture Guide September 13, 2014 current

79

There is also some customization of the filter scheduler that handles place-
ment within the cells:

• ImagePropertiesFilter - To provide special handling depending on the
guest operating system in use (Linux-based or Windows-based).

• ProjectsToAggregateFilter - To provide special handling depending on
the project the instance is associated with.

• default_schedule_zones - Allows the selection of multiple default avail-
ability zones, rather than a single default.

The MySQL database server in each cell is managed by a central database
team and configured in an active/passive configuration with a NetApp
storage back end. Backups are performed ever 6 hours.

Network architecture
To integrate with existing CERN networking infrastructure customizations
were made to legacy networking (nova-network). This was in the form of
a driver to integrate with CERN's existing database for tracking MAC and
IP address assignments.

The driver facilitates selection of a MAC address and IP for new instances
based on the compute node the scheduler places the instance on

The driver considers the compute node that the scheduler placed an in-
stance on and then selects a MAC address and IP from the pre-registered
list associated with that node in the database. The database is then updat-
ed to reflect the instance the addresses were assigned to.

Storage architecture
The OpenStack Image Service is deployed in the API cell and configured to
expose version 1 (V1) of the API. As a result the image registry is also re-
quired. The storage back end in use is a 3 PB Ceph cluster.

A small set of "golden" Scientific Linux 5 and 6 images are maintained
which applications can in turn be placed on using orchestration tools. Pup-
pet is used for instance configuration management and customization but
Orchestration deployment is expected.

Monitoring
Although direct billing is not required, the Telemetry module is used to
perform metering for the purposes of adjusting project quotas. A shard-

Architecture Guide September 13, 2014 current

80

ed, replicated, MongoDB back end is used. To spread API load, instances
of the nova-api service were deployed within the child cells for Telemetry
to query against. This also meant that some supporting services including
keystone, glance-api and glance-registry needed to also be configured in
the child cells.

Additional monitoring tools in use include Flume, Elastic Search, Kibana,
and the CERN developed Lemon project.

References

The authors of the Architecture Design Guide would like to thank CERN
for publicly documenting their OpenStack deployment in these resources,
which formed the basis for this chapter:

• http://openstack-in-production.blogspot.fr

• Deep dive into the CERN Cloud Infrastructure

http://flume.apache.org/
http://www.elasticsearch.org/
http://www.elasticsearch.org/overview/kibana/
http://lemon.web.cern.ch/lemon/index.shtml
http://openstack-in-production.blogspot.fr/
http://www.openstack.org/assets/presentation-media/Deep-Dive-into-the-CERN-Cloud-Infrastructure.pdf

Architecture Guide September 13, 2014 current

81

4. Storage focused

Table of Contents
User requirements .. 82
Technical considerations ... 83
Operational considerations .. 86
Architecture ... 91
Prescriptive examples ... 102

Cloud storage is a model of data storage where digital data is stored in
logical pools and physical storage that spans across multiple servers and
locations. Cloud storage commonly refers to a hosted object storage ser-
vice, however the term has extended to include other types of data stor-
age that are available as a service, for example block storage.

Cloud storage is based on virtualized infrastructure and resembles broader
cloud computing in terms of accessible interfaces, elasticity, scalability, mul-
ti-tenancy, and metered resources. Cloud storage services can be utilized
from an off-premises service or deployed on-premises.

Cloud storage is made up of many distributed, yet still synonymous re-
sources, and is often referred to as integrated storage clouds. Cloud stor-
age is highly fault tolerant through redundancy and the distribution of da-
ta. It is highly durable through the creation of versioned copies, and can be
consistent with regard to data replicas.

At a certain scale, management of data operations can become a resource
intensive process to an organization. Hierarchical storage management
(HSM) systems and data grids can help annotate and report a baseline da-
ta valuation to make intelligent decisions and automate data decisions.
HSM allows for automating tiering and movement, as well as orchestration
of data operations. A data grid is an architecture, or set of services evolv-
ing technology, that brings together sets of services allowing users to man-
age large data sets.

Examples of applications that can be deployed with cloud storage charac-
teristics are:

• Active archive, backups and hierarchical storage management.

• General content storage and synchronization. An example of this is pri-
vate dropbox.

Architecture Guide September 13, 2014 current

82

• Data analytics with parallel file systems.

• Unstructured data store for services. For example, social media back-end
storage.

• Persistent block storage.

• Operating system and application image store.

• Media streaming.

• Databases.

• Content distribution.

• Cloud storage peering.

User requirements
Storage-focused clouds are defined by their requirements for data includ-
ing, but not limited to, performance, access patterns, and data structures.
A balance between cost and user requirements dictate what methods and
technologies will be used in a cloud architecture.

Cost The user pays only for the storage they actually
use. This limit typically reflects average user con-
sumption during a month. This does not mean
that cloud storage is less expensive, only that it
incurs operating expenses rather the capital ex-
penses. From a business perspective, it should
be beneficial for the solution to scale proper-
ly to prevent the up-front purchase of a large
amount of storage that goes underutilized.

Legal requirements Multiple jurisdictions have legislative and regu-
latory requirements governing the storage and
management of data in cloud environments.
Common areas of regulation include data re-
tention policies and data ownership policies.

Legal requirements

Many jurisdictions have legislative and regulatory requirements governing
the storage and management of data in cloud environments. Common ar-
eas of regulation include:

Architecture Guide September 13, 2014 current

83

Data retention Policies ensuring storage of persistent data and
records management to meet data archival re-
quirements.

Data ownership Policies governing the possession and responsibili-
ty for data.

Data sovereignty Policies governing the storage of data in foreign
countries or otherwise separate jurisdictions.

Data compliance Policies governing types of information that are
required to reside in certain locations due to regu-
lar issues and cannot reside in other locations for
the same reason.

Examples of such legal frameworks include the data protection framework
of the European Union and the requirements of the Financial Industry Reg-
ulatory Authority in the United States. Consult a local regulatory body for
more information.

Technical requirements
The following are some technical requirements that could be incorporated
into the architecture design.

Storage proximity In order to provide high performance or large
amounts of storage space the design may have
to accommodate storage that is each of the hy-
pervisors or served from a central storage device.

Performance To boost performance the organization may
want to make use of different technologies to
cache disk activity.

Availability Specific requirements regarding availability will
influence the technology used to store and pro-
tect data. These requirements will be influence
the cost and solution that will be implemented.

Security Data will need to be protected both in transit
and at rest.

Technical considerations
Some of the key technical considerations that are critical to a storage fo-
cused OpenStack design architecture include:

http://ec.europa.eu/justice/data-protection/
http://www.finra.org/Industry/Regulation/FINRARules/
http://www.finra.org/Industry/Regulation/FINRARules/

Architecture Guide September 13, 2014 current

84

Input-output requirements Input-Output performance require-
ments need to be researched and mod-
eled before deciding on a final storage
framework. Running benchmarks for
Input-Output performance will help
provide a baseline for expected perfor-
mance levels. If these tests include de-
tails, for example, object size in an ob-
ject storage system or varying capacity
levels for both object storage and block
storage, then the resulting data can
help model behavior and results dur-
ing different workloads. Running script-
ed smaller benchmarks during the life
cycle of the architecture helps record
the system health at different points
in time. The data from these scripted
benchmarks will assist in future scoping
and gaining a deeper understanding of
an organization's needs.

Scale The scale of the storage solution in a
storage focused OpenStack architec-
ture design is driven both by initial re-
quirements, including IOPS, capaci-
ty, and bandwidth, as well as future
needs. Planning capacity based on pro-
jected needs over the course of a bud-
get cycle is important for a design. Ide-
ally, the chosen architecture should bal-
ance cost and capacity while also allow-
ing enough flexibility for new technolo-
gies and methods to be implemented
as they become available.

Security Security design around data has multi-
ple points of focus that vary depending
on SLAs, legal requirements, industry
regulations, and certifications needed
for systems or people. HIPPA, ISO9000,
and SOX compliance should be consid-
ered based on the type of data. Levels
of access control can be important for
certain organizations.

Architecture Guide September 13, 2014 current

85

OpenStack compatibility Interoperability and integration with
OpenStack can be paramount in decid-
ing on a storage hardware and storage
management platform. Interoperabili-
ty and integration includes factors such
as OpenStack Block Storage interoper-
ability, OpenStack Object Storage com-
patibility, and hypervisor compatibility
(which affects the ability to use storage
for ephemeral instance storage).

Storage management A range of storage management-relat-
ed considerations must be addressed in
the design of a storage focused Open-
Stack cloud. These considerations in-
clude, but are not limited to, backup
strategy (and restore strategy, since a
backup that can not be restored is use-
less), data valuation-hierarchical stor-
age management, retention strate-
gy, data placement, and workflow au-
tomation.

Data grids Data grids can be helpful in determinis-
tically answering questions around da-
ta valuation. A fundamental challenge
of today’s information sciences is de-
termining which data is worth keeping,
on what tier of access and performance
should it reside, and how long should it
remain in a storage system. Data grids
improve decision making through cor-
relation of access patterns, ownership,
and business-unit revenue with other
metadata values to deliver actionable
information about data.

Strive to build a flexible design that is based on a industry standard core.
One way of accomplishing this might be through the use of different back
ends serving different use cases.

Architecture Guide September 13, 2014 current

86

Operational considerations
• Maintenance tasks: The storage solution should take into account stor-

age maintenance and the impact on underlying workloads.

• Reliability and availability: Reliability and availability depends on wide
area network availability and on the level of precautions taken by the
service provider.

• Flexibility: Organizations need to have the flexibility to choose between
off-premise and on-premise cloud storage options. This concept relies on
relevant decision criteria that is complementary to initial direct cost sav-
ings potential. For example, continuity of operations, disaster recovery,
security, and records retention laws, regulations, and policies.

In a cloud environment with very high demands on storage resources, it
becomes vitally important to ensure that monitoring and alerting services
have been installed and configured to provide a real-time view into the
health and performance of the storage systems. Using an integrated man-
agement console, or other dashboards capable of visualizing SNMP data,
will be helpful in discovering and resolving issues that might arise within
the storage cluster. An example of this is Ceph’s Calamari.

A storage-focused cloud design should include:

• Monitoring of physical hardware resources.

• Monitoring of environmental resources such as temperature and humid-
ity.

• Monitoring of storage resources such as available storage, memory and
CPU.

• Monitoring of advanced storage performance data to ensure that stor-
age systems are performing as expected.

• Monitoring of network resources for service disruptions which would af-
fect access to storage.

• Centralized log collection.

• Log analytics capabilities.

• Ticketing system (or integration with a ticketing system) to track issues.

Architecture Guide September 13, 2014 current

87

• Alerting and notification of responsible teams or automated systems
which will remediate problems with storage as they arise.

• Network Operations Center (NOC) staffed and always available to re-
solve issues.

Management efficiency

When designing a storage solution at scale, ease of management of the
storage devices is an important consideration. Within a storage cluster, op-
erations personnel will often be required to replace failed drives or nodes
and provide ongoing maintenance of the storage hardware. When the
cloud is designed and planned properly, the process can be performed in
a seamless and organized manner that does not have an impact on opera-
tional efficiency.

Provisioning and configuration of new or upgraded storage is another im-
portant consideration when it comes to management of resources. The
ability to easily deploy, configure, and manage storage hardware will re-
sult in a solution which is easy to manage. This also makes use of manage-
ment systems that can automate other pieces of the overall solution. For
example, replication, retention, data backup and recovery.

Application awareness

When designing applications that will leverage storage solutions in the
cloud, design the application to be aware of the underlying storage sub-
system and the features available. As an example, when creating an ap-
plication that requires replication, it is recommended that the application
can detect whether replication is a feature natively available in the storage
subsystem. In the event that replication is not available, the application
can be designed to react in a manner such that it will be able to provide
its own replication services. An application that is designed to be aware
of the underlying storage systems can be deployed in a wide variety of in-
frastructures and still have the same basic behavior regardless of the differ-
ences in the underlying infrastructure.

Fault tolerance and availability

Designing for fault tolerance and availability of storage systems in an
OpenStack cloud is vastly different when comparing the block storage and
object storage services. The object storage service is designed to have con-
sistency and partition tolerance as a function of the application. Therefore,

Architecture Guide September 13, 2014 current

88

it does not have any reliance on hardware RAID controllers to provide re-
dundancy for physical disks. In contrast, block storage resource nodes are
commonly configured with advanced RAID controllers and high perfor-
mance disks that are designed to provide fault tolerance at the hardware
level.

In cases where applications require extreme performance out of block stor-
age devices, it is recommended to deploy high performing storage solu-
tions such as SSD disk drives or flash storage systems. When considering
these solutions, it is important to consider the availability of software and
support to ease with the hardware and software integration process.

In environments that place extreme demands on block storage, it is advis-
able to take advantage of multiple storage pools. In this case, each pool
of devices should have a similar hardware design and disk configuration
across all hardware nodes in that pool. This allows for a design that pro-
vides applications with access to a wide variety of block storage pools,
each with their own redundancy, availability, and performance character-
istics. When deploying multiple pools of storage it is also important to con-
sider the impact on the block storage scheduler which is responsible for
provisioning storage across resource nodes. Ensuring that applications can
schedule volumes in multiple regions, each with their own network, pow-
er, and cooling infrastructure, can give tenants the ability to build fault tol-
erant applications that will be distributed across multiple availability zones.

In addition to the block storage resource nodes, it is important to design
for high availability and redundancy of the APIs and related services that
are responsible for provisioning and providing access to storage. It is rec-
ommended to design a layer of hardware or software load balancers in or-
der to achieve high availability of the appropriate REST API services to pro-
vide uninterrupted service. In some cases, it may also be necessary to de-
ploy an additional layer of load balancing to provide access to back-end
database services responsible for servicing and storing the state of block
storage volumes. Designing a highly available database solution to store
the Block Storage databases is also recommended. A number of highly
available database solutions such as Galera and MariaDB can be leveraged
to help keep database services online to provide uninterrupted access so
that tenants can manage block storage volumes.

In a cloud with extreme demands on block storage the network archi-
tecture should take into account the amount of East-West bandwidth
that will be required for instances to make use of the available storage re-
sources. Network devices selected should support jumbo frames for trans-
ferring large blocks of data. In some cases, it may be necessary to create

Architecture Guide September 13, 2014 current

89

an additional back-end storage network dedicated to providing connectiv-
ity between instances and block storage resources so that there is no con-
tention of network resources.

Object Storage fault tolerance and availability

While consistency and partition tolerance are both inherent features of the
object storage service, it is important to design the overall storage archi-
tecture to ensure that those goals can be met by the system being imple-
mented. The OpenStack object storage service places a specific number of
data replicas as objects on resource nodes. These replicas are distributed
throughout the cluster based on a consistent hash ring which exists on all
nodes in the cluster.

The object storage system should be designed with sufficient number of
zones to provide quorum for the number of replicas defined. As an exam-
ple, with three replicas configured in the Swift cluster, the recommended
number of zones to configure within the object storage cluster in order
to achieve quorum is 5. While it is possible to deploy a solution with fewer
zones, the implied risk of doing so is that some data may not be available
and API requests to certain objects stored in the cluster might fail. For this
reason, ensure the number of zones in the object storage cluster is proper-
ly accounted for.

Each object storage zone should be self-contained within its own avail-
ability zone. Each availability zone should have independent access to net-
work, power and cooling infrastructure to ensure uninterrupted access
to data. In addition, each availability zone should be serviced by a pool of
object storage proxy servers which will provide access to data stored on
the object nodes. Object proxies in each region should leverage local read
and write affinity so that access to objects is facilitated by local storage re-
sources wherever possible. It is recommended that upstream load balanc-
ing be deployed to ensure that proxy services can be distributed across the
multiple zones and, in some cases, it may be necessary to make use of third
party solutions to aid with geographical distribution of services.

A zone within an object storage cluster is a logical division. A zone can
be represented as a disk within a single node, the node itself, a group of
nodes in a rack, an entire rack, a data center or even a geographic region.
Deciding on the proper zone design is crucial for allowing the object stor-
age cluster to scale while providing an available and redundant storage
system. Furthermore, it may be necessary to configure storage policies that
have different requirements with regards to replicas, retention and other
factors that could heavily affect the design of storage in a specific zone.

Architecture Guide September 13, 2014 current

90

Scaling storage services
Adding storage capacity and bandwidth is a very different process when
comparing the block and object storage services. While adding block stor-
age capacity is a relatively simple process, adding capacity and bandwidth
to the object storage systems is a complex task that requires careful plan-
ning and consideration during the design phase.

Scaling Block Storage
Block storage pools can be upgraded to add storage capacity rather eas-
ily without interruption to the overall block storage service. Nodes can
be added to the pool by simply installing and configuring the appropri-
ate hardware and software and then allowing that node to report in to
the proper storage pool via the message bus. This is because block storage
nodes report into the scheduler service advertising their availability. Once
the node is online and available tenants can make use of those storage re-
sources instantly.

In some cases, the demand on block storage from instances may exhaust
the available network bandwidth. As a result, design network infrastruc-
ture that services block storage resources in such a way that capacity and
bandwidth can be added relatively easily. This often involves the use of dy-
namic routing protocols or advanced networking solutions to allow capaci-
ty to be added to downstream devices easily. Both the front-end and back-
end storage network designs should encompass the ability to quickly and
easily add capacity and bandwidth.

Scaling Object Storage
Adding back-end storage capacity to an object storage cluster requires
careful planning and consideration. In the design phase it is important to
determine the maximum partition power required by the object storage
service, which determines the maximum number of partitions which can
exist. Object storage distributes data among all available storage, but a
partition cannot span more than one disk, so the maximum number of
partitions can only be as high as the number of disks.

For example, a system that starts with a single disk and a partition power
of 3 can have 8 (2^3) partitions. Adding a second disk means that each will
(usually) have 4 partitions. The one-disk-per-partition limit means that this
system can never have more than 8 disks, limiting its scalability. However,
a system that starts with a single disk and a partition power of 10 can have
up to 1024 (2^10) disks.

Architecture Guide September 13, 2014 current

91

As back-end storage capacity is added to the system, the partition maps
cause data to be redistributed amongst storage nodes. In some cases, this
replication can consist of extremely large data sets. In these cases, it is rec-
ommended to make use of back-end replication links which will not con-
tend with tenants’ access to data.

As more tenants begin to access data within the cluster and their data sets
grow it will become necessary to add front-end bandwidth to service data
access requests. Adding front-end bandwidth to an object storage cluster
requires careful planning and design of the object storage proxies that will
be used by tenants to gain access to the data, along with the high avail-
ability solutions that enable easy scaling of the proxy layer. It is recom-
mended to design a front-end load balancing layer that tenants and con-
sumers use to gain access to data stored within the cluster. This load bal-
ancing layer may be distributed across zones, regions or even across ge-
ographic boundaries, which may also require that the design encompass
geo-location solutions.

In some cases, adding bandwidth and capacity to the network resources
servicing requests between proxy servers and storage nodes will be re-
quired. For this reason, the network architecture used for access to storage
nodes and proxy servers should make use of a design which is scalable.

Architecture
Storage hardware selection options include three areas:

• Cost

• Performance

• Reliability

The selection of hardware for a storage-focused OpenStack cloud must re-
flect the fact that the workloads are storage intensive. These workloads
are not compute intensive, nor are they consistently network intensive.
The network may be heavily utilized to transfer storage, but they are not
otherwise network intensive. The hardware selection for a storage-focused
OpenStack architecture design must reflect this preference for storage-in-
tensive workloads.

For a storage-focused OpenStack design architecture, the selection of stor-
age hardware will determine the overall performance and scalability of the

Architecture Guide September 13, 2014 current

92

design architecture. A number of different factors must be considered in
the design process:

Cost The overall cost of the solution will play a major role
in what storage architecture and the resulting storage
hardware that is selected.

Performance The performance of the solution, measured by ob-
serving the latency of storage I-O requests, also plays
a major role. In a compute-focused OpenStack cloud
storage latency could potentially be a major consider-
ation, in some compute-intensive workloads, minimiz-
ing the delays that the CPU experiences while fetching
data from the storage can have a significant impact on
the overall performance of the application.

Scalability "Scalability" refers to how well the storage solution
performs as it is expanded up to its maximum size. A
storage solution that performs well in small configu-
rations but has degrading performance as it expands
would be considered not scalable. Conversely, a solu-
tion that continues to perform well at maximum ex-
pansion would be considered scalable. The ability of
the storage solution to continue to perform well as it
expands is important.

Expandability Here we are referring to the overall ability of the so-
lution to grow. A storage solution that expands to 50
PB is considered more expandable than a solution that
only scales to 10 PB. Note that this metric is related to
but different from scalability which is a measure of the
solution's performance as it expands.

Latency is one of the key considerations in a storage-focused OpenStack
cloud . Using solid-state disks (SSDs) to minimize latency for instance stor-
age and reduce CPU delays caused by waiting for the storage will have a
result of increased performance. It is also recommended to evaluate the
gains from using RAID controller cards in compute hosts to improve the
performance of the underlying disk subsystem.

The selection of storage architecture (and the corresponding storage hard-
ware, if there is an option) is determined by evaluating possible solutions
against the key factors above. This will determine if a scale-out solution
(such as Ceph, GlusterFS, or similar) should be used or if a single, highly ex-
pandable and scalable centralized storage array would be a better choice.

Architecture Guide September 13, 2014 current

93

If a centralized storage array is the right fit for the requirements then the
hardware will be determined by the array vendor. It is possible to build a
storage array using commodity hardware with Open Source software, but
there needs to be access to people with expertise to build such a system.
On the other hand, a scale-out storage solution that uses direct-attached
storage (DAS) in the servers may be an appropriate choice. If this is true,
then the server hardware needs to be configured to support the storage
solution.

Some potential impacts that might affect a particular storage architecture
(and corresponding storage hardware) of a Storage-focused OpenStack
cloud:

Connectivity Based on the storage solution selected, ensure the
connectivity matches the storage solution require-
ments. If a centralized storage array is selected
it is important to determine how the hypervisors
will connect to the storage array. Connectivity can
affect latency and thus performance. It is recom-
mended to check that the network characteristics
will minimize latency to boost the overall perfor-
mance of the design.

Latency Determine if the use case will have consistent or
highly variable latency.

Throughput Ensure that the storage solution throughput is opti-
mized based on application requirements.

Server hardware Use of DAS impacts the server hardware choice and
affects host density, instance density, power densi-
ty, OS-hypervisor, and management tools, to name
a few.

Compute (server) hardware selection

Compute (server) hardware must be evaluated against four opposing di-
mensions:

Server density A measure of how many servers can fit into a giv-
en measure of physical space, such as a rack unit
[U].

Resource capacity The number of CPU cores, how much RAM, or
how much storage a given server will deliver.

Architecture Guide September 13, 2014 current

94

Expandability The number of additional resources that can be
added to a server before it has reached its limit.

Cost The relative of the hardware weighted against
the level of design effort needed to build the sys-
tem.

The dimensions need to be weighed against each other to determine the
best design for the desired purpose. For example, increasing server densi-
ty can mean sacrificing resource capacity or expandability. Increasing re-
source capacity and expandability can increase cost but decrease server
density. Decreasing cost often means decreasing supportability, server den-
sity, resource capacity, and expandability.

For a storage-focused OpenStack architecture design, a secondary design
consideration for selecting server hardware will be the compute capacity
(CPU cores and RAM capacity). As a result, the required server hardware
must supply adequate CPU sockets, additional CPU cores, and more RAM;
network connectivity and storage capacity are not as critical. The hard-
ware will need to provide enough network connectivity and storage capac-
ity to meet the user requirements, however they are not the primary con-
sideration.

Since there is only a need for adequate CPU and RAM capacity, some serv-
er hardware form factors will be better suited to this storage-focused de-
sign than others:

• Most blade servers typically support dual-socket multi-core CPUs; to
avoid the limit will mean choosing "full width" or "full height" blades,
which means losing server density. The high density blade servers (for
example, both HP BladeSystem and Dell PowerEdge M1000e), which
support up to 16 servers in only 10 rack units using "half height" or "half
width" blades, suddenly decrease the density by 50% (only 8 servers in
10 U) if a "full width" or "full height" option is used.

• 1U rack-mounted servers (servers that occupy only a single rack unit)
might be able to offer greater server density than a blade server solution
(40 servers in a rack, providing space for the top of rack (ToR) switches,
versus 32 "full width" or "full height" blade servers in a rack), but often
are limited to dual-socket, multi-core CPU configurations. Note that as of
the Icehouse release, neither HP, IBM, nor Dell offered 1U rack servers
with more than 2 CPU sockets. To obtain greater than dual-socket sup-
port in a 1U rack-mount form factor, customers need to buy their sys-
tems from Original Design Manufacturers (ODMs) or second-tier man-
ufacturers. This may cause issues for organizations that have preferred

Architecture Guide September 13, 2014 current

95

vendor policies or concerns with support and hardware warranties of
non-tier 1 vendors.

• 2U rack-mounted servers provide quad-socket, multi-core CPU support
but with a corresponding decrease in server density (half the density of-
fered by 1U rack-mounted servers).

• Larger rack-mounted servers, such as 4U servers, often provide even
greater CPU capacity. Commonly supporting four or even eight CPU
sockets. These servers have greater expandability capacity but such
servers have much lower server density and usually greater hardware
cost.

• The so-called "sled servers" (rack-mounted servers that support multiple
independent servers in a single 2U or 3U enclosure) deliver increased
density as compared to a typical 1U-2U rack-mounted servers. For exam-
ple, many sled servers offer four independent dual-socket nodes in 2U
for a total of 8 CPU sockets in 2U. However, the dual-socket limitation
on individual nodes may not be sufficient to offset their additional cost
and configuration complexity.

Other factors that will strongly influence server hardware selection for a
storage-focused OpenStack design architecture:

Instance density In this architecture, instance density
and CPU-RAM oversubscription are
lower. More hosts will be required to
support the anticipated scale, especially
if the design uses dual-socket hardware
designs.

Host density Another option to address the high-
er host count is to use a quad socket
platform. Taking this approach will de-
crease host density which also increas-
es rack count. This configuration affects
the number of power connections and
also impacts network and cooling re-
quirements.

Power and cooling density The power and cooling density require-
ments might be lower than with blade,
sled, or 1U server designs due to lower
host density (by using 2U, 3U or even
4U server designs). For data centers

Architecture Guide September 13, 2014 current

96

with older infrastructure, this might be
a desirable feature.

Storage-focused OpenStack design architecture server hardware selection
should focus on a "scale up" versus "scale out" solution. The determination
of which will be the best solution, smaller number of larger hosts or a larg-
er number of smaller hosts, will depend of a combination of factors includ-
ing cost, power, cooling, physical rack and floor space, support-warranty,
and manageability.

Networking hardware selection

Some of the key considerations that should be included in the selection of
networking hardware include:

Port count The user will require networking hardware that
has the requisite port count.

Port density The network design will be affected by the
physical space that is required to provide the
requisite port count. A switch that can provide
48 10 GbE ports in 1U has a much higher port
density than a switch that provides 24 10 GbE
ports in 2U. On a general scale, a higher port
density leaves more rack space for compute or
storage components which is preferred. It is
also important to consider fault domains and
power density. Finally, higher density switches
are more expensive, therefore it is important
not to over design the network.

Port speed The networking hardware must support the
proposed network speed, for example: 1 GbE,
10 GbE, or 40 GbE (or even 100 GbE).

Redundancy The level of network hardware redundan-
cy required is influenced by the user require-
ments for high availability and cost consider-
ations. Network redundancy can be achieved
by adding redundant power supplies or paired
switches. If this is a requirement the hardware
will need to support this configuration. User re-
quirements will determine if a completely re-
dundant network infrastructure is required.

Architecture Guide September 13, 2014 current

97

Power requirements Make sure that the physical data center pro-
vides the necessary power for the selected net-
work hardware. This is not typically an issue for
top of rack (ToR) switches, but may be an issue
for spine switches in a leaf and spine fabric, or
end of row (EoR) switches.

Protocol support It is possible to gain even more performance
out of a single storage system by using spe-
cialized network technologies such as RDMA,
SRP, iSER and SCST. The specifics for using these
technologies is beyond the scope of this book.

Software selection

Selecting software to be included in a storage-focused OpenStack architec-
ture design includes three areas:

• Operating system (OS) and hypervisor

• OpenStack components

• Supplemental software

Design decisions made in each of these areas impacts the rest of the Open-
Stack architecture design.

Operating system and hypervisor

The selection of OS and hypervisor has a significant impact on the overall
design and also affects server hardware selection. Ensure that the storage
hardware is supported by the selected operating system and hypervisor
combination and that the networking hardware selection and topology
will work with the chosen operating system and hypervisor combination.
For example, if the design uses Link Aggregation Control Protocol (LACP),
the OS and hypervisor are both required to support it.

Some areas that could be impacted by the selection of OS and hypervisor
include:

Cost Selection of a commercially supported hy-
pervisor, such as Microsoft Hyper-V, will re-
sult in a different cost model rather than se-

Architecture Guide September 13, 2014 current

98

lected a community-supported open source
hypervisor like Kinstance or Xen. Similarly,
choosing Ubuntu over Red Hat (or vice ver-
sa) will have an impact on cost due to sup-
port contracts. Conversely, business or ap-
plication requirements might dictate a spe-
cific or commercially supported hypervisor.

Supportability Whichever hypervisor is chosen, the staff
needs to have appropriate training and
knowledge to support the selected OS and
hypervisor combination. If they do not
training will need to be provided, which
could have a cost impact on the design. An-
other aspect to consider would be the sup-
port for the OS-hypervisor. The support of a
commercial product such as Red Hat, SUSE,
or Windows, is the responsibility of the OS
vendor. If an Open Source platform is cho-
sen, the support comes from in-house re-
sources. Either decision has a cost that will
have an impact on the design.

Management tools The management tools used for Ubuntu
and Kinstance differ from the management
tools for VMware vSphere. Although both
OS and hypervisor combinations are sup-
ported by OpenStack, there will naturally
be very different impacts to the rest of the
design as a result of the selection of one
combination versus the other.

Scale and performance Make sure that selected OS and hypervisor
combination meet the appropriate scale
and performance requirements needed for
this general purpose OpenStack cloud. The
chosen architecture will need to meet the
targeted instance-host ratios with the se-
lected OS-hypervisor combination.

Security Make sure that the design can accommo-
date the regular periodic installation of ap-
plication security patches while maintaining
the required workloads. The frequency of

Architecture Guide September 13, 2014 current

99

security patches for the proposed OS-hyper-
visor combination will have an impact on
performance and the patch installation pro-
cess could affect maintenance windows.

Supported features Determine what features of OpenStack are
required. This will often determine the se-
lection of the OS-hypervisor combination.
Certain features are only available with spe-
cific OSs or hypervisors. For example, if cer-
tain features are not available, the design
might need to be modified to meet the us-
er requirements.

Interoperability Consideration should be given to the ability
of the selected OS-hypervisor combination
to interoperate or co-exist with other OS-
hypervisors ,or other software solutions in
the overall design, if that is a requirement.
Operational and troubleshooting tools for
one OS-hypervisor combination may differ
from the tools used for another OS-hyper-
visor combination. As a result, the design
will need to address if the two sets of tools
need to interoperate.

OpenStack components

The selection of OpenStack components has a significant direct impact on
the overall design. While there are certain components that will always be
present, (Compute and Image Service, for example) there are other ser-
vices that may not need to be present. As an example, a certain design
may not require the Orchestration module. Omitting Orchestration would
not typically have a significant impact on the overall design however, if the
architecture uses a replacement for OpenStack Object Storage for its stor-
age component, this could potentially have significant impacts on the rest
of the design.

A storage-focused design might require the ability to use Orchestration to
launch instances with Block Storage volumes to perform storage-intensive
processing.

For a storage-focused OpenStack design architecture, the following com-
ponents would typically be used:

Architecture Guide September 13, 2014 current

100

• OpenStack Identity (keystone)

• OpenStack dashboard (horizon)

• OpenStack Compute (nova) (including the use of multiple hypervisor
drivers)

• OpenStack Object Storage (swift) (or another object storage solution)

• OpenStack Block Storage (cinder)

• OpenStack Image Service (glance)

• OpenStack Networking (neutron) or legacy networking (nova-network)

The exclusion of certain OpenStack components may limit or constrain the
functionality of other components. If a design opts to include Orchestra-
tion but exclude Telemetry, then the design will not be able to take advan-
tage of Orchestration's auto scaling functionality (which relies on informa-
tion from Telemetry). Due to the fact that you can use Orchestration to
spin up a large number of instances to perform the compute-intensive pro-
cessing, including Orchestration in a compute-focused architecture design
is strongly recommended.

Supplemental software

While OpenStack is a fairly complete collection of software projects for
building a platform for cloud services, there are additional pieces of soft-
ware that might need to be added to any given OpenStack design.

Networking software

OpenStack Networking (neutron) provides a wide variety of networking
services for instances. There are many additional networking software
packages that may be useful to manage the OpenStack components them-
selves. Some examples include HAProxy, keepalived, and various routing
daemons (like Quagga). Some of these software packages, HAProxy in
particular, are described in more detail in the OpenStack High Availability
Guide (refer to the Network controller cluster stack chapter of the Open-
Stack High Availability Guide). For a general purpose OpenStack cloud, it is
reasonably likely that the OpenStack infrastructure components will need
to be highly available, and therefore networking software packages like
HAProxy will need to be included.

http://docs.openstack.org/high-availability-guide/content/ch-network.html

Architecture Guide September 13, 2014 current

101

Management software

This includes software for providing clustering, logging, monitoring, and
alerting. The factors for determining which software packages in this cat-
egory should be selected is outside the scope of this design guide. This de-
sign guide focuses specifically on how the selected supplemental software
solution impacts or affects the overall OpenStack cloud design.

Clustering Software, such as Corosync or Pacemaker, is determined primar-
ily by the availability design requirements. Therefore, the impact of includ-
ing (or not including) these software packages is determined by the avail-
ability of the cloud infrastructure and the complexity of supporting the
configuration after it is deployed. The OpenStack High Availability Guide
provides more details on the installation and configuration of Corosync
and Pacemaker, should these packages need to be included in the design.

Requirements for logging, monitoring, and alerting are determined by op-
erational considerations. Each of these sub-categories includes a number of
various options. For example, in the logging sub-category one might con-
sider Logstash, Splunk, Log Insight, or some other log aggregation-consoli-
dation tool. Logs should be stored in a centralized location to make it easi-
er to perform analytics against the data. Log data analytics engines can al-
so provide automation and issue notification, by providing a mechanism to
both alert and automatically attempt to remediate some of the more com-
monly known issues.

If any of these software packages are needed, then the design must ac-
count for the additional resource consumption (CPU, RAM, storage, and
network bandwidth for a log aggregation solution, for example). Some
other potential design impacts include:

• OS-Hypervisor combination: Ensure that the selected logging, monitor-
ing, or alerting tools support the proposed OS-hypervisor combination.

• Network hardware: The network hardware selection needs to be sup-
ported by the logging, monitoring, and alerting software.

Database software

Virtually all of the OpenStack components require access to back-end
database services to store state and configuration information. Choose an
appropriate back-end database which will satisfy the availability and fault
tolerance requirements of the OpenStack services.

Architecture Guide September 13, 2014 current

102

MySQL is generally considered to be the de facto database for OpenStack,
however, other compatible databases are also known to work. Note, how-
ever, that Telemetry uses MongoDB.

The solution selected to provide high availability for the database will
change based on the selected database. If MySQL is selected, then a num-
ber of options are available. For active-active clustering a replication tech-
nology such as Galera can be used. For active-passive some form of shared
storage must be used. Each of these potential solutions has an impact on
the design:

• Solutions that employ Galera/MariaDB will require at least three MySQL
nodes.

• MongoDB will have its own design considerations, with regards to mak-
ing the database highly available.

• OpenStack design, generally, does not include shared storage but for a
high availability design some components might require it depending on
the specific implementation.

Prescriptive examples
Storage-focused architectures are highly dependent on the specific use
case. Three specific example use cases are discussed in this section: an ob-
ject store with a RESTful interface, compute analytics with parallel file sys-
tems, and a high performance database.

This example describes a REST interface without a high performance re-
quirement, so the presented REST interface does not require a high perfor-
mance caching tier, and is presented as a traditional Object store running
on traditional spindles.

Swift is a highly scalable object store that is part of the OpenStack project.
This is a diagram to explain the example architecture:

Architecture Guide September 13, 2014 current

103

This example uses the following components:

Network:

• 10 GbE horizontally scalable spine leaf back end storage and front end
network.

Storage hardware:

• 10 storage servers each with 12x4 TB disks which equals 480 TB total
space with approximately 160 Tb of usable space after replicas.

Proxy:

• 3x proxies

• 2x10 GbE bonded front end

Architecture Guide September 13, 2014 current

104

• 2x10 GbE back end bonds

• Approximately 60 Gb of total bandwidth to the back end storage cluster

Note

For some applications, it may be necessary to implement a 3rd-
party caching layer to achieve suitable performance.

Compute analytics with Data processing service
for OpenStack

Analytics of large data sets can be highly dependent on the performance
of the storage system. Some clouds using storage systems such as HDFS
have inefficiencies which can cause performance issues. A potential solu-
tion to this is to implement a storage system designed with performance
in mind. Traditionally, parallel file systems have filled this need in the HPC
space and could be a consideration, when applicable, for large scale per-
formance-oriented systems.

This example discusses an OpenStack Object Store with a high perfor-
mance requirement. OpenStack has integration with Hadoop through
the Data processing project (Sahara), which is leveraged to manage the
Hadoop cluster within the cloud.

The actual hardware requirements and configuration are similar to those
of the High Performance Database example below. In this case, the archi-

Architecture Guide September 13, 2014 current

105

tecture uses Ceph's Swift-compatible REST interface, features that allow for
connecting a caching pool to allow for acceleration of the presented pool.

High performance database with Database service
for OpenStack

Databases are a common workload that can greatly benefit from a high
performance storage back end. Although enterprise storage is not a re-
quirement, many environments have existing storage that can be used as
back ends for an OpenStack cloud. As shown in the following diagram, a
storage pool can be carved up to provide block devices with OpenStack
Block Storage to instances as well as an object interface. In this example
the database I-O requirements were high and demanded storage present-
ed from a fast SSD pool.

A storage system is used to present a LUN that is backed by a set of SSDs
using a traditional storage array with OpenStack Block Storage integration
or a storage platform such as Ceph or Gluster.

This kind of system can also provide additional performance in other situ-
ations. For example, in the database example below, a portion of the SSD
pool can act as a block device to the Database server. In the high perfor-
mance analytics example, the REST interface would be accelerated by the
inline SSD cache layer.

Architecture Guide September 13, 2014 current

106

Ceph was selected to present a Swift-compatible REST interface, as well
as a block level storage from a distributed storage cluster. It is highly flex-
ible and has features that allow to reduce cost of operations such as self
healing and auto balancing. Erasure coded pools are used to maximize the
amount of usable space. Note that there are special considerations around
erasure coded pools, for example, higher computational requirements and
limitations on the operations allowed on an object. For example, partial
writes are not supported in an erasure coded pool.

A potential architecture for Ceph, as it relates to the examples above,
would entail the following:

Network:

Architecture Guide September 13, 2014 current

107

• 10 GbE horizontally scalable spine leaf back end storage and front end
network

Storage hardware:

• 5 storage servers for caching layer 24x1 TB SSD

• 10 storage servers each with 12x4 TB disks which equals 480 TB total
space with about approximately 160 Tb of usable space after 3 replicas

REST proxy:

• 3x proxies

• 2x10 GbE bonded front end

• 2x10 GbE back end bonds

• Approximately 60 Gb of total bandwidth to the back end storage cluster

The SSD cache layer is used to present block devices directly to Hypervisors
or instances. The SSD cache systems can also be used as an inline cache for
the REST interface.

Architecture Guide September 13, 2014 current

109

5. Network focused

Table of Contents
User requirements .. 112
Technical considerations ... 115
Operational considerations ... 123
Architecture ... 124
Prescriptive examples ... 129

All OpenStack deployments are dependent, to some extent, on network
communication in order to function properly due to a service-based na-
ture. In some cases, however, use cases dictate that the network is elevat-
ed beyond simple infrastructure. This chapter is a discussion of architec-
tures that are more reliant or focused on network services. These architec-
tures are heavily dependent on the network infrastructure and need to be
architected so that the network services perform and are reliable in order
to satisfy user and application requirements.

Some possible use cases include:

Content delivery network This could include streaming video,
photographs or any other cloud based
repository of data that is distributed
to a large number of end users. Mass
market streaming video will be very
heavily affected by the network con-
figurations that would affect latency,
bandwidth, and the distribution of in-
stances. Not all video streaming is con-
sumer focused. For example, multicast
videos (used for media, press confer-
ences, corporate presentations, web
conferencing services, and so on) can
also utilize a content delivery network.
Content delivery will be affected by the
location of the video repository and its
relationship to end users. Performance
is also affected by network through-
put of the backend systems, as well as

Architecture Guide September 13, 2014 current

110

the WAN architecture and the cache
methodology.

Network management func-
tions

A cloud that provides network service
functions would be built to support the
delivery of back-end network services
such as DNS, NTP or SNMP and would
be used by a company for internal net-
work management.

Network service offerings A cloud can be used to run customer
facing network tools to support ser-
vices. For example, VPNs, MPLS private
networks, GRE tunnels and others.

Web portals or web services Web servers are a common applica-
tion for cloud services and it is recom-
mended to have an understanding of
the network requirements. The net-
work will need to be able to scale out
to meet user demand and deliver web-
pages with a minimum of latency. In-
ternal east-west and north-south net-
work bandwidth must be considered
depending on the details of the portal
architecture.

High speed and high volume
transactional systems

These types of applications are very
sensitive to network configurations. Ex-
amples include many financial systems,
credit card transaction applications,
trading and other extremely high vol-
ume systems. These systems are sensi-
tive to network jitter and latency. They
also have a high volume of both east-
west and north-south network traffic
that needs to be balanced to maximize
efficiency of the data delivery. Many of
these systems have large high perfor-
mance database back ends that need
to be accessed.

High availability These types of use cases are highly de-
pendent on the proper sizing of the

Architecture Guide September 13, 2014 current

111

network to maintain replication of da-
ta between sites for high availability. If
one site becomes unavailable, the extra
sites will be able to serve the displaced
load until the original site returns to
service. It is important to size network
capacity to handle the loads that are
desired.

Big data Clouds that will be used for the man-
agement and collection of big data
(data ingest) will have a significant de-
mand on network resources. Big data
often uses partial replicas of the data
to maintain data integrity over large
distributed clouds. Other big data ap-
plications that require a large amount
of network resources are Hadoop, Cas-
sandra, NuoDB, RIAK and other No-SQL
and distributed databases.

Virtual desktop infrastructure
(VDI)

This use case is very sensitive to net-
work congestion, latency, jitter and
other network characteristics. Like
video streaming, the user experience is
very important however, unlike video
streaming, caching is not an option to
offset the network issues. VDI requires
both upstream and downstream traffic
and cannot rely on caching for the de-
livery of the application to the end us-
er.

Voice over IP (VoIP) This is extremely sensitive to network
congestion, latency, jitter and other
network characteristics. VoIP has a sym-
metrical traffic pattern and it requires
network quality of service (QoS) for
best performance. It may also require
an active queue management imple-
mentation to ensure delivery. Users are
very sensitive to latency and jitter fluc-
tuations and can detect them at very
low levels.

Architecture Guide September 13, 2014 current

112

Video Conference or web con-
ference

This also is extremely sensitive to net-
work congestion, latency, jitter and
other network flaws. Video Conferenc-
ing has a symmetrical traffic pattern,
but unless the network is on an MPLS
private network, it cannot use network
quality of service (QoS) to improve per-
formance. Similar to VOIP, users will be
sensitive to network performance is-
sues even at low levels.

High performance computing
(HPC)

This is a complex use case that requires
careful consideration of the traffic
flows and usage patterns to address
the needs of cloud clusters. It has high
East-West traffic patterns for distribut-
ed computing, but there can be sub-
stantial North-South traffic depending
on the specific application.

User requirements
Network focused architectures vary from the general purpose designs.
They are heavily influenced by a specific subset of applications that interact
with the network in a more impacting way. Some of the business require-
ments that will influence the design include:

• User experience: User experience is impacted by network latency
through slow page loads, degraded video streams, and low quality VoIP
sessions. Users are often not aware of how network design and architec-
ture affects their experiences. Both enterprise customers and end-users
rely on the network for delivery of an application. Network performance
problems can provide a negative experience for the end-user, as well as
productivity and economic loss.

• Regulatory requirements: Networks need to take into consideration any
regulatory requirements about the physical location of data as it travers-
es the network. For example, Canadian medical records cannot pass out-
side of Canadian sovereign territory. Another network consideration is
maintaining network segregation of private data flows and ensuring
that the network between cloud locations is encrypted where required.
Network architectures are affected by regulatory requirements for en-
cryption and protection of data in flight as the data moves through vari-
ous networks.

Architecture Guide September 13, 2014 current

113

Many jurisdictions have legislative and regulatory requirements governing
the storage and management of data in cloud environments. Common ar-
eas of regulation include:

• Data retention policies ensuring storage of persistent data and records
management to meet data archival requirements.

• Data ownership policies governing the possession and responsibility for
data.

• Data sovereignty policies governing the storage of data in foreign coun-
tries or otherwise separate jurisdictions.

• Data compliance policies governing where information needs to reside
in certain locations due to regular issues and, more importantly, where it
cannot reside in other locations for the same reason.

Examples of such legal frameworks include the data protection framework
of the European Union (http://ec.europa.eu/justice/data-protection/) and
the requirements of the Financial Industry Regulatory Authority (http://
www.finra.org/Industry/Regulation/FINRARules) in the United States.
Consult a local regulatory body for more information.

High availability issues

OpenStack installations with high demand on network resources have high
availability requirements that are determined by the application and use
case. Financial transaction systems will have a much higher requirement
for high availability than a development application. Forms of network
availability, for example quality of service (QoS), can be used to improve
the network performance of sensitive applications, for example VoIP and
video streaming.

Often, high performance systems will have SLA requirements for a mini-
mum QoS with regard to guaranteed uptime, latency and bandwidth. The
level of the SLA can have a significant impact on the network architecture
and requirements for redundancy in the systems.

Risks

Network misconfigurations Configuring incorrect IP addresses,
VLANs, and routes can cause outages
to areas of the network or, in the

http://ec.europa.eu/justice/data-protection/
http://www.finra.org/Industry/Regulation/FINRARules
http://www.finra.org/Industry/Regulation/FINRARules

Architecture Guide September 13, 2014 current

114

worst-case scenario, the entire cloud
infrastructure. Misconfigurations can
cause disruptive problems and should
be automated to minimize the oppor-
tunity for operator error.

Capacity planning Cloud networks need to be managed
for capacity and growth over time.
There is a risk that the network will not
grow to support the workload. Capac-
ity planning includes the purchase of
network circuits and hardware that can
potentially have lead times measured in
months or more.

Network tuning Cloud networks need to be configured
to minimize link loss, packet loss, pack-
et storms, broadcast storms, and loops.

Single Point Of Failure (SPOF) High availability must be taken into ac-
count even at the physical and environ-
mental layers. If there is a single point
of failure due to only one upstream
link, or only one power supply, an out-
age becomes unavoidable.

Complexity An overly complex network design be-
comes difficult to maintain and trou-
bleshoot. While automated tools that
handle overlay networks or device lev-
el configuration can mitigate this, non-
traditional interconnects between func-
tions and specialized hardware need to
be well documented or avoided to pre-
vent outages.

Non-standard features There are additional risks that arise
from configuring the cloud network
to take advantage of vendor specific
features. One example is multi-link ag-
gregation (MLAG) that is being used
to provide redundancy at the aggrega-
tor switch level of the network. MLAG
is not a standard and, as a result, each
vendor has their own proprietary im-

Architecture Guide September 13, 2014 current

115

plementation of the feature. MLAG ar-
chitectures are not interoperable across
switch vendors, which leads to vendor
lock-in, and can cause delays or inability
when upgrading components.

Security

Security is often overlooked or added after a design has been implement-
ed. Consider security implications and requirements before designing the
physical and logical network topologies. Some of the factors that need
to be addressed include making sure the networks are properly segregat-
ed and traffic flows are going to the correct destinations without cross-
ing through locations that are undesirable. Some examples of factors that
need to be taken into consideration are:

• Firewalls

• Overlay interconnects for joining separated tenant networks

• Routing through or avoiding specific networks

Another security vulnerability that must be taken into account is how net-
works are attached to hypervisors. If a network must be separated from
other systems at all costs, it may be necessary to schedule instances for
that network onto dedicated compute nodes. This may also be done to
mitigate against exploiting a hypervisor breakout allowing the attacker ac-
cess to networks from a compromised instance.

Technical considerations
When you design an OpenStack network architecture, you must consid-
er layer-2 and layer-3 issues. Layer-2 decisions involve those made at the
data-link layer, such as the decision to use Ethernet versus Token Ring.
Layer-3 decisions involve those made about the protocol layer and the
point when IP comes into the picture. As an example, a completely inter-
nal OpenStack network can exist at layer 2 and ignore layer 3 however, in
order for any traffic to go outside of that cloud, to another network, or to
the Internet, a layer-3 router or switch must be involved.

The past few years have seen two competing trends in networking. One
trend leans towards building data center network architectures based on
layer-2 networking. Another trend treats the cloud environment essential-

Architecture Guide September 13, 2014 current

116

ly as a miniature version of the Internet. This approach is radically different
from the network architecture approach that is used in the staging envi-
ronment: the Internet is based entirely on layer-3 routing rather than lay-
er-2 switching.

A network designed on layer-2 protocols has advantages over one de-
signed on layer-3 protocols. In spite of the difficulties of using a bridge to
perform the network role of a router, many vendors, customers, and ser-
vice providers choose to use Ethernet in as many parts of their networks as
possible. The benefits of selecting a layer-2 design are:

• Ethernet frames contain all the essentials for networking. These include,
but are not limited to, globally unique source addresses, globally unique
destination addresses, and error control.

• Ethernet frames can carry any kind of packet. Networking at layer 2 is
independent of the layer-3 protocol.

• More layers added to the Ethernet frame only slow the networking pro-
cess down. This is known as 'nodal processing delay'.

• Adjunct networking features, for example class of service (CoS) or multi-
casting, can be added to Ethernet as readily as IP networks.

• VLANs are an easy mechanism for isolating networks.

Most information starts and ends inside Ethernet frames. Today this ap-
plies to data, voice (for example, VoIP) and video (for example, web cam-
eras). The concept is that, if more of the end-to-end transfer of informa-
tion from a source to a destination can be done in the form of Ethernet
frames, more of the benefits of Ethernet can be realized on the network.
Though it is not a substitute for IP networking, networking at layer 2 can
be a powerful adjunct to IP networking.

Layer-2 Ethernet usage has these advantages over layer-3 IP network us-
age:

• Speed

• Reduced overhead of the IP hierarchy.

• No need to keep track of address configuration as systems are moved
around. Whereas the simplicity of layer-2 protocols might work well in a
data center with hundreds of physical machines, cloud data centers have
the additional burden of needing to keep track of all virtual machine ad-

Architecture Guide September 13, 2014 current

117

dresses and networks. In these data centers, it is not uncommon for one
physical node to support 30-40 instances.

Important

Networking at the frame level says nothing about the presence
or absence of IP addresses at the packet level. Almost all ports,
links, and devices on a network of LAN switches still have IP ad-
dresses, as do all the source and destination hosts. There are
many reasons for the continued need for IP addressing. The
largest one is the need to manage the network. A device or
link without an IP address is usually invisible to most manage-
ment applications. Utilities including remote access for diag-
nostics, file transfer of configurations and software, and similar
applications cannot run without IP addresses as well as MAC
addresses.

Layer-2 architecture limitations
Outside of the traditional data center the limitations of layer-2 network ar-
chitectures become more obvious.

• Number of VLANs is limited to 4096.

• The number of MACs stored in switch tables is limited.

• The need to maintain a set of layer-4 devices to handle traffic control
must be accommodated.

• MLAG, often used for switch redundancy, is a proprietary solution that
does not scale beyond two devices and forces vendor lock-in.

• It can be difficult to troubleshoot a network without IP addresses and
ICMP.

• Configuring ARP is considered complicated on large layer-2 networks.

• All network devices need to be aware of all MACs, even instance MACs,
so there is constant churn in MAC tables and network state changes as
instances are started or stopped.

• Migrating MACs (instance migration) to different physical locations are
a potential problem if ARP table timeouts are not set properly.

It is important to know that layer 2 has a very limited set of network man-
agement tools. It is very difficult to control traffic, as it does not have

Architecture Guide September 13, 2014 current

118

mechanisms to manage the network or shape the traffic, and network
troubleshooting is very difficult. One reason for this difficulty is network
devices have no IP addresses. As a result, there is no reasonable way to
check network delay in a layer-2 network.

On large layer-2 networks, configuring ARP learning can also be complicat-
ed. The setting for the MAC address timer on switches is critical and, if set
incorrectly, can cause significant performance problems. As an example,
the Cisco default MAC address timer is extremely long. Migrating MACs
to different physical locations to support instance migration can be a sig-
nificant problem. In this case, the network information maintained in the
switches could be out of sync with the new location of the instance.

In a layer-2 network, all devices are aware of all MACs, even those that be-
long to instances. The network state information in the backbone changes
whenever an instance is started or stopped. As a result there is far too
much churn in the MAC tables on the backbone switches.

Layer-3 architecture advantages

In the layer 3 case, there is no churn in the routing tables due to instances
starting and stopping. The only time there would be a routing state
change would be in the case of a Top of Rack (ToR) switch failure or a link
failure in the backbone itself. Other advantages of using a layer-3 architec-
ture include:

• Layer-3 networks provide the same level of resiliency and scalability as
the Internet.

• Controlling traffic with routing metrics is straightforward.

• Layer 3 can be configured to use BGP confederation for scalability so
core routers have state proportional to the number of racks, not to the
number of servers or instances.

• Routing ensures that instance MAC and IP addresses out of the network
core reducing state churn. Routing state changes only occur in the case
of a ToR switch failure or backbone link failure.

• There are a variety of well tested tools, for example ICMP, to monitor
and manage traffic.

• Layer-3 architectures allow for the use of Quality of Service (QoS) to
manage network performance.

Architecture Guide September 13, 2014 current

119

Layer-3 architecture limitations

The main limitation of layer 3 is that there is no built-in isolation mecha-
nism comparable to the VLANs in layer-2 networks. Furthermore, the hi-
erarchical nature of IP addresses means that an instance will also be on
the same subnet as its physical host. This means that it cannot be migrat-
ed outside of the subnet easily. For these reasons, network virtualization
needs to use IP encapsulation and software at the end hosts for both iso-
lation, as well as for separation of the addressing in the virtual layer from
addressing in the physical layer. Other potential disadvantages of layer 3
include the need to design an IP addressing scheme rather than relying on
the switches to automatically keep track of the MAC addresses and to con-
figure the interior gateway routing protocol in the switches.

Network recommendations overview

OpenStack has complex networking requirements for several reasons.
Many components interact at different levels of the system stack that adds
complexity. Data flows are complex. Data in an OpenStack cloud moves
both between instances across the network (also known as East-West), as
well as in and out of the system (also known as North-South). Physical serv-
er nodes have network requirements that are independent of those used
by instances which need to be isolated from the core network to account
for scalability. It is also recommended to functionally separate the net-
works for security purposes and tune performance through traffic shaping.

A number of important general technical and business factors need to be
taken into consideration when planning and designing an OpenStack net-
work. They include:

• A requirement for vendor independence. To avoid hardware or soft-
ware vendor lock-in, the design should not rely on specific features of a
vendor’s router or switch.

• A requirement to massively scale the ecosystem to support millions of
end users.

• A requirement to support indeterminate platforms and applications.

• A requirement to design for cost efficient operations to take advantage
of massive scale.

• A requirement to ensure that there is no single point of failure in the
cloud ecosystem.

Architecture Guide September 13, 2014 current

120

• A requirement for high availability architecture to meet customer SLA re-
quirements.

• A requirement to be tolerant of rack level failure.

• A requirement to maximize flexibility to architect future production en-
vironments.

Keeping all of these in mind, the following network design recommenda-
tions can be made:

• Layer-3 designs are preferred over layer-2 architectures.

• Design a dense multi-path network core to support multi-directional scal-
ing and flexibility.

• Use hierarchical addressing because it is the only viable option to scale
network ecosystem.

• Use virtual networking to isolate instance service network traffic from
the management and internal network traffic.

• Isolate virtual networks using encapsulation technologies.

• Use traffic shaping for performance tuning.

• Use eBGP to connect to the Internet up-link.

• Use iBGP to flatten the internal traffic on the layer-3 mesh.

• Determine the most effective configuration for block storage network.

Additional considerations

There are numerous topics to consider when designing a network-focused
OpenStack cloud.

OpenStack Networking versus legacy networking (nova-net-
work) considerations

Selecting the type of networking technology to implement depends on
many factors. OpenStack Networking (neutron) and legacy networking
(nova-network) both have their advantages and disadvantages. They are

Architecture Guide September 13, 2014 current

121

both valid and supported options that fit different use cases as described
in the following table.

Legacy networking (nova-network) OpenStack Networking

Simple, single agent Complex, multiple agents

More mature, established Newer, maturing

Flat or VLAN Flat, VLAN, Overlays, L2-L3, SDN

No plug-in support Plug-in support for 3rd parties

Scales well Scaling requires 3rd party plug-ins

No multi-tier topologies Multi-tier topologies

Redundant networking: ToR switch high availability risk
analysis

A technical consideration of networking is the idea that switching gear in
the data center that should be installed with backup switches in case of
hardware failure.

Research into the mean time between failures (MTBF) on switches is be-
tween 100,000 and 200,000 hours. This number is dependent on the am-
bient temperature of the switch in the data center. When properly cooled
and maintained, this translates to between 11 and 22 years before fail-
ure. Even in the worst case of poor ventilation and high ambient temper-
atures in the data center, the MTBF is still 2-3 years. This is based on pub-
lished research found at http://www.garrettcom.com/techsupport/pa-
pers/ethernet_switch_reliability.pdf and http://www.n-tron.com/pdf/
network_availability.pdf.

In most cases, it is much more economical to only use a single switch with a
small pool of spare switches to replace failed units than it is to outfit an en-
tire data center with redundant switches. Applications should also be able
to tolerate rack level outages without affecting normal operations since
network and compute resources are easily provisioned and plentiful.

Preparing for the future: IPv6 support

One of the most important networking topics today is the impending ex-
haustion of IPv4 addresses. In early 2014, ICANN announced that they
started allocating the final IPv4 address blocks to the Regional Internet
Registries (http://www.internetsociety.org/deploy360/blog/2014/05/
goodbye-ipv4-iana-starts-allocating-final-address-blocks/). This means the
IPv4 address space is close to being fully allocated. As a result, it will soon

http://www.garrettcom.com/techsupport/papers/ethernet_switch_reliability.pdf
http://www.garrettcom.com/techsupport/papers/ethernet_switch_reliability.pdf
http://www.n-tron.com/pdf/network_availability.pdf
http://www.n-tron.com/pdf/network_availability.pdf
http://www.internetsociety.org/deploy360/blog/2014/05/goodbye-ipv4-iana-starts-allocating-final-address-blocks/
http://www.internetsociety.org/deploy360/blog/2014/05/goodbye-ipv4-iana-starts-allocating-final-address-blocks/

Architecture Guide September 13, 2014 current

122

become difficult to allocate more IPv4 addresses to an application that has
experienced growth, or is expected to scale out, due to the lack of unallo-
cated IPv4 address blocks.

For network focused applications the future is the IPv6 protocol. IPv6 in-
creases the address space significantly, fixes long standing issues in the IPv4
protocol, and will become an essential for network focused applications in
the future.

OpenStack Networking supports IPv6 when configured to take advantage
of the feature. To enable it, simply create an IPv6 subnet in Networking
and use IPv6 prefixes when creating security groups.

Asymmetric links

When designing a network architecture, the traffic patterns of an applica-
tion will heavily influence the allocation of total bandwidth and the num-
ber of links that are used to send and receive traffic. Applications that pro-
vide file storage for customers will allocate bandwidth and links to favor
incoming traffic, whereas video streaming applications will allocate band-
width and links to favor outgoing traffic.

Performance

It is important to analyze the applications' tolerance for latency and jitter
when designing an environment to support network focused applications.
Certain applications, for example VoIP, are less tolerant of latency and jit-
ter. Where latency and jitter are concerned, certain applications may re-
quire tuning of QoS parameters and network device queues to ensure that
they are queued for transmit immediately or guaranteed minimum band-
width. Since OpenStack currently does not support these functions, some
considerations may need to be made for the network plug-in selected.

The location of a service may also impact the application or consumer ex-
perience. If an application is designed to serve differing content to dif-
fering users it will need to be designed to properly direct connections to
those specific locations. Use a multi-site installation for these situations,
where appropriate.

Networking can be implemented in two separate ways. The legacy net-
working (nova-network) provides a flat DHCP network with a single broad-
cast domain. This implementation does not support tenant isolation net-
works or advanced plug-ins, but it is currently the only way to implement
a distributed layer-3 agent using the multi_host configuration. OpenStack

Architecture Guide September 13, 2014 current

123

Networking (neutron) is the official networking implementation and pro-
vides a pluggable architecture that supports a large variety of network
methods. Some of these include a layer-2 only provider network model, ex-
ternal device plug-ins, or even OpenFlow controllers.

Networking at large scales becomes a set of boundary questions. The de-
termination of how large a layer-2 domain needs to be is based on the
amount of nodes within the domain and the amount of broadcast traffic
that passes between instances. Breaking layer-2 boundaries may require
the implementation of overlay networks and tunnels. This decision is a bal-
ancing act between the need for a smaller overhead or a need for a small-
er domain.

When selecting network devices, be aware that making this decision based
on largest port density often comes with a drawback. Aggregation switch-
es and routers have not all kept pace with Top of Rack switches and may
induce bottlenecks on north-south traffic. As a result, it may be possible for
massive amounts of downstream network utilization to impact upstream
network devices, impacting service to the cloud. Since OpenStack does not
currently provide a mechanism for traffic shaping or rate limiting, it is nec-
essary to implement these features at the network hardware level.

Operational considerations
Network focused OpenStack clouds have a number of operational consid-
erations that will influence the selected design. Topics including, but not
limited to, dynamic routing of static routes, service level agreements, and
ownership of user management all need to be considered.

One of the first required decisions is the selection of a telecom company or
transit provider. This is especially true if the network requirements include
external or site-to-site network connectivity.

Additional design decisions need to be made about monitoring and alarm-
ing. These can be an internal responsibility or the responsibility of the ex-
ternal provider. In the case of using an external provider, SLAs will likely
apply. In addition, other operational considerations such as bandwidth, la-
tency, and jitter can be part of a service level agreement.

The ability to upgrade the infrastructure is another subject for considera-
tion. As demand for network resources increase, operators will be required
to add additional IP address blocks and add additional bandwidth capac-
ity. Managing hardware and software life cycle events, for example up-

Architecture Guide September 13, 2014 current

124

grades, decommissioning, and outages while avoiding service interruptions
for tenants, will also need to be considered.

Maintainability will also need to be factored into the overall network de-
sign. This includes the ability to manage and maintain IP addresses as
well as the use of overlay identifiers including VLAN tag IDs, GRE tunnel
IDs, and MPLS tags. As an example, if all of the IP addresses have to be
changed on a network, a process known as renumbering, then the design
needs to support the ability to do so.

Network focused applications themselves need to be addressed when
concerning certain operational realities. For example, the impending ex-
haustion of IPv4 addresses, the migration to IPv6 and the utilization of pri-
vate networks to segregate different types of traffic that an application
receives or generates. In the case of IPv4 to IPv6 migrations, applications
should follow best practices for storing IP addresses. It is further recom-
mended to avoid relying on IPv4 features that were not carried over to the
IPv6 protocol or have differences in implementation.

When using private networks to segregate traffic, applications should cre-
ate private tenant networks for database and data storage network traf-
fic, and utilize public networks for client-facing traffic. By segregating this
traffic, quality of service and security decisions can be made to ensure that
each network has the correct level of service that it requires.

Finally, decisions must be made about the routing of network traffic. For
some applications, a more complex policy framework for routing must be
developed. The economic cost of transmitting traffic over expensive links
versus cheaper links, in addition to bandwidth, latency, and jitter require-
ments, can be used to create a routing policy that will satisfy business re-
quirements.

How to respond to network events must also be taken into consideration.
As an example, how load is transferred from one link to another during a
failure scenario could be a factor in the design. If network capacity is not
planned correctly, failover traffic could overwhelm other ports or network
links and create a cascading failure scenario. In this case, traffic that fails
over to one link overwhelms that link and then moves to the subsequent
links until the all network traffic stops.

Architecture
Network focused OpenStack architectures have many similarities to oth-
er OpenStack architecture use cases. There a number of very specific con-

Architecture Guide September 13, 2014 current

125

siderations to keep in mind when designing for a network-centric or net-
work-heavy application environment.

Networks exist to serve a as medium of transporting data between sys-
tems. It is inevitable that an OpenStack design have inter-dependencies
with non-network portions of OpenStack as well as on external systems.
Depending on the specific workload, there may be major interactions with
storage systems both within and external to the OpenStack environment.
For example, if the workload is a content delivery network, then the inter-
actions with storage will be two-fold. There will be traffic flowing to and
from the storage array for ingesting and serving content in a north-south
direction. In addition, there is replication traffic flowing in an east-west di-
rection.

Compute-heavy workloads may also induce interactions with the network.
Some high performance compute applications require network-based
memory mapping and data sharing and, as a result, will induce a high-
er network load when they transfer results and data sets. Others may be
highly transactional and issue transaction locks, perform their functions
and rescind transaction locks at very high rates. This also has an impact on
the network performance.

Some network dependencies are going to be external to OpenStack. While
OpenStack Networking is capable of providing network ports, IP address-
es, some level of routing, and overlay networks, there are some other func-
tions that it cannot provide. For many of these, external systems or equip-
ment may be required to fill in the functional gaps. Hardware load bal-
ancers are an example of equipment that may be necessary to distribute
workloads or offload certain functions. Note that, as of the Icehouse re-
lease, dynamic routing is currently in its infancy within OpenStack and may
need to be implemented either by an external device or a specialized ser-
vice instance within OpenStack. Tunneling is a feature provided by Open-
Stack Networking, however it is constrained to a Networking-managed re-
gion. If the need arises to extend a tunnel beyond the OpenStack region
to either another region or an external system, it is necessary to implement
the tunnel itself outside OpenStack or by using a tunnel management sys-
tem to map the tunnel or overlay to an external tunnel. OpenStack does
not currently provide quotas for network resources. Where network quo-
tas are required, it is necessary to implement quality of service manage-
ment outside of OpenStack. In many of these instances, similar solutions
for traffic shaping or other network functions will be needed.

Depending on the selected design, Networking itself might not even sup-
port the required layer-3 network functionality. If you choose to use the

Architecture Guide September 13, 2014 current

126

provider networking mode without running the layer-3 agent, you must in-
stall an external router to provide layer-3 connectivity to outside systems.

Interaction with orchestration services is inevitable in larger-scale deploy-
ments. The Orchestration module is capable of allocating network re-
source defined in templates to map to tenant networks and for port cre-
ation, as well as allocating floating IPs. If there is a requirement to define
and manage network resources in using orchestration, it is recommended
that the design include the Orchestration module to meet the demands of
users.

Design impacts

A wide variety of factors can affect a network focused OpenStack architec-
ture. While there are some considerations shared with a general use case,
specific workloads related to network requirements will influence network
design decisions.

One decision includes whether or not to use Network Address Translation
(NAT) and where to implement it. If there is a requirement for floating
IPs to be available instead of using public fixed addresses then NAT is re-
quired. This can be seen in network management applications that rely on
an IP endpoint. An example of this is a DHCP relay that needs to know the
IP of the actual DHCP server. In these cases it is easier to automate the in-
frastructure to apply the target IP to a new instance rather than reconfig-
ure legacy or external systems for each new instance.

NAT for floating IPs managed by Networking will reside within the hyper-
visor but there are also versions of NAT that may be running elsewhere. If
there is a shortage of IPv4 addresses there are two common methods to
mitigate this externally to OpenStack. The first is to run a load balancer ei-
ther within OpenStack as an instance, or use an external load balancing so-
lution. In the internal scenario, load balancing software, such as HAproxy,
can be managed with Networking's Load-Balancer-as-a-Service (LBaaS).
This is specifically to manage the Virtual IP (VIP) while a dual-homed con-
nection from the HAproxy instance connects the public network with the
tenant private network that hosts all of the content servers. In the external
scenario, a load balancer would need to serve the VIP and also be joined
to the tenant overlay network through external means or routed to it via
private addresses.

Another kind of NAT that may be useful is protocol NAT. In some cases it
may be desirable to use only IPv6 addresses on instances and operate ei-
ther an instance or an external service to provide a NAT-based transition

Architecture Guide September 13, 2014 current

127

technology such as NAT64 and DNS64. This provides the ability to have a
globally routable IPv6 address while only consuming IPv4 addresses as nec-
essary or in a shared manner.

Application workloads will affect the design of the underlying network ar-
chitecture. If a workload requires network-level redundancy, the routing
and switching architecture will have to accommodate this. There are differ-
ing methods for providing this that are dependent on the network hard-
ware selected, the performance of the hardware, and which networking
model is deployed. Some examples of this are the use of Link aggregation
(LAG) or Hot Standby Router Protocol (HSRP). There are also the consid-
erations of whether to deploy OpenStack Networking or legacy network-
ing (nova-network) and which plug-in to select for OpenStack Networking.
If using an external system, Networking will need to be configured to run
layer 2 with a provider network configuration. For example, it may be nec-
essary to implement HSRP to terminate layer-3 connectivity.

Depending on the workload, overlay networks may or may not be a rec-
ommended configuration. Where application network connections are
small, short lived or bursty, running a dynamic overlay can generate as
much bandwidth as the packets it carries. It also can induce enough laten-
cy to cause issues with certain applications. There is an impact to the de-
vice generating the overlay which, in most installations, will be the hyper-
visor. This will cause performance degradation on packet per second and
connection per second rates.

Overlays also come with a secondary option that may or may not be ap-
propriate to a specific workload. While all of them will operate in full mesh
by default, there might be good reasons to disable this function because
it may cause excessive overhead for some workloads. Conversely, oth-
er workloads will operate without issue. For example, most web services
applications will not have major issues with a full mesh overlay network,
while some network monitoring tools or storage replication workloads will
have performance issues with throughput or excessive broadcast traffic.

Many people overlook an important design decision: The choice of layer-3
protocols. While OpenStack was initially built with only IPv4 support, Net-
working now supports IPv6 and dual-stacked networks. Note that, as of
the Icehouse release, this only includes stateless address autoconfigura-
tion but work is in progress to support stateless and stateful DHCPv6 as
well as IPv6 floating IPs without NAT. Some workloads become possible
through the use of IPv6 and IPv6 to IPv4 reverse transition mechanisms
such as NAT64 and DNS64 or 6to4, because these options are available.
This will alter the requirements for any address plan as single-stacked and
transitional IPv6 deployments can alleviate the need for IPv4 addresses.

Architecture Guide September 13, 2014 current

128

As of the Icehouse release, OpenStack has limited support for dynamic
routing, however there are a number of options available by incorporat-
ing third party solutions to implement routing within the cloud including
network equipment, hardware nodes, and instances. Some workloads will
perform well with nothing more than static routes and default gateways
configured at the layer-3 termination point. In most cases this will suffice,
however some cases require the addition of at least one type of dynamic
routing protocol if not multiple protocols. Having a form of interior gate-
way protocol (IGP) available to the instances inside an OpenStack installa-
tion opens up the possibility of use cases for anycast route injection for ser-
vices that need to use it as a geographic location or failover mechanism.
Other applications may wish to directly participate in a routing protocol,
either as a passive observer as in the case of a looking glass, or as an active
participant in the form of a route reflector. Since an instance might have a
large amount of compute and memory resources, it is trivial to hold an en-
tire unpartitioned routing table and use it to provide services such as net-
work path visibility to other applications or as a monitoring tool.

Path maximum transmission unit (MTU) failures are lesser known but hard-
er to diagnose. The MTU must be large enough to handle normal traf-
fic, overhead from an overlay network, and the desired layer-3 protocol.
When you add externally built tunnels, the MTU packet size is reduced. In
this case, you must pay attention to the fully calculated MTU size because
some systems are configured to ignore or drop path MTU discovery pack-
ets.

Tunable networking components

Consider configurable networking components related to an OpenStack
architecture design when designing for network intensive workloads in-
clude MTU and QoS. Some workloads will require a larger MTU than nor-
mal based on a requirement to transfer large blocks of data. When pro-
viding network service for applications such as video streaming or storage
replication, it is recommended to ensure that both OpenStack hardware
nodes and the supporting network equipment are configured for jum-
bo frames where possible. This will allow for a better utilization of avail-
able bandwidth. Configuration of jumbo frames should be done across the
complete path the packets will traverse. If one network component is not
capable of handling jumbo frames then the entire path will revert to the
default MTU.

Quality of Service (QoS) also has a great impact on network intensive
workloads by providing instant service to packets which have a higher pri-
ority due to their ability to be impacted by poor network performance. In

Architecture Guide September 13, 2014 current

129

applications such as Voice over IP (VoIP) differentiated services code points
are a near requirement for proper operation. QoS can also be used in the
opposite direction for mixed workloads to prevent low priority but high
bandwidth applications, for example backup services, video conferencing
or file sharing, from blocking bandwidth that is needed for the proper op-
eration of other workloads. It is possible to tag file storage traffic as a low-
er class, such as best effort or scavenger, to allow the higher priority traf-
fic through. In cases where regions within a cloud might be geographical-
ly distributed it may also be necessary to plan accordingly to implement
WAN optimization to combat latency or packet loss.

Prescriptive examples
A large-scale web application has been designed with cloud principles in
mind. The application is designed to scale horizontally in a bursting fashion
and will generate a high instance count. The application requires an SSL
connection to secure data and must not lose connection state to individual
servers.

An example design for this workload is depicted in the figure below. In this
example, a hardware load balancer is configured to provide SSL offload
functionality and to connect to tenant networks in order to reduce ad-
dress consumption. This load balancer is linked to the routing architecture
as it will service the VIP for the application. The router and load balancer
are configured with GRE tunnel ID of the application's tenant network and
provided an IP address within the tenant subnet but outside of the address
pool. This is to ensure that the load balancer can communicate with the
application's HTTP servers without requiring the consumption of a public IP
address.

Because sessions persist until they are closed, the routing and switching ar-
chitecture is designed for high availability. Switches are meshed to each hy-
pervisor and each other, and also provide an MLAG implementation to en-
sure that layer-2 connectivity does not fail. Routers are configured with VR-
RP and fully meshed with switches to ensure layer-3 connectivity. Since GRE
is used as an overlay network, Networking is installed and configured to
use the Open vSwitch agent in GRE tunnel mode. This ensures all devices
can reach all other devices and that tenant networks can be created for
private addressing links to the load balancer.

Architecture Guide September 13, 2014 current

130

A web service architecture has many options and optional components.
Due to this, it can fit into a large number of other OpenStack designs how-
ever a few key components will need to be in place to handle the nature
of most web-scale workloads. The user needs the following components:

• OpenStack Controller services (Image, Identity, Networking and support-
ing services such as MariaDB and RabbitMQ)

• OpenStack Compute running KVM hypervisor

• OpenStack Object Storage

• Orchestration module

• Telemetry module

Beyond the normal Identity, Compute, Image Service and Object Storage
components, the Orchestration module is a recommended component to

Architecture Guide September 13, 2014 current

131

handle properly scaling the workloads to adjust to demand. Due to the
requirement for auto-scaling, the design includes the Telemetry module.
Web services tend to be bursty in load, have very defined peak and valley
usage patterns and, as a result, benefit from automatic scaling of instances
based upon traffic. At a network level, a split network configuration will
work well with databases residing on private tenant networks since these
do not emit a large quantity of broadcast traffic and may need to intercon-
nect to some databases for content.

Load balancing
Load balancing was included in this design to spread requests across mul-
tiple instances. This workload scales well horizontally across large num-
bers of instances. This allows instances to run without publicly routed IP
addresses and simply rely on the load balancer for the service to be glob-
ally reachable. Many of these services do not require direct server return.
This aids in address planning and utilization at scale since only the virtual IP
(VIP) must be public.

Overlay networks
The overlay functionality design includes OpenStack Networking in Open
vSwitch GRE tunnel mode. In this case, the layer-3 external routers are
paired with VRRP and switches should be paired with an implementation
of MLAG running to ensure that you do not lose connectivity with the up-
stream routing infrastructure.

Performance tuning
Network level tuning for this workload is minimal. Quality-of-Service (QoS)
will be applied to these workloads for a middle ground Class Selector de-
pending on existing policies. It will be higher than a best effort queue but
lower than an Expedited Forwarding or Assured Forwarding queue. Since
this type of application generates larger packets with longer-lived con-
nections, bandwidth utilization can be optimized for long duration TCP.
Normal bandwidth planning applies here with regards to benchmarking a
session's usage multiplied by the expected number of concurrent sessions
with overhead.

Network functions
Network functions is a broad category but encompasses workloads that
support the rest of a system's network. These workloads tend to consist

Architecture Guide September 13, 2014 current

132

of large amounts of small packets that are very short lived, such as DNS
queries or SNMP traps. These messages need to arrive quickly and do not
deal with packet loss as there can be a very large volume of them. There
are a few extra considerations to take into account for this type of work-
load and this can change a configuration all the way to the hypervisor lev-
el. For an application that generates 10 TCP sessions per user with an av-
erage bandwidth of 512 kilobytes per second per flow and expected user
count of ten thousand concurrent users, the expected bandwidth plan is
approximately 4.88 gigabits per second.

The supporting network for this type of configuration needs to have a low
latency and evenly distributed availability. This workload benefits from
having services local to the consumers of the service. A multi-site approach
is used as well as deploying many copies of the application to handle load
as close as possible to consumers. Since these applications function inde-
pendently, they do not warrant running overlays to interconnect tenant
networks. Overlays also have the drawback of performing poorly with
rapid flow setup and may incur too much overhead with large quantities
of small packets and are therefore not recommended.

QoS is desired for some workloads to ensure delivery. DNS has a major im-
pact on the load times of other services and needs to be reliable and pro-
vide rapid responses. It is to configure rules in upstream devices to apply
a higher Class Selector to DNS to ensure faster delivery or a better spot in
queuing algorithms.

Cloud storage

Another common use case for OpenStack environments is to provide a
cloud-based file storage and sharing service. You might consider this a stor-
age-focused use case, but its network-side requirements make it a net-
work-focused use case.

For example, consider a cloud backup application. This workload has two
specific behaviors that impact the network. Because this workload is an ex-
ternally-facing service and an internally-replicating application, it has both
north-south and east-west traffic considerations, as follows:

north-south traffic When a user uploads and stores content, that
content moves into the OpenStack installa-
tion. When users download this content, the
content moves from the OpenStack installa-
tion. Because this service is intended primarily
as a backup, most of the traffic moves south-

Architecture Guide September 13, 2014 current

133

bound into the environment. In this situation,
it benefits you to configure a network to be
asymmetrically downstream because the traf-
fic that enters the OpenStack installation is
greater than the traffic that leaves the instal-
lation.

east-west traffic Likely to be fully symmetric. Because replica-
tion originates from any node and might tar-
get multiple other nodes algorithmically, it is
less likely for this traffic to have a larger vol-
ume in any specific direction. However this
traffic might interfere with north-south traffic.

This application prioritizes the north-south traffic over east-west traffic: the
north-south traffic involves customer-facing data.

The network design in this case is less dependant on availability and more
dependant on being able to handle high bandwidth. As a direct result, it
is beneficial to forego redundant links in favor of bonding those connec-
tions. This increases available bandwidth. It is also beneficial to configure

Architecture Guide September 13, 2014 current

134

all devices in the path, including OpenStack, to generate and pass jumbo
frames.

Architecture Guide September 13, 2014 current

135

6. Multi-site

Table of Contents
User requirements .. 135
Technical considerations ... 140
Operational considerations ... 144
Architecture ... 147
Prescriptive examples ... 150

A multi-site OpenStack environment is one in which services located in
more than one data center are used to provide the overall solution. Usage
requirements of different multi-site clouds may vary widely, however they
share some common needs. OpenStack is capable of running in a multi-re-
gion configuration allowing some parts of OpenStack to effectively man-
age a grouping of sites as a single cloud. With some careful planning in the
design phase, OpenStack can act as an excellent multi-site cloud solution
for a multitude of needs.

Some use cases that might indicate a need for a multi-site deployment of
OpenStack include:

• An organization with a diverse geographic footprint.

• Geo-location sensitive data.

• Data locality, in which specific data or functionality should be close to
users.

User requirements
A multi-site architecture is complex and has its own risks and considera-
tions, therefore it is important to make sure when contemplating the de-
sign such an architecture that it meets the user and business requirements.

Many jurisdictions have legislative and regulatory requirements governing
the storage and management of data in cloud environments. Common ar-
eas of regulation include:

• Data retention policies ensuring storage of persistent data and records
management to meet data archival requirements.

Architecture Guide September 13, 2014 current

136

• Data ownership policies governing the possession and responsibility for
data.

• Data sovereignty policies governing the storage of data in foreign coun-
tries or otherwise separate jurisdictions.

• Data compliance policies governing types of information that needs to
reside in certain locations due to regular issues and, more importantly,
cannot reside in other locations for the same reason.

Examples of such legal frameworks include the data protection framework
of the European Union (http://ec.europa.eu/justice/data-protection) and
the requirements of the Financial Industry Regulatory Authority (http://
ec.europa.eu/justice/data-protection) in the United States. Consult a local
regulatory body for more information.

Workload characteristics

The expected workload is a critical requirement that needs to be captured
to guide decision-making. An understanding of the workloads in the con-
text of the desired multi-site environment and use case is important. An-
other way of thinking about a workload is to think of it as the way the sys-
tems are used. A workload could be a single application or a suite of appli-
cations that work together. It could also be a duplicate set of applications
that need to run in multiple cloud environments. Often in a multi-site de-
ployment the same workload will need to work identically in more than
one physical location.

This multi-site scenario likely includes one or more of the other scenarios in
this book with the additional requirement of having the workloads in two
or more locations. The following are some possible scenarios:

For many use cases the proximity of the user to their workloads has a di-
rect influence on the performance of the application and therefore should
be taken into consideration in the design. Certain applications require ze-
ro to minimal latency that can only be achieved by deploying the cloud in
multiple locations. These locations could be in different data centers, cities,
countries or geographical regions, depending on the user requirement and
location of the users.

http://ec.europa.eu/justice/data-protection
http://www.finra.org/Industry/Regulation/FINRARules
http://www.finra.org/Industry/Regulation/FINRARules

Architecture Guide September 13, 2014 current

137

Consistency of images and templates across differ-
ent sites

It is essential that the deployment of instances is consistent across the dif-
ferent sites. This needs to be built into the infrastructure. If OpenStack Ob-
ject Store is used as a back end for the Image Service, it is possible to cre-
ate repositories of consistent images across multiple sites. Having a central
endpoint with multiple storage nodes will allow for a consistent central-
ized storage for each and every site.

Not using a centralized object store will increase operational overhead so
that a consistent image library can be maintained. This could include devel-
opment of a replication mechanism to handle the transport of images and
the changes to the images across multiple sites.

High availability

If high availability is a requirement to provide continuous infrastructure op-
erations, a basic requirement of high availability should be defined.

The OpenStack management components need to have a basic and mini-
mal level of redundancy. The simplest example is the loss of any single site
has no significant impact on the availability of the OpenStack services of
the entire infrastructure.

The OpenStack High Availability Guide contains more information on how
to provide redundancy for the OpenStack components.

Multiple network links should be deployed between sites to provide re-
dundancy for all components. This includes storage replication, which
should be isolated to a dedicated network or VLAN with the ability to as-
sign QoS to control the replication traffic or provide priority for this traffic.
Note that if the data store is highly changeable, the network requirements
could have a significant effect on the operational cost of maintaining the
sites.

The ability to maintain object availability in both sites has significant impli-
cations on the object storage design and implementation. It will also have
a significant impact on the WAN network design between the sites.

Connecting more than two sites increases the challenges and adds more
complexity to the design considerations. Multi-site implementations re-
quire extra planning to address the additional topology complexity used

http://docs.openstack.org/high-availability-guide/content/

Architecture Guide September 13, 2014 current

138

for internal and external connectivity. Some options include full mesh
topology, hub spoke, spine leaf, or 3d Torus.

Not all the applications running in a cloud are cloud-aware. If that is the
case, there should be clear measures and expectations to define what the
infrastructure can support and, more importantly, what it cannot. An ex-
ample would be shared storage between sites. It is possible, however such
a solution is not native to OpenStack and requires a third-party hardware
vendor to fulfill such a requirement. Another example can be seen in appli-
cations that are able to consume resources in object storage directly. These
applications need to be cloud aware to make good use of an OpenStack
Object Store.

Application readiness
Some applications are tolerant of the lack of synchronized object storage,
while others may need those objects to be replicated and available across
regions. Understanding of how the cloud implementation impacts new
and existing applications is important for risk mitigation and the overall
success of a cloud project. Applications may have to be written to expect
an infrastructure with little to no redundancy. Existing applications not de-
veloped with the cloud in mind may need to be rewritten.

Cost
The requirement of having more than one site has a cost attached to it.
The greater the number of sites, the greater the cost and complexity. Costs
can be broken down into the following categories:

• Compute resources

• Networking resources

• Replication

• Storage

• Management

• Operational costs

Site loss and recovery
Outages can cause loss of partial or full functionality of a site. Strategies
should be implemented to understand and plan for recovery scenarios.

Architecture Guide September 13, 2014 current

139

• The deployed applications need to continue to function and, more im-
portantly, consideration should be taken of the impact on the perfor-
mance and reliability of the application when a site is unavailable.

• It is important to understand what will happen to replication of objects
and data between the sites when a site goes down. If this causes queues
to start building up, considering how long these queues can safely exist
until something explodes.

• Ensure determination of the method for resuming proper operations of
a site when it comes back online after a disaster. It is recommended to
architect the recovery to avoid race conditions.

Compliance and geo-location

An organization could have certain legal obligations and regulatory com-
pliance measures which could require certain workloads or data to not be
located in certain regions.

Auditing

A well thought-out auditing strategy is important in order to be able to
quickly track down issues. Keeping track of changes made to security
groups and tenant changes can be useful in rolling back the changes if
they affect production. For example, if all security group rules for a tenant
disappeared, the ability to quickly track down the issue would be impor-
tant for operational and legal reasons.

Separation of duties

A common requirement is to define different roles for the different cloud
administration functions. An example would be a requirement to segre-
gate the duties and permissions by site.

Authentication between sites

Ideally it is best to have a single authentication domain and not need a
separate implementation for each and every site. This will, of course, re-
quire an authentication mechanism that is highly available and distributed
to ensure continuous operation. Authentication server locality is also some-
thing that might be needed as well and should be planned for.

Architecture Guide September 13, 2014 current

140

Technical considerations
There are many technical considerations to take into account with re-
gard to designing a multi-site OpenStack implementation. An OpenStack
cloud can be designed in a variety of ways to handle individual application
needs. A multi-site deployment will have additional challenges compared
to single site installations and will therefore be a more complex solution.

When determining capacity options be sure to take into account not just
the technical issues, but also the economic or operational issues that might
arise from specific decisions.

Inter-site link capacity describes the capabilities of the connectivity be-
tween the different OpenStack sites. This includes parameters such as
bandwidth, latency, whether or not a link is dedicated, and any busi-
ness policies applied to the connection. The capability and number of
the links between sites will determine what kind of options may be avail-
able for deployment. For example, if two sites have a pair of high-band-
width links available between them, it may be wise to configure a sep-
arate storage replication network between the two sites to support a
single Swift endpoint and a shared object storage capability between
them. (An example of this technique, as well as a configuration walk-
through, is available at http://docs.openstack.org/developer/swift/
replication_network.html#dedicated-replication-network). Another option
in this scenario is to build a dedicated set of tenant private networks across
the secondary link using overlay networks with a third party mapping the
site overlays to each other.

The capacity requirements of the links between sites will be driven by ap-
plication behavior. If the latency of the links is too high, certain applica-
tions that use a large number of small packets, for example RPC calls, may
encounter issues communicating with each other or operating properly.
Additionally, OpenStack may encounter similar types of issues. To mitigate
this, tuning of the Identity service call timeouts may be necessary to pre-
vent issues authenticating against a central Identity service.

Another capacity consideration when it comes to networking for a mul-
ti-site deployment is the available amount and performance of overlay net-
works for tenant networks. If using shared tenant networks across zones,
it is imperative that an external overlay manager or controller be used to
map these overlays together. It is necessary to ensure the amount of pos-
sible IDs between the zones are identical. Note that, as of the Icehouse
release, OpenStack Networking was not capable of managing tunnel IDs

http://docs.openstack.org/developer/swift/replication_network.html#dedicated-replication-network
http://docs.openstack.org/developer/swift/replication_network.html#dedicated-replication-network

Architecture Guide September 13, 2014 current

141

across installations. This means that if one site runs out of IDs, but other
does not, that tenant's network will be unable to reach the other site.

Capacity can take other forms as well. The ability for a region to grow de-
pends on scaling out the number of available compute nodes. This top-
ic is covered in greater detail in the section for compute-focused deploy-
ments. However, it should be noted that cells may be necessary to grow an
individual region beyond a certain point. This point depends on the size of
your cluster and the ratio of virtual machines per hypervisor.

A third form of capacity comes in the multi-region-capable components
of OpenStack. Centralized Object Storage is capable of serving objects
through a single namespace across multiple regions. Since this works by ac-
cessing the object store via swift proxy, it is possible to overload the prox-
ies. There are two options available to mitigate this issue. The first is to de-
ploy a large number of swift proxies. The drawback to this is that the prox-
ies are not load-balanced and a large file request could continually hit the
same proxy. The other way to mitigate this is to front-end the proxies with
a caching HTTP proxy and load balancer. Since swift objects are returned
to the requester via HTTP, this load balancer would alleviate the load re-
quired on the swift proxies.

Utilization

While constructing a multi-site OpenStack environment is the goal of this
guide, the real test is whether an application can utilize it.

Identity is normally the first interface for the majority of OpenStack users.
Interacting with the Identity service is required for almost all major opera-
tions within OpenStack. Therefore, it is important to ensure that you pro-
vide users with a single URL for Identity service authentication. Equally im-
portant is proper documentation and configuration of regions within the
Identity service. Each of the sites defined in your installation is considered
to be a region in Identity nomenclature. This is important for the users of
the system, when reading Identity documentation, as it is required to de-
fine the region name when providing actions to an API endpoint or in the
dashboard.

Load balancing is another common issue with multi-site installations. While
it is still possible to run HAproxy instances with Load-Balancer-as-a-Service,
these will be local to a specific region. Some applications may be able to
cope with this via internal mechanisms. Others, however, may require the
implementation of an external system including global services load bal-
ancers or anycast-advertised DNS.

Architecture Guide September 13, 2014 current

142

Depending on the storage model chosen during site design, storage repli-
cation and availability will also be a concern for end-users. If an application
is capable of understanding regions, then it is possible to keep the object
storage system separated by region. In this case, users who want to have
an object available to more than one region will need to do the cross-site
replication themselves. With a centralized swift proxy, however, the user
may need to benchmark the replication timing of the Object Storage back
end. Benchmarking allows the operational staff to provide users with an
understanding of the amount of time required for a stored or modified ob-
ject to become available to the entire environment.

Performance
Determining the performance of a multi-site installation involves consider-
ations that do not come into play in a single-site deployment. Being a dis-
tributed deployment, multi-site deployments incur a few extra penalties to
performance in certain situations.

Since multi-site systems can be geographically separated, they may have
worse than normal latency or jitter when communicating across regions.
This can especially impact systems like the OpenStack Identity service when
making authentication attempts from regions that do not contain the cen-
tralized Identity implementation. It can also affect certain applications
which rely on remote procedure call (RPC) for normal operation. An exam-
ple of this can be seen in High Performance Computing workloads.

Storage availability can also be impacted by the architecture of a multi-site
deployment. A centralized Object Storage service requires more time for
an object to be available to instances locally in regions where the object
was not created. Some applications may need to be tuned to account for
this effect. Block Storage does not currently have a method for replicat-
ing data across multiple regions, so applications that depend on available
block storage will need to manually cope with this limitation by creating
duplicate block storage entries in each region.

Security
Securing a multi-site OpenStack installation also brings extra challenges.
Tenants may expect a tenant-created network to be secure. In a multi-site
installation the use of a non-private connection between sites may be re-
quired. This may mean that traffic would be visible to third parties and,
in cases where an application requires security, this issue will require mit-
igation. Installing a VPN or encrypted connection between sites is recom-
mended in such instances.

Architecture Guide September 13, 2014 current

143

Another security consideration with regard to multi-site deployments is
Identity. Authentication in a multi-site deployment should be centralized.
Centralization provides a single authentication point for users across the
deployment, as well as a single point of administration for traditional cre-
ate, read, update and delete operations. Centralized authentication is al-
so useful for auditing purposes because all authentication tokens originate
from the same source.

Just as tenants in a single-site deployment need isolation from each other,
so do tenants in multi-site installations. The extra challenges in multi-site
designs revolve around ensuring that tenant networks function across re-
gions. Unfortunately, OpenStack Networking does not presently support
a mechanism to provide this functionality, therefore an external system
may be necessary to manage these mappings. Tenant networks may con-
tain sensitive information requiring that this mapping be accurate and con-
sistent to ensure that a tenant in one site does not connect to a different
tenant in another site.

OpenStack components

Most OpenStack installations require a bare minimum set of pieces to
function. These include the OpenStack Identity (keystone) for authentica-
tion, OpenStack Compute (nova) for compute, OpenStack Image Service
(glance) for image storage, OpenStack Networking (neutron) for network-
ing, and potentially an object store in the form of OpenStack Object Stor-
age (swift). Bringing multi-site into play also demands extra components in
order to coordinate between regions. Centralized Identity service is neces-
sary to provide the single authentication point. Centralized dashboard is al-
so recommended to provide a single login point and a mapped experience
to the API and CLI options available. If necessary, a centralized Object Stor-
age service may be used and will require the installation of the swift proxy
service.

It may also be helpful to install a few extra options in order to facilitate
certain use cases. For instance, installing designate may assist in automati-
cally generating DNS domains for each region with an automatically-pop-
ulated zone full of resource records for each instance. This facilitates using
DNS as a mechanism for determining which region would be selected for
certain applications.

Another useful tool for managing a multi-site installation is Orchestration
(heat). The Orchestration module allows the use of templates to define a
set of instances to be launched together or for scaling existing sets. It can
also be used to setup matching or differentiated groupings based on re-

Architecture Guide September 13, 2014 current

144

gions. For instance, if an application requires an equally balanced number
of nodes across sites, the same heat template can be used to cover each
site with small alterations to only the region name.

Operational considerations
Deployment of a multi-site OpenStack cloud using regions requires that
the service catalog contains per-region entries for each service deployed
other than the Identity service itself. There is limited support amongst cur-
rently available off-the-shelf OpenStack deployment tools for defining mul-
tiple regions in this fashion.

Deployers must be aware of this and provide the appropriate customiza-
tion of the service catalog for their site either manually or via customiza-
tion of the deployment tools in use.

Note that, as of the Icehouse release, documentation for implementing
this feature is in progress. See this bug for more information: https://
bugs.launchpad.net/openstack-manuals/+bug/1340509.

Licensing

Multi-site OpenStack deployments present additional licensing considera-
tions over and above regular OpenStack clouds, particularly where site li-
censes are in use to provide cost efficient access to software licenses. The
licensing for host operating systems, guest operating systems, OpenStack
distributions (if applicable), software-defined infrastructure including net-
work controllers and storage systems, and even individual applications
need to be evaluated in light of the multi-site nature of the cloud.

Topics to consider include:

• The specific definition of what constitutes a site in the relevant licenses,
as the term does not necessarily denote a geographic or otherwise physi-
cally isolated location in the traditional sense.

• Differentiations between "hot" (active) and "cold" (inactive) sites where
significant savings may be made in situations where one site is a cold
standby for disaster recovery purposes only.

• Certain locations might require local vendors to provide support and
services for each site provides challenges, but will vary on the licensing
agreement in place.

https://bugs.launchpad.net/openstack-manuals/+bug/1340509
https://bugs.launchpad.net/openstack-manuals/+bug/1340509

Architecture Guide September 13, 2014 current

145

Logging and monitoring

Logging and monitoring does not significantly differ for a multi-site Open-
Stack cloud. The same well known tools described in the Logging and mon-
itoring chapter of the Operations Guide remain applicable. Logging and
monitoring can be provided both on a per-site basis and in a common cen-
tralized location.

When attempting to deploy logging and monitoring facilities to a central-
ized location, care must be taken with regards to the load placed on the
inter-site networking links.

Upgrades

In multi-site OpenStack clouds deployed using regions each site is, effec-
tively, an independent OpenStack installation which is linked to the oth-
ers by using centralized services such as Identity which are shared between
sites. At a high level the recommended order of operations to upgrade an
individual OpenStack environment is (see the Upgrades chapter of the Op-
erations Guide for details):

1. Upgrade the OpenStack Identity service (keystone).

2. Upgrade the OpenStack Image Service (glance).

3. Upgrade OpenStack Compute (nova), including networking compo-
nents.

4. Upgrade OpenStack Block Storage (cinder).

5. Upgrade the OpenStack dashboard (horizon).

The process for upgrading a multi-site environment is not significantly dif-
ferent:

1. Upgrade the shared OpenStack Identity service (keystone) deployment.

2. Upgrade the OpenStack Image Service (glance) at each site.

3. Upgrade OpenStack Compute (nova), including networking compo-
nents, at each site.

4. Upgrade OpenStack Block Storage (cinder) at each site.

http://docs.openstack.org/openstack-ops/content/logging_monitoring.html
http://docs.openstack.org/openstack-ops/content/logging_monitoring.html
http://docs.openstack.org/openstack-ops/content/ops_upgrades-general-steps.html

Architecture Guide September 13, 2014 current

146

5. Upgrade the OpenStack dashboard (horizon), at each site or in the sin-
gle central location if it is shared.

Note that, as of the OpenStack Icehouse release, compute upgrades with-
in each site can also be performed in a rolling fashion. Compute controller
services (API, Scheduler, and Conductor) can be upgraded prior to upgrad-
ing of individual compute nodes. This maximizes the ability of operations
staff to keep a site operational for users of compute services while per-
forming an upgrade.

Quota management

To prevent system capacities from being exhausted without notification,
OpenStack provides operators with the ability to define quotas. Quotas
are used to set operational limits and are currently enforced at the tenant
(or project) level rather than at the user level.

Quotas are defined on a per-region basis. Operators may wish to define
identical quotas for tenants in each region of the cloud to provide a consis-
tent experience, or even create a process for synchronizing allocated quo-
tas across regions. It is important to note that only the operational limits
imposed by the quotas will be aligned consumption of quotas by users will
not be reflected between regions.

For example, given a cloud with two regions, if the operator grants a us-
er a quota of 25 instances in each region then that user may launch a total
of 50 instances spread across both regions. They may not, however, launch
more than 25 instances in any single region.

For more information on managing quotas refer to the Managing projects
and users chapter of the OpenStack Operators Guide.

Policy management

OpenStack provides a default set of Role Based Access Control (RBAC) poli-
cies, defined in a policy.json file, for each service. Operators edit these
files to customize the policies for their OpenStack installation. If the appli-
cation of consistent RBAC policies across sites is considered a requirement,
then it is necessary to ensure proper synchronization of the policy.json
files to all installations.

This must be done using normal system administration tools such as rsync
as no functionality for synchronizing policies across regions is currently pro-
vided within OpenStack.

http://docs.openstack.org/openstack-ops/content/projects_users.html
http://docs.openstack.org/openstack-ops/content/projects_users.html

Architecture Guide September 13, 2014 current

147

Documentation

Users must be able to leverage cloud infrastructure and provision new re-
sources in the environment. It is important that user documentation is ac-
cessible by users of the cloud infrastructure to ensure they are given suffi-
cient information to help them leverage the cloud. As an example, by de-
fault OpenStack will schedule instances on a compute node automatically.
However, when multiple regions are available, it is left to the end user to
decide in which region to schedule the new instance. The dashboard will
present the user with the first region in your configuration. The API and
CLI tools will not execute commands unless a valid region is specified. It is
therefore important to provide documentation to your users describing
the region layout as well as calling out that quotas are region-specific. If a
user reaches his or her quota in one region, OpenStack will not automat-
ically build new instances in another. Documenting specific examples will
help users understand how to operate the cloud, thereby reducing calls
and tickets filed with the help desk.

Architecture
This graphic is a high level diagram of a multiple site OpenStack architec-
ture. Each site is an OpenStack cloud but it may be necessary to architect
the sites on different versions. For example, if the second site is intended
to be a replacement for the first site, they would be different. Another
common design would be a private OpenStack cloud with replicated site
that would be used for high availability or disaster recovery. The most im-
portant design decision is how to configure the storage. It can be config-
ured as a single shared pool or separate pools, depending on the user and
technical requirements.

Architecture Guide September 13, 2014 current

148

OpenStack services architecture

The OpenStack Identity service, which is used by all other OpenStack com-
ponents for authorization and the catalog of service endpoints, supports
the concept of regions. A region is a logical construct that can be used to
group OpenStack services that are in close proximity to one another. The
concept of regions is flexible; it may can contain OpenStack service end-
points located within a distinct geographic region, or regions. It may be
smaller in scope, where a region is a single rack within a data center or
even a single blade chassis, with multiple regions existing in adjacent racks
in the same data center.

Architecture Guide September 13, 2014 current

149

The majority of OpenStack components are designed to run within the
context of a single region. The OpenStack Compute service is designed to
manage compute resources within a region, with support for subdivisions
of compute resources by using availability zones and cells. The OpenStack
Networking service can be used to manage network resources in the same
broadcast domain or collection of switches that are linked. The OpenStack
Block Storage service controls storage resources within a region with all
storage resources residing on the same storage network. Like the Open-
Stack Compute service, the OpenStack Block Storage service also supports
the availability zone construct which can be used to subdivide storage re-
sources.

The OpenStack dashboard, OpenStack Identity, and OpenStack Object
Storage services are components that can each be deployed centrally in or-
der to serve multiple regions.

Storage

With multiple OpenStack regions, having a single OpenStack Object Stor-
age service endpoint that delivers shared file storage for all regions is de-
sirable. The Object Storage service internally replicates files to multiple
nodes. The advantages of this are that, if a file placed into the Object Stor-
age service is visible to all regions, it can be used by applications or work-
loads in any or all of the regions. This simplifies high availability failover
and disaster recovery rollback.

In order to scale the Object Storage service to meet the workload of mul-
tiple regions, multiple proxy workers are run and load-balanced, storage
nodes are installed in each region, and the entire Object Storage Service
can be fronted by an HTTP caching layer. This is done so client requests for
objects can be served out of caches rather than directly from the storage
modules themselves, reducing the actual load on the storage network. In
addition to an HTTP caching layer, use a caching layer like Memcache to
cache objects between the proxy and storage nodes.

If the cloud is designed without a single Object Storage Service endpoint
for multiple regions, and instead a separate Object Storage Service end-
point is made available in each region, applications are required to handle
synchronization (if desired) and other management operations to ensure
consistency across the nodes. For some applications, having multiple Ob-
ject Storage Service endpoints located in the same region as the applica-
tion may be desirable due to reduced latency, cross region bandwidth, and
ease of deployment.

Architecture Guide September 13, 2014 current

150

For the Block Storage service, the most important decisions are the selec-
tion of the storage technology and whether or not a dedicated network
is used to carry storage traffic from the storage service to the compute
nodes.

Networking

When connecting multiple regions together there are several design con-
siderations. The overlay network technology choice determines how pack-
ets are transmitted between regions and how the logical network and ad-
dresses present to the application. If there are security or regulatory re-
quirements, encryption should be implemented to secure the traffic be-
tween regions. For networking inside a region, the overlay network tech-
nology for tenant networks is equally important. The overlay technology
and the network traffic of an application generates or receives can be ei-
ther complementary or be at cross purpose. For example, using an overlay
technology for an application that transmits a large amount of small pack-
ets could add excessive latency or overhead to each packet if not config-
ured properly.

Dependencies

The architecture for a multi-site installation of OpenStack is dependent on
a number of factors. One major dependency to consider is storage. When
designing the storage system, the storage mechanism needs to be deter-
mined. Once the storage type is determined, how it will be accessed is crit-
ical. For example, it is recommended that storage should utilize a dedicat-
ed network. Another concern is how the storage is configured to protect
the data. For example, the recovery point objective (RPO) and the recovery
time objective (RTO). How quickly can the recovery from a fault be com-
pleted, will determine how often the replication of data be required. En-
sure that enough storage is allocated to support the data protection strat-
egy.

Networking decisions include the encapsulation mechanism that will be
used for the tenant networks, how large the broadcast domains should be,
and the contracted SLAs for the interconnects.

Prescriptive examples
Based on the needs of the intended workloads, there are multiple ways
to build a multi-site OpenStack installation. Below are example architec-

Architecture Guide September 13, 2014 current

151

tures based on different requirements. These examples are meant as a ref-
erence, and not a hard and fast rule for deployments. Use the previous sec-
tions of this chapter to assist in selecting specific components and imple-
mentations based on specific needs.

A large content provider needs to deliver content to customers that are
geographically dispersed. The workload is very sensitive to latency and
needs a rapid response to end-users. After reviewing the user, technical
and operational considerations, it is determined beneficial to build a num-
ber of regions local to the customer’s edge. In this case rather than build
a few large, centralized data centers, the intent of the architecture is to
provide a pair of small data centers in locations that are closer to the cus-
tomer. In this use case, spreading applications out allows for different hor-
izontal scaling than a traditional compute workload scale. The intent is to
scale by creating more copies of the application in closer proximity to the
users that need it most, in order to ensure faster response time to user re-
quests. This provider will deploy two datacenters at each of the four cho-
sen regions. The implications of this design are based around the method
of placing copies of resources in each of the remote regions. Swift objects,
Glance images, and block storage will need to be manually replicated into
each region. This may be beneficial for some systems, such as the case of
content service, where only some of the content needs to exist in some but
not all regions. A centralized Keystone is recommended to ensure authen-
tication and that access to the API endpoints is easily manageable.

Installation of an automated DNS system such as Designate is highly rec-
ommended. Unless an external Dynamic DNS system is available, applica-
tion administrators will need a way to manage the mapping of which ap-
plication copy exists in each region and how to reach it. Designate will as-
sist by making the process automatic and by populating the records in the
each region's zone.

Telemetry for each region is also deployed, as each region may grow dif-
ferently or be used at a different rate. Ceilometer will run to collect each
region's metrics from each of the controllers and report them back to a
central location. This is useful both to the end user and the administrator
of the OpenStack environment. The end user will find this method useful,
in that it is possible to determine if certain locations are experiencing high-
er load than others, and take appropriate action. Administrators will also
benefit by possibly being able to forecast growth per region, rather than
expanding the capacity of all regions simultaneously, therefore maximizing
the cost-effectiveness of the multi-site design.

One of the key decisions of running this sort of infrastructure is whether
or not to provide a redundancy model. Two types of redundancy and high

Architecture Guide September 13, 2014 current

152

availability models in this configuration will be implemented. The first type
revolves around the availability of the central OpenStack components. Key-
stone will be made highly available in three central data centers that will
host the centralized OpenStack components. This prevents a loss of any
one of the regions causing an outage in service. It also has the added ben-
efit of being able to run a central storage repository as a primary cache for
distributing content to each of the regions.

The second redundancy topic is that of the edge data center itself. A sec-
ond data center in each of the edge regional locations will house a second
region near the first. This ensures that the application will not suffer de-
graded performance in terms of latency and availability.

This figure depicts the solution designed to have both a centralized set of
core data centers for OpenStack services and paired edge data centers:

Geo-redundant load balancing

A large-scale web application has been designed with cloud principles in
mind. The application is designed provide service to application store, on
a 24/7 basis. The company has typical 2-tier architecture with a web front-
end servicing the customer requests and a NoSQL database back end stor-
ing the information.

Architecture Guide September 13, 2014 current

153

As of late there has been several outages in number of major public cloud
providers—usually due to the fact these applications were running out of
a single geographical location. The design therefore should mitigate the
chance of a single site causing an outage for their business.

The solution would consist of the following OpenStack components:

• A firewall, switches and load balancers on the public facing network
connections.

• OpenStack Controller services running, Networking, dashboard, Block
Storage and Compute running locally in each of the three regions. The
other services, Identity, Orchestration, Telemetry, Image Service and
Object Storage will be installed centrally—with nodes in each of the re-
gion providing a redundant OpenStack Controller plane throughout the
globe.

• OpenStack Compute nodes running the KVM hypervisor.

• OpenStack Object Storage for serving static objects such as images will
be used to ensure that all images are standardized across all the regions,
and replicated on a regular basis.

• A Distributed DNS service available to all regions—that allows for dynam-
ic update of DNS records of deployed instances.

• A geo-redundant load balancing service will be used to service the re-
quests from the customers based on their origin.

An autoscaling heat template will used to deploy the application in the
three regions. This template will include:

• Web Servers, running Apache.

• Appropriate user_data to populate the central DNS servers upon in-
stance launch.

• Appropriate Telemetry alarms that maintain state of the application and
allow for handling of region or instance failure.

Another autoscaling Heat template will be used to deploy a distributed
MongoDB shard over the three locations—with the option of storing re-
quired data on a globally available swift container. according to the usage
and load on the database server—additional shards will be provisioned ac-
cording to the thresholds defined in Telemetry.

Architecture Guide September 13, 2014 current

154

The reason that three regions were selected here was because of the fear
of having abnormal load on a single region in the event of a failure. Two
data center would have been sufficient had the requirements been met.

Orchestration is used because of the built-in functionality of autoscaling
and auto healing in the event of increased load. Additional configuration
management tools, such as Puppet or Chef could also have been used in
this scenario, but were not chosen due to the fact that Orchestration had
the appropriate built-in hooks into the OpenStack cloud—whereas the oth-
er tools were external and not native to OpenStack. In addition—since this
deployment scenario was relatively straight forward—the external tools
were not needed.

OpenStack Object Storage is used here to serve as a back end for the Im-
age Service since was the most suitable solution for a globally distributed
storage solution—with its own replication mechanism. Home grown solu-
tions could also have been used including the handling of replication—but
were not chosen, because Object Storage is already an intricate part of the
infrastructure—and proven solution.

An external load balancing service was used and not the LBaaS in Open-
Stack because the solution in OpenStack is not redundant and does not
have any awareness of geo location.

Architecture Guide September 13, 2014 current

155

Location-local service

A common use for a multi-site deployment of OpenStack, is for creating a
Content Delivery Network. An application that uses a location-local archi-
tecture will require low network latency and proximity to the user, in order
to provide an optimal user experience, in addition to reducing the cost of
bandwidth and transit, since the content resides on sites closer to the cus-
tomer, instead of a centralized content store that would require utilizing
higher cost cross country links.

This architecture usually includes a geo-location component that places us-
er requests at the closest possible node. In this scenario, 100% redundan-
cy of content across every site is a goal rather than a requirement, with the
intent being to maximize the amount of content available that is within a
minimum number of network hops for any given end user. Despite these
differences, the storage replication configuration has significant overlap
with that of a geo-redundant load balancing use case.

In this example, the application utilizing this multi-site OpenStack install
that is location aware would launch web server or content serving in-
stances on the compute cluster in each site. Requests from clients will first
be sent to a global services load balancer that determines the location of
the client, then routes the request to the closest OpenStack site where the
application completes the request.

Architecture Guide September 13, 2014 current

156

Architecture Guide September 13, 2014 current

157

7. Hybrid

Table of Contents
User requirements .. 158
Technical considerations ... 164
Operational considerations ... 170
Architecture ... 172
Prescriptive examples ... 176

Hybrid cloud, by definition, means that the design spans more than one
cloud. An example of this kind of architecture may include a situation in
which the design involves more than one OpenStack cloud (for example,
an OpenStack-based private cloud and an OpenStack-based public cloud),
or it may be a situation incorporating an OpenStack cloud and a non-
OpenStack cloud (for example, an OpenStack-based private cloud that in-
teracts with Amazon Web Services). Bursting into an external cloud is the
practice of creating new instances to alleviate extra load where there is no
available capacity in the private cloud.

Some situations that could involve hybrid cloud architecture include:

• Bursting from a private cloud to a public cloud

• Disaster recovery

• Development and testing

• Federated cloud, enabling users to choose resources from multiple
providers

• Hybrid clouds built to support legacy systems as they transition to cloud

As a hybrid cloud design deals with systems that are outside of the con-
trol of the cloud architect or organization, a hybrid cloud architecture re-
quires considering aspects of the architecture that might not have other-
wise been necessary. For example, the design may need to deal with hard-
ware, software, and APIs under the control of a separate organization.

Similarly, the degree to which the architecture is OpenStack-based will
have an effect on the cloud operator or cloud consumer's ability to accom-
plish tasks with native OpenStack tools. By definition, this is a situation
in which no single cloud can provide all of the necessary functionality. In

Architecture Guide September 13, 2014 current

158

order to manage the entire system, users, operators and consumers will
need an overarching tool known as a cloud management platform (CMP).
Any organization that is working with multiple clouds already has a CMP,
even if that CMP is the operator who logs into an external web portal and
launches a public cloud instance.

There are commercially available options, such as Rightscale, and open
source options, such as ManageIQ (http://manageiq.org), but there is no
single CMP that can address all needs in all scenarios. Whereas most of
the sections of this book talk about the aspects of OpenStack, an archi-
tect needs to consider when designing an OpenStack architecture. This sec-
tion will also discuss the things the architect must address when choosing
or building a CMP to run a hybrid cloud design, even if the CMP will be a
manually built solution.

User requirements
Hybrid cloud architectures introduce additional complexities, particularly
those that use heterogeneous cloud platforms. As a result, it is important
to make sure that design choices match requirements in such a way that
the benefits outweigh the inherent additional complexity and risks.

Business considerations to make when designing a hybrid cloud deploy-
ment include:

Cost A hybrid cloud architecture involves
multiple vendors and technical architec-
tures. These architectures may be more
expensive to deploy and maintain. Op-
erational costs can be higher because
of the need for more sophisticated or-
chestration and brokerage tools than
in other architectures. In contrast, over-
all operational costs might be lower by
virtue of using a cloud brokerage tool
to deploy the workloads to the most
cost effective platform.

Revenue opportunity Revenue opportunities vary greatly
based on the intent and use case of the
cloud. If it is being built as a commer-
cial customer-facing product, consider
the drivers for building it over multiple
platforms and whether the use of mul-

http://manageiq.org/

Architecture Guide September 13, 2014 current

159

tiple platforms make the design more
attractive to target customers, thus en-
hancing the revenue opportunity.

Time to market One of the most common reasons to
use cloud platforms is to speed the
time to market of a new product or ap-
plication. A business requirement to
use multiple cloud platforms may be
because there is an existing investment
in several applications and it is faster to
tie them together rather than migrat-
ing components and refactoring to a
single platform.

Business or technical diversity Organizations already leveraging cloud-
based services may wish to embrace
business diversity and utilize a hybrid
cloud design to spread their workloads
across multiple cloud providers so that
no application is hosted in a single
cloud provider.

Application momentum A business with existing applications
that are already in production on mul-
tiple cloud environments may find that
it is more cost effective to integrate
the applications on multiple cloud plat-
forms rather than migrate them to a
single platform.

Legal requirements
Many jurisdictions have legislative and regulatory requirements governing
the storage and management of data in cloud environments. Common ar-
eas of regulation include:

• Data retention policies ensuring storage of persistent data and records
management to meet data archival requirements.

• Data ownership policies governing the possession and responsibility for
data.

• Data sovereignty policies governing the storage of data in foreign coun-
tries or otherwise separate jurisdictions.

Architecture Guide September 13, 2014 current

160

• Data compliance policies governing certain types of information needs
to reside in certain locations due to regular issues and, more important-
ly, cannot reside in other locations for the same reason.

Examples of such legal frameworks include the data protection framework
of the European Union (http://ec.europa.eu/justice/data-protection/) and
the requirements of the Financial Industry Regulatory Authority (http://
www.finra.org/Industry/Regulation/FINRARules/) in the United States.
Consult a local regulatory body for more information.

Workload considerations

Defining what the word "workload" means in the context of a hybrid cloud
environment is important. Workload can be defined as the intended way
the systems will be utilized, which is often referred to as a "use case". A
workload can be a single application or a suite of applications that work
in concert. It can also be a duplicate set of applications that need to run
on multiple cloud environments. In a hybrid cloud deployment, the same
workload will often need to function equally well on radically different
public and private cloud environments. The architecture needs to address
these potential conflicts, complexity, and platform incompatibilities.

Some possible use cases for a hybrid cloud architecture include:

• Dynamic resource expansion or "bursting": Another common reason to
use a multiple cloud architecture is a "bursty" application that needs ad-
ditional resources at times. An example of this case could be a retailer
that needs additional resources during the holiday selling season, but
does not want to build expensive cloud resources to meet the peak de-
mand. They might have an OpenStack private cloud but want to burst
to AWS or some other public cloud for these peak load periods. These
bursts could be for long or short cycles ranging from hourly, monthly or
yearly.

• Disaster recovery-business continuity: The cheaper storage and instance
management makes a good case for using the cloud as a secondary site.
The public cloud is already heavily used for these purposes in combina-
tion with an OpenStack public or private cloud.

• Federated hypervisor-instance management: Adding self-service, charge
back and transparent delivery of the right resources from a federated
pool can be cost effective. In a hybrid cloud environment, this is a partic-
ularly important consideration. Look for a cloud that provides cross-plat-
form hypervisor support and robust instance management tools.

http://ec.europa.eu/justice/data-protection/
http://ec.europa.eu/justice/data-protection/
http://ec.europa.eu/justice/data-protection/

Architecture Guide September 13, 2014 current

161

• Application portfolio integration: An enterprise cloud delivers better ap-
plication portfolio management and more efficient deployment by lever-
aging self-service features and rules for deployments based on types of
use. A common driver for building hybrid cloud architecture is to stitch
together multiple existing cloud environments that are already in pro-
duction or development.

• Migration scenarios: A common reason to create a hybrid cloud architec-
ture is to allow the migration of applications between different clouds.
This may be because the application will be migrated permanently to a
new platform, or it might be because the application needs to be sup-
ported on multiple platforms going forward.

• High availability: Another important reason for wanting a multiple cloud
architecture is to address the needs for high availability. By using a com-
bination of multiple locations and platforms, a design can achieve a lev-
el of availability that is not possible with a single platform. This approach
does add a significant amount of complexity.

In addition to thinking about how the workload will work on a single
cloud, the design must accommodate the added complexity of needing
the workload to run on multiple cloud platforms. The complexity of trans-
ferring workloads across clouds needs to be explored at the application, in-
stance, cloud platform, hypervisor, and network levels.

Tools considerations

When working with designs spanning multiple clouds, the design must in-
corporate tools to facilitate working across those multiple clouds. Some of
the user requirements drive the need for tools that will do the following
functions:

• Broker between clouds: Since the multiple cloud architecture assumes
that there will be at least two different and possibly incompatible plat-
forms that are likely to have different costs, brokering software is de-
signed to evaluate relative costs between different cloud platforms.
These solutions are sometimes referred to as Cloud Management Plat-
forms (CMPs). Examples include Rightscale, Gravitent, Scalr, CloudForms,
and ManageIQ. These tools allow the designer to determine the right lo-
cation for the workload based on predetermined criteria.

• Facilitate orchestration across the clouds: CMPs are tools are used to tie
everything together. Cloud orchestration tools are used to improve the
management of IT application portfolios as they migrate onto public,

Architecture Guide September 13, 2014 current

162

private, and hybrid cloud platforms. These tools are an important con-
sideration. Cloud orchestration tools are used for managing a diverse
portfolio of installed systems across multiple cloud platforms. The typi-
cal enterprise IT application portfolio is still comprised of a few thousand
applications scattered over legacy hardware, virtualized infrastructure,
and now dozens of disjointed shadow public Infrastructure-as-a-Service
(IaaS) and Software-as-a-Service (SaaS) providers and offerings.

Network considerations

The network services functionality is an important factor to assess when
choosing a CMP and cloud provider. Considerations are functionality, secu-
rity, scalability and HA. Verification and ongoing testing of the critical fea-
tures of the cloud endpoint used by the architecture are important tasks.

• Once the network functionality framework has been decided, a mini-
mum functionality test should be designed. This will ensure testing and
functionality persists during and after upgrades.

• Scalability across multiple cloud providers may dictate which underlying
network framework you will choose in different cloud providers. It is im-
portant to have the network API functions presented and to verify that
functionality persists across all cloud endpoints chosen.

• High availability implementations vary in functionality and design. Ex-
amples of some common methods are active-hot-standby, active-passive
and active-active. High availability and a test framework needs to be de-
veloped to insure that the functionality and limitations are well under-
stood.

• Security considerations include how data is secured between client and
endpoint and any traffic that traverses the multiple clouds, from eaves-
dropping to DoS activities.

Risk mitigation and management considerations

Hybrid cloud architectures introduce additional risk because they add addi-
tional complexity and potentially conflicting or incompatible components
or tools. However, they also reduce risk by spreading workloads over mul-
tiple providers. This means, if one was to go out of business, the organiza-
tion could remain operational.

Risks that will be heightened by using a hybrid cloud architecture include:

Architecture Guide September 13, 2014 current

163

Provider availability or imple-
mentation details

This can range from the company go-
ing out of business to the company
changing how it delivers its services.
Cloud architectures are inherently de-
signed to be flexible and changeable;
paradoxically, the cloud is both per-
ceived to be rock solid and ever flexible
at the same time.

Differing SLAs Users of hybrid cloud environments
potentially encounter some losses
through differences in service level
agreements. A hybrid cloud design
needs to accommodate the different
SLAs provided by the various clouds
involved in the design, and must ad-
dress the actual enforceability of the
providers' SLAs.

Security levels Securing multiple cloud environments
is more complex than securing a sin-
gle cloud environment. Concerns need
to be addressed at, but not limited to,
the application, network, and cloud
platform levels. One issue is that differ-
ent cloud platforms approach securi-
ty differently, and a hybrid cloud de-
sign must address and compensate for
differences in security approaches. For
example, AWS uses a relatively simple
model that relies on user privilege com-
bined with firewalls.

Provider API changes APIs are crucial in a hybrid cloud envi-
ronment. As a consumer of a provider's
cloud services, an organization will
rarely have any control over provider
changes to APIs. Cloud services that
might have previously had compatible
APIs may no longer work. This is partic-
ularly a problem with AWS and Open-
Stack AWS-compatible APIs. Open-
Stack was originally planned to main-
tain compatibility with changes in AWS

Architecture Guide September 13, 2014 current

164

APIs. However, over time, the APIs
have become more divergent in func-
tionality. One way to address this issue
is to focus on using only the most com-
mon and basic APIs to minimize poten-
tial conflicts.

Technical considerations
A hybrid cloud environment requires inspection and understanding of
technical issues that are not only outside of an organization's data center,
but potentially outside of an organization's control. In many cases, it is nec-
essary to ensure that the architecture and CMP chosen can adapt to, not
only to different environments, but also to the possibility of change. In this
situation, applications are crossing diverse platforms and are likely to be lo-
cated in diverse locations. All of these factors will influence and add com-
plexity to the design of a hybrid cloud architecture.

The only situation where cloud platform incompatibilities are not going to
be an issue is when working with clouds that are based on the same ver-
sion and the same distribution of OpenStack. Otherwise incompatibilities
are virtually inevitable.

Incompatibility should be less of an issue for clouds that exclusively use the
same version of OpenStack, even if they use different distributions. The
newer the distribution in question, the less likely it is that there will be in-
compatibilities between version. This is due to the fact that the OpenStack
community has established an initiative to define core functions that need
to remain backward compatible between supported versions. The DefCore
initiative defines basic functions that every distribution must support in or-
der to bear the name "OpenStack".

Some vendors, however, add proprietary customizations to their distri-
butions. If an application or architecture makes use of these features, it
will be difficult to migrate to or use other types of environments. Anyone
considering incorporating older versions of OpenStack prior to Havana
should consider carefully before attempting to incorporate functionality
between versions. Internal differences in older versions may be so great
that the best approach might be to consider the versions to be essentially
diverse platforms, as different as OpenStack and Amazon Web Services or
Microsoft Azure.

The situation is more predictable if using different cloud platforms is incor-
porated from inception. If the other clouds are not based on OpenStack,

Architecture Guide September 13, 2014 current

165

then all pretense of compatibility vanishes, and CMP tools must account
for the myriad of differences in the way operations are handled and ser-
vices are implemented. Some situations in which these incompatibilities
can arise include differences between the way in which a cloud:

• Deploys instances

• Manages networks

• Treats applications

• Implements services

Capacity planning

One of the primary reasons many organizations turn to a hybrid cloud sys-
tem is to increase capacity without having to make large capital invest-
ments. However, capacity planning is still necessary when designing an
OpenStack installation even if it is augmented with external clouds.

Specifically, overall capacity and placement of workloads need to be ac-
counted for when designing for a mostly internally-operated cloud with
the occasional capacity burs. The long-term capacity plan for such a design
needs to incorporate growth over time to prevent the need to permanent-
ly burst into, and occupy, a potentially more expensive external cloud. In
order to avoid this scenario, account for the future applications and capaci-
ty requirements and plan growth appropriately.

One of the drawbacks of capacity planning is unpredictability. It is difficult
to predict the amount of load a particular application might incur if the
number of users fluctuates or the application experiences an unexpected
increase in popularity. It is possible to define application requirements in
terms of vCPU, RAM, bandwidth or other resources and plan appropriate-
ly, but other clouds may not use the same metric or even the same over-
subscription rates.

Oversubscription is a method to emulate more capacity than they may
physically be present. For example, a physical hypervisor node with 32 GB
RAM may host 24 instances, each provisioned with 2 GB RAM. As long as
all 24 of them are not concurrently utilizing 2 full gigabytes, this arrange-
ment is a non-issue. However, some hosts take oversubscription to ex-
tremes and, as a result, performance can frequently be inconsistent. If at
all possible, determine what the oversubscription rates of each host are
and plan capacity accordingly.

Architecture Guide September 13, 2014 current

166

Security
The nature of a hybrid cloud environment removes complete control over
the infrastructure. Security becomes a stronger requirement because da-
ta or applications may exist in a cloud that is outside of an organization's
control. Security domains become an important distinction when planning
for a hybrid cloud environment and its capabilities. A security domain com-
prises users, applications, servers or networks that share common trust re-
quirements and expectations within a system.

The security domains are:

1. Public

2. Guest

3. Management

4. Data

These security domains can be mapped individually to the organization's
installation or combined. For example, some deployment topologies com-
bine both guest and data domains onto one physical network, whereas
other topologies may physically separate these networks. In each case, the
cloud operator should be aware of the appropriate security concerns. Se-
curity domains should be mapped out against the specific OpenStack de-
ployment topology. The domains and their trust requirements depend up-
on whether the cloud instance is public, private, or hybrid.

The public security domain is an entirely untrusted area of the cloud infras-
tructure. It can refer to the Internet as a whole or simply to networks over
which an organization has no authority. This domain should always be con-
sidered untrusted. When considering hybrid cloud deployments, any traffic
traversing beyond and between the multiple clouds should always be con-
sidered to reside in this security domain and is therefore untrusted.

Typically used for instance-to-instance traffic within a single data center,
the guest security domain handles compute data generated by instances
on the cloud but not services that support the operation of the cloud such
as API calls. Public cloud providers that are used in a hybrid cloud configu-
ration which an organization does not control and private cloud providers
who do not have stringent controls on instance use or who allow unre-
stricted Internet access to instances should consider this domain to be un-
trusted. Private cloud providers may consider this network as internal and
therefore trusted only if there are controls in place to assert that instances
and tenants are trusted.

Architecture Guide September 13, 2014 current

167

The management security domain is where services interact. Sometimes
referred to as the "control plane", the networks in this domain transport
confidential data such as configuration parameters, user names, and pass-
words. In deployments behind an organization's firewall, this domain is
considered trusted. In a public cloud model which could be part of an ar-
chitecture, this would have to be assessed with the public cloud provider
to understand the controls in place.

The data security domain is concerned primarily with information pertain-
ing to the storage services within OpenStack. Much of the data that cross-
es this network has high integrity and confidentiality requirements and de-
pending on the type of deployment there may also be strong availability
requirements. The trust level of this network is heavily dependent on de-
ployment decisions and as such this is not assigned a default level of trust.

Consideration must be taken when managing the users of the system,
whether operating or utilizing public or private clouds. The identity service
allows for LDAP to be part of the authentication process. Including such
systems in your OpenStack deployments may ease user management if in-
tegrating into existing systems. Be mindful when utilizing 3rd party clouds
to explore authentication options applicable to the installation to help
manage and keep user authentication consistent.

Due to the process of passing user names, passwords, and generated to-
kens between client machines and API endpoints, placing API services be-
hind hardware that performs SSL termination is strongly recommended.

Within cloud components themselves, another component that needs se-
curity scrutiny is the hypervisor. In a public cloud, organizations typically
do not have control over the choice of hypervisor. (Amazon uses its own
particular version of Xen, for example.) In some cases, hypervisors may
be vulnerable to a type of attack called "hypervisor breakout" if they are
not properly secured. Hypervisor breakout describes the event of a com-
promised or malicious instance breaking out of the resource controls of
the hypervisor and gaining access to the bare metal operating system and
hardware resources.

If the security of instances is not considered important, there may not be
an issue. In most cases, however, enterprises need to avoid this kind of vul-
nerability, and the only way to do that is to avoid a situation in which the
instances are running on a public cloud. That does not mean that there is
a need to own all of the infrastructure on which an OpenStack installation
operates; it suggests avoiding situations in which hardware may be shared
with others.

Architecture Guide September 13, 2014 current

168

There are other services worth considering that provide a bare metal in-
stance instead of a cloud. In other cases, it is possible to replicate a second
private cloud by integrating with a private Cloud-as-a-Service deployment,
in which an organization does not buy hardware, but also does not share
it with other tenants. It is also possible use a provider that hosts a bare-
metal "public" cloud instance for which the hardware is dedicated only to
one customer, or a provider that offers private Cloud-as-a-Service.

Finally, it is important to realize that each cloud implements services differ-
ently. What keeps data secure in one cloud may not do the same in anoth-
er. Be sure to know the security requirements of every cloud that handles
the organization's data or workloads.

More information on OpenStack Security can be found in the OpenStack
Security Guide.

Utilization

When it comes to utilization, it is important that the CMP understands
what workloads are running, where they are running, and their preferred
utilizations. For example, in most cases it is desirable to run as many work-
loads internally as possible, utilizing other resources only when necessary.
On the other hand, situations exist in which the opposite is true. The inter-
nal cloud may only be for development and stressing it is undesirable. In
most cases, a cost model of various scenarios helps with this decision, how-
ever this analysis is heavily influenced by internal priorities. The important
thing is the ability to efficiently make those decisions on a programmatic
basis.

The Telemetry module (ceilometer) is designed to provide information on
the usage of various OpenStack components. There are two limitations
to consider: first, if there is to be a large amount of data (for example,
if monitoring a large cloud, or a very active one) it is desirable to use a
NoSQL back end for Ceilometer, such as MongoDB. Second, when connect-
ing to a non-OpenStack cloud, there will need to be a way to monitor that
usage and to provide that monitoring data back to the CMP.

Performance

Performance is of primary importance in the design of a cloud. When it
comes to a hybrid cloud deployment, many of the same issues for multi-site
deployments apply, such as network latency between sites. It is also impor-
tant to think about the speed at which a workload can be spun up in an-
other cloud, and what can be done to reduce the time necessary to accom-

http://docs.openstack.org/security-guide
http://docs.openstack.org/security-guide

Architecture Guide September 13, 2014 current

169

plish that task. That may mean moving data closer to applications, or con-
versely, applications closer to the data they process. It may mean grouping
functionality so that connections that require low latency take place over
a single cloud rather than spanning clouds. That may also mean ensuring
that the CMP has the intelligence to know which cloud can most efficiently
run which types of workloads.

As with utilization, native OpenStack tools are available to assist. Ceilome-
ter can measure performance and, if necessary, the Orchestration module
can be used to react to changes in demand by spinning up more resources.
It is important to note, however, that Orchestration requires special con-
figurations in the client to enable functioning with solution offerings from
Amazon Web Services. When dealing with other types of clouds, it is neces-
sary to rely on the features of the CMP.

Components

The number and types of native OpenStack components that are available
for use is dependent on whether the deployment is exclusively an Open-
Stack cloud or not. If so, all of the OpenStack components will be available
for use, and in many ways the issues that need to be considered will be
similar to those that need to be considered for a multi-site deployment.

That said, in any situation in which more than one cloud is being used, at
least four OpenStack tools will be considered:

• OpenStack Compute (nova): Regardless of deployment location, hyper-
visor choice has a direct effect on how difficult it is to integrate with one
or more additional clouds. For example, integrating a Hyper-V based
OpenStack cloud with Azure will have less compatibility issues than if
KVM is used.

• Networking: Whether OpenStack Networking (neutron) or legacy net-
working (nova-network) is used, the network is one place where inte-
gration capabilities need to be understood in order to connect between
clouds.

• Telemetry module (ceilometer): Use of Telemetery depends, in large
part, on what the other parts of the cloud are using.

• Orchestration module (heat): Similarly, Orchestration can be a valu-
able tool in orchestrating tasks a CMP decides are necessary in an Open-
Stack-based cloud.

Architecture Guide September 13, 2014 current

170

Special considerations

Hybrid cloud deployments also involve two more issues that are not com-
mon in other situations:

Image portability: Note that, as of the Icehouse release, there is no single
common image format that is usable by all clouds. This means that images
will need to be converted or recreated when porting between clouds. To
make things simpler, launch the smallest and simplest images feasible, in-
stalling only what is necessary preferably using a deployment manager
such as Chef or Puppet. That means not to use golden images for speeding
up the process, however if the same images are being repeatedly deployed
it may make more sense to utilize this technique instead of provisioning
applications on lighter images each time.

API differences: The most profound issue that cannot be avoided when us-
ing a hybrid cloud deployment with more than just OpenStack (or with dif-
ferent versions of OpenStack) is that the APIs needed to perform certain
functions are different. The CMP needs to know how to handle all neces-
sary versions. To get around this issue, some implementers build portals
to achieve a hybrid cloud environment, but a heavily developer-focused
organization will get more use out of a hybrid cloud broker SDK such as
jClouds.

Operational considerations
Hybrid cloud deployments present complex operational challenges. There
are several factors to consider that affect the way each cloud is deployed
and how users and operators will interact with each cloud. Not every cloud
provider implements infrastructure components the same way which may
lead to incompatible interactions with workloads or a specific Cloud Man-
agement Platform (CMP). Different cloud providers may also offer differ-
ent levels of integration with competing cloud offerings.

When selecting a CMP, one of the most important aspects to consider is
monitoring. Gaining valuable insight into each cloud is critical to gaining a
holistic view of all involved clouds. In choosing an existing CMP, determin-
ing whether it supports monitoring of all the clouds involved or if compati-
ble APIs are available which can be queried for the necessary information,
is vital. Once all the information about each cloud can be gathered and
stored in a searchable database, proper actions can be taken on that data
offline so workloads will not be impacted.

Architecture Guide September 13, 2014 current

171

Agility

Implementing a hybrid cloud solution can provide application availability
across disparate cloud environments and technologies. This availability en-
ables the deployment to survive a complete disaster in any single cloud en-
vironment. Each cloud should provide the means to quickly spin up new in-
stances in the case of capacity issues or complete unavailability of a single
cloud installation.

Application readiness

It is important to understand the type of application workloads that will
be deployed across the hybrid cloud environment. Enterprise workloads
that depend on the underlying infrastructure for availability are not de-
signed to run on OpenStack. Although these types of applications can run
on an OpenStack cloud, if the application is not able to tolerate infrastruc-
ture failures, it is likely to require significant operator intervention to recov-
er. Cloud workloads, however, are designed with fault tolerance in mind
and the SLA of the application is not tied to the underlying infrastructure.
Ideally, cloud applications will be designed to recover when entire racks
and even data centers full of infrastructure experience an outage.

Upgrades

OpenStack is a complex and constantly evolving collection of software. Up-
grades may be performed to one or more of the cloud environments in-
volved. If a public cloud is involved in the deployment, predicting upgrades
may not be possible. Be sure to examine the advertised SLA for any public
cloud provider being used. Note that at massive scale, even when dealing
with a cloud that offers an SLA with a high percentage of uptime, work-
loads must be able to recover at short notice.

Similarly, when upgrading private cloud deployments, care must be taken
to minimize disruption by making incremental changes and providing a fa-
cility to either rollback or continue to roll forward when using a continuous
delivery model.

Another consideration is upgrades to the CMP which may need to be com-
pleted in coordination with any of the hybrid cloud upgrades. This may be
necessary whenever API changes are made in one of the cloud solutions in
use to support the new functionality.

Architecture Guide September 13, 2014 current

172

Network Operation Center

When planning the Network Operation Center (NOC) for a hybrid cloud
environment, it is important to recognize where control over each piece of
infrastructure resides. If a significant portion of the cloud is on externally
managed systems, be prepared for situations in which it may not be pos-
sible to make changes at all or at the most convenient time. Additionally,
situations of conflict may arise in which multiple providers have differing
points of view on the way infrastructure must be managed and exposed.
This can lead to delays in root cause and analysis where each insists the
blame lies with the other provider.

It is important to ensure that the structure put in place enables connection
of the networking of both clouds to form an integrated system, keeping
in mind the state of handoffs. These handoffs must both be as reliable as
possible and include as little latency as possible to ensure the best perfor-
mance of the overall system.

Maintainability

Operating hybrid clouds is a situation in which there is a greater reliance
on third party systems and processes. As a result of a lack of control of var-
ious pieces of a hybrid cloud environment, it is not necessarily possible to
guarantee proper maintenance of the overall system. Instead, the user
must be prepared to abandon workloads and spin them up again in an im-
proved state. Having a hybrid cloud deployment does, however, provide
agility for these situations by allowing the migration of workloads to alter-
native clouds in response to cloud-specific issues.

Architecture
Once business and application requirements have been defined, the first
step for designing a hybrid cloud solution is to map out the dependencies
between the expected workloads and the diverse cloud infrastructures
that need to support them. By mapping the applications and the targeted
cloud environments, you can architect a solution that enables the broad-
est compatibility between cloud platforms and minimizes the need to cre-
ate workarounds and processes to fill identified gaps. Note the evaluation
of the monitoring and orchestration APIs available on each cloud platform
and the relative levels of support for them in the chosen cloud manage-
ment platform.

Architecture Guide September 13, 2014 current

173

Architecture Guide September 13, 2014 current

174

Image portability

The majority of cloud workloads currently run on instances using hypervi-
sor technologies such as KVM, Xen, or ESXi. The challenge is that each of
these hypervisors use an image format that is mostly, or not at all, compat-
ible with one another. In a private or hybrid cloud solution, this can be mit-
igated by standardizing on the same hypervisor and instance image for-
mat but this is not always feasible. This is particularly evident if one of the
clouds in the architecture is a public cloud that is outside of the control of
the designers.

There are conversion tools such as virt-v2v (http://libguestfs.org/virt-v2)
and virt-edit (http://libguestfs.org/virt-edit.1.html) that can be used in
those scenarios but they are often not suitable beyond very basic cloud in-
stance specifications. An alternative is to build a thin operating system im-
age as the base for new instances. This facilitates rapid creation of cloud
instances using cloud orchestration or configuration management tools,
driven by the CMP, for more specific templating. Another more expensive
option is to use a commercial image migration tool. The issue of image
portability is not just for a one time migration. If the intention is to use the
multiple cloud for disaster recovery, application diversity or high availabili-
ty, the images and instances are likely to be moved between the different
cloud platforms regularly.

Upper-layer services

Many clouds offer complementary services over and above the basic com-
pute, network, and storage components. These additional services are of-
ten used to simplify the deployment and management of applications on a
cloud platform.

Consideration is required to be given to moving workloads that may have
upper-layer service dependencies on the source cloud platform to a desti-
nation cloud platform that may not have a comparable service. Converse-
ly, the user can implement it in a different way or by using a different tech-
nology. For example, moving an application that uses a NoSQL database
service such as MongoDB that is delivered as a service on the source cloud,
to a destination cloud that does not offer that service or may only use a re-
lational database such as MySQL, could cause difficulties in maintaining the
application between the platforms.

There are a number of options that might be appropriate for the hybrid
cloud use case:

http://libguestfs.org/virt-v2v
http://libguestfs.org/virt-edit.1.html

Architecture Guide September 13, 2014 current

175

• Create a baseline of upper-layer services that are implemented across all
of the cloud platforms. For platforms that do not support a given ser-
vice, create a service on top of that platform and apply it to the work-
loads as they are launched on that cloud. For example, through the
Database Service for OpenStack (trove), OpenStack supports MySQL
as a service but not NoSQL databases in production. To either move
from or run alongside AWS, a NoSQL workload must use an automation
tool, such as the Orchestration module (heat), to recreate the NoSQL
database on top of OpenStack.

• Deploy a Platform-as-a-Service (PaaS) technology such as Cloud Foundry
or OpenShift that abstracts the upper-layer services from the underlying
cloud platform. The unit of application deployment and migration is the
PaaS and leverages the services of the PaaS and only consumes the base
infrastructure services of the cloud platform. The downside to this ap-
proach is that the PaaS itself then potentially becomes a source of lock-
in.

• Use only the base infrastructure services that are common across all
cloud platforms. Use automation tools to create the required upper-lay-
er services which are portable across all cloud platforms. For example, in-
stead of using any database services that are inherent in the cloud plat-
forms, launch cloud instances and deploy the databases on to those in-
stances using scripts or various configuration and application deploy-
ment tools.

Network services

Network services functionality is a significant barrier for multiple cloud ar-
chitectures. It could be an important factor to assess when choosing a CMP
and cloud provider. Considerations are: functionality, security, scalabili-
ty and high availability (HA). Verification and ongoing testing of the criti-
cal features of the cloud endpoint used by the architecture are important
tasks.

• Once the network functionality framework has been decided, a mini-
mum functionality test should be designed to confirm that the function-
ality is in fact compatible. This will ensure testing and functionality per-
sists during and after upgrades. Note that over time, the diverse cloud
platforms are likely to de-synchronize if care is not taken to maintain
compatibility. This is a particular issue with APIs.

• Scalability across multiple cloud providers may dictate which underlying
network framework is chosen for the different cloud providers. It is im-

Architecture Guide September 13, 2014 current

176

portant to have the network API functions presented and to verify that
the desired functionality persists across all chosen cloud endpoint.

• High availability (HA) implementations vary in functionality and design.
Examples of some common methods are active-hot-standby, active-pas-
sive and active-active. High availability and a test framework need to be
developed to insure that the functionality and limitations are well under-
stood.

• Security considerations, such as how data is secured between client and
endpoint and any traffic that traverses the multiple clouds, from eaves-
dropping to DoS activities must be addressed. Business and regulatory
requirements dictate the security approach that needs to be taken.

Data

Replication has been the traditional method for protecting object store
implementations. A variety of different implementations have existed in
storage architectures. Examples of this are both synchronous and asyn-
chronous mirroring. Most object stores and back-end storage systems have
a method for replication that can be implemented at the storage subsys-
tem layer. Object stores also have implemented replication techniques that
can be tailored to fit a clouds needs. An organization must find the right
balance between data integrity and data availability. Replication strategy
may also influence the disaster recovery methods implemented.

Replication across different racks, data centers and geographical regions
has led to the increased focus of determining and ensuring data locality.
The ability to guarantee data is accessed from the nearest or fastest stor-
age can be necessary for applications to perform well. Examples of this are
Hadoop running in a cloud. The user either runs with a native HDFS, when
applicable, or on a separate parallel file system such as those provided by
Hitachi and IBM. Special consideration should be taken when running em-
bedded object store methods to not cause extra data replication, which
can create unnecessary performance issues. Another example of ensuring
data locality is by using Ceph. Ceph has a data container abstraction called
a pool. Pools can be created with replicas or erasure code. Replica based
pools can also have a rule set defined to have data written to a “local” set
of hardware which would be the primary access and modification point.

Prescriptive examples
Multi-cloud environments are typically created to facilitate these use cases:

Architecture Guide September 13, 2014 current

177

• Bursting workloads from private to public OpenStack clouds

• Bursting workloads from private to public non-OpenStack clouds

• High availability across clouds (for technical diversity)

Examples of environments that address each of these use cases will be dis-
cussed in this chapter.

Company A's data center is running dangerously low on capacity. The op-
tion of expanding the data center will not be possible in the foreseeable
future. In order to accommodate the continuously growing need for de-
velopment resources in the organization, the decision was make use of re-
source in the public cloud.

The company has an internal cloud management platform that will direct
requests to the appropriate cloud, depending on the currently local capaci-
ty.

This is a custom in-house application that has been written for this specific
purpose.

An example for such a solution is described in the figure below.

Architecture Guide September 13, 2014 current

178

Architecture Guide September 13, 2014 current

179

This example shows two clouds, with a Cloud Management Platform
(CMP) connecting them. This guide does not attempt to cover a specific
CMP, but describes how workloads are typically orchestrated using the Or-
chestration and Telemetry services as shown in the diagram above. It is al-
so possibly to connect directly to the other OpenStack APIs with a CMP.

The private cloud is an OpenStack cloud with one or more controllers and
one or more compute nodes. It includes metering provided by the Teleme-
try module. As load increases Telemetry captures this and the informa-
tion is in turn processed by the CMP. As long as capacity is available, the
CMP uses the OpenStack API to call the Orchestration service to create in-
stances on the private cloud in response to user requests. When capacity is
not available on the private cloud, the CMP issues a request to the Orches-
tration service API of the public cloud to create the instance on the public
cloud.

In this example, the whole deployment was not directed to an external
public cloud because of the company's fear of lack of resource control and
security concerns over control and increased operational expense.

In addition, CompanyA has already established a data center with a sub-
stantial amount of hardware, and migrating all the workloads out to a
public cloud was not feasible.

Bursting to a public non-OpenStack cloud

Another common scenario is bursting workloads from the private cloud in-
to a non-OpenStack public cloud such as Amazon Web Services (AWS) to
take advantage of additional capacity and scale applications as needed.

For an OpenStack-to-AWS hybrid cloud, the architecture looks similar to
the figure below:

Architecture Guide September 13, 2014 current

180

Architecture Guide September 13, 2014 current

181

In this scenario company A has an additional requirement in that the de-
velopers were already using AWS for some of their work and did not want
to change the cloud provider. Primarily due to excessive overhead with
network firewall rules that needed to be created and corporate financial
procedures that required entering into an agreement with a new provider.

As long as the CMP is capable of connecting an external cloud provider
with the appropriate API, the workflow process will remain the same as
the previous scenario. The actions the CMP takes such as monitoring load,
creating new instances, and so forth are the same, but they would be per-
formed in the public cloud using the appropriate API calls. For example,
if the public cloud is Amazon Web Services, the CMP would use the EC2
API to create a new instance and assign an Elastic IP. That IP can then be
added to HAProxy in the private cloud, just as it was before. The CMP can
also reference AWS-specific tools such as CloudWatch and CloudForma-
tion.

Several open source tool kits for building CMPs are now available that can
handle this kind of translation, including ManageIQ, jClouds, and Jump-
Gate.

High availability/disaster recovery

CompanyA has a requirement to be able to recover from catastrophic fail-
ure in their local data center. Some of the workloads currently in use are
running on their private OpenStack cloud. Protecting the data involves
block storage, object storage, and a database. The architecture is designed
to support the failure of large components of the system, yet ensuring that
the system will continue to deliver services. While the services remain avail-
able to users, the failed components are restored in the background based
on standard best practice DR policies. To achieve the objectives, data is
replicated to a second cloud, in a geographically distant location. The logi-
cal diagram of the system is described in the figure below:

Architecture Guide September 13, 2014 current

182

This example includes two private OpenStack clouds connected with a
Cloud Management Platform (CMP). The source cloud, OpenStack Cloud
1, includes a controller and at least one instance running MySQL. It also
includes at least one block storage volume and one object storage vol-
ume so that the data is available to the users at all times. The details of the
method for protecting each of these sources of data differs.

Architecture Guide September 13, 2014 current

183

The object storage relies on the replication capabilities of the object stor-
age provider. OpenStack Object Storage is enabled so that it creates geo-
graphically separated replicas that take advantage of this feature. It is con-
figured so that at least one replica exists in each cloud. In order to make
this work a single array spanning both clouds is configured with OpenStack
Identity that uses Federated Identity and talks to both clouds, communi-
cating with OpenStack Object Storage through the Swift proxy.

For block storage, the replication is a little more difficult, and involves tools
outside of OpenStack itself. The OpenStack Block Storage volume is not set
as the drive itself but as a logical object that points to a physical back end.
The disaster recovery is configured for Block Storage for synchronous back-
up for the highest level of data protection, but asynchronous backup could
have been set as an alternative that is not as latency sensitive. For asyn-
chronous backup, the Block Storage API makes it possible to export the da-
ta and also the metadata of a particular volume, so that it can be moved
and replicated elsewhere. More information can be found here: https://
blueprints.launchpad.net/cinder/+spec/cinder-backup-volume-metada-
ta-support.

The synchronous backups create an identical volume in both clouds and
chooses the appropriate flavor so that each cloud has an identical back
end. This was done by creating volumes through the CMP, because the
CMP knows to create identical volumes in both clouds. Once this is config-
ured, a solution, involving DRDB, is used to synchronize the actual physical
drives.

The database component is backed up using synchronous backups. MySQL
does not support geographically diverse replication, so disaster recovery is
provided by replicating the file itself. As it is not possible to use object stor-
age as the back end of a database like MySQL, Swift replication was not an
option. It was decided not to store the data on another geo-tiered storage
system, such as Ceph, as block storage. This would have given another lay-
er of protection. Another option would have been to store the database
on an OpenStack Block Storage volume and backing it up just as any other
block storage.

https://blueprints.launchpad.net/cinder/+spec/cinder-backup-volume-metadata-support
https://blueprints.launchpad.net/cinder/+spec/cinder-backup-volume-metadata-support
https://blueprints.launchpad.net/cinder/+spec/cinder-backup-volume-metadata-support

Architecture Guide September 13, 2014 current

185

8. Massively scalable

Table of Contents
User requirements .. 186
Technical considerations ... 189
Operational considerations ... 192

A massively scalable architecture is defined as a cloud implementation that
is either a very large deployment, such as one that would be built by a
commercial service provider, or one that has the capability to support us-
er requests for large amounts of cloud resources. An example would be an
infrastructure in which requests to service 500 instances or more at a time
is not uncommon. In a massively scalable infrastructure, such a request is
fulfilled without completely consuming all of the available cloud infrastruc-
ture resources. While the high capital cost of implementing such a cloud ar-
chitecture makes it cost prohibitive and is only spearheaded by few organi-
zations, many organizations are planning for massive scalability moving to-
ward the future.

A massively scalable OpenStack cloud design presents a unique set of chal-
lenges and considerations. For the most part it is similar to a general pur-
pose cloud architecture, as it is built to address a non-specific range of po-
tential use cases or functions. Typically, it is rare that massively scalable
clouds are designed or specialized for particular workloads. Like the gener-
al purpose cloud, the massively scalable cloud is most often built as a plat-
form for a variety of workloads. Massively scalable OpenStack clouds are
generally built as commercial public cloud offerings since single private or-
ganizations rarely have the resources or need for this scale.

Services provided by a massively scalable OpenStack cloud will include:

• Virtual-machine disk image library

• Raw block storage

• File or object storage

• Firewall functionality

• Load balancing functionality

Architecture Guide September 13, 2014 current

186

• Private (non-routable) and public (floating) IP addresses

• Virtualized network topologies

• Software bundles

• Virtual compute resources

Like a general purpose cloud, the instances deployed in a massively scal-
able OpenStack cloud will not necessarily use any specific aspect of the
cloud offering (compute, network, or storage). As the cloud grows in scale,
the scale of the number of workloads can cause stress on all of the cloud
components. Additional stresses are introduced to supporting infrastruc-
ture including databases and message brokers. The architecture design for
such a cloud must account for these performance pressures without nega-
tively impacting user experience.

User requirements
More so than other scenarios, defining user requirements for a massively
scalable OpenStack design architecture dictates approaching the design
from two different, yet sometimes opposing, perspectives: the cloud us-
er, and the cloud operator. The expectations and perceptions of the con-
sumption and management of resources of a massively scalable OpenStack
cloud from the user point of view is distinctly different from that of the
cloud operator.

Many jurisdictions have legislative and regulatory requirements governing
the storage and management of data in cloud environments. Common ar-
eas of regulation include:

• Data retention policies ensuring storage of persistent data and records
management to meet data archival requirements.

• Data ownership policies governing the possession and responsibility for
data.

• Data sovereignty policies governing the storage of data in foreign coun-
tries or otherwise separate jurisdictions.

• Data compliance policies governing certain types of information needs
to reside in certain locations due to regular issues and, more important-
ly, cannot reside in other locations for the same reason.

Examples of such legal frameworks include the data protection framework
of the European Union and the requirements of the Financial Industry Reg-

http://ec.europa.eu/justice/data-protection/
http://www.finra.org/Industry/Regulation/FINRARules/

Architecture Guide September 13, 2014 current

187

ulatory Authority in the United States. Consult a local regulatory body for
more information.

User requirements
Massively scalable OpenStack clouds have the following user requirements:

• The cloud user expects repeatable, dependable, and deterministic pro-
cesses for launching and deploying cloud resources. This could be deliv-
ered through a web-based interface or publicly available API endpoints.
All appropriate options for requesting cloud resources need to be avail-
able through some type of user interface, a command-line interface
(CLI), or API endpoints.

• Cloud users expect a fully self-service and on-demand consumption mod-
el. When an OpenStack cloud reaches the "massively scalable" size, it
means it is expected to be consumed "as a service" in each and every
way.

• For a user of a massively scalable OpenStack public cloud, there will be
no expectations for control over security, performance, or availability.
Only SLAs related to uptime of API services are expected, and very basic
SLAs expected of services offered. The user understands it is his or her
responsibility to address these issues on their own. The exception to this
expectation is the rare case of a massively scalable cloud infrastructure
built for a private or government organization that has specific require-
ments.

As might be expected, the cloud user requirements or expectations that
determine the design are all focused on the consumption model. The user
expects to be able to easily consume cloud resources in an automated and
deterministic way, without any need for knowledge of the capacity, scala-
bility, or other attributes of the cloud's underlying infrastructure.

Operator requirements
Whereas the cloud user should be completely unaware of the underlying
infrastructure of the cloud and its attributes, the operator must be able to
build and support the infrastructure, as well as how it needs to operate at
scale. This presents a very demanding set of requirements for building such
a cloud from the operator's perspective:

• First and foremost, everything must be capable of automation. From the
deployment of new hardware, compute hardware, storage hardware,
or networking hardware, to the installation and configuration of the

http://www.finra.org/Industry/Regulation/FINRARules/

Architecture Guide September 13, 2014 current

188

supporting software, everything must be capable of being automated.
Manual processes will not suffice in a massively scalable OpenStack de-
sign architecture.

• The cloud operator requires that capital expenditure (CapEx) is mini-
mized at all layers of the stack. Operators of massively scalable Open-
Stack clouds require the use of dependable commodity hardware and
freely available open source software components to reduce deploy-
ment costs and operational expenses. Initiatives like OpenCompute
(more information available at http://www.opencompute.org) provide
additional information and pointers. To cut costs, many operators sac-
rifice redundancy. For example, redundant power supplies, redundant
network connections, and redundant rack switches.

• Companies operating a massively scalable OpenStack cloud also require
that operational expenditures (OpEx) be minimized as much as possible.
It is recommended that cloud-optimized hardware is a good approach
when managing operational overhead. Some of the factors that need
to be considered include power, cooling, and the physical design of the
chassis. It is possible to customize the hardware and systems so they are
optimized for this type of workload because of the scale of these imple-
mentations.

• Massively scalable OpenStack clouds require extensive metering and
monitoring functionality to maximize the operational efficiency by keep-
ing the operator informed about the status and state of the infrastruc-
ture. This includes full scale metering of the hardware and software sta-
tus. A corresponding framework of logging and alerting is also required
to store and allow operations to act upon the metrics provided by the
metering and monitoring solution(s). The cloud operator also needs a
solution that uses the data provided by the metering and monitoring so-
lution to provide capacity planning and capacity trending analysis.

• A massively scalable OpenStack cloud will be a multi-site cloud. There-
fore, the user-operator requirements for a multi-site OpenStack architec-
ture design are also applicable here. This includes various legal require-
ments for data storage, data placement, and data retention; other ju-
risdictional legal or compliance requirements; image consistency-avail-
ability; storage replication and availability (both block and file/object
storage); and authentication, authorization, and auditing (AAA), just to
name a few. Refer to the Chapter 6, “Multi-site” [135] for more details
on requirements and considerations for multi-site OpenStack clouds.

• Considerations around physical facilities such as space, floor weight, rack
height and type, environmental considerations, power usage and power

http://www.opencompute.org

Architecture Guide September 13, 2014 current

189

usage efficiency (PUE), and physical security must also be addressed by
the design architecture of a massively scalable OpenStack cloud.

Technical considerations
Converting an existing OpenStack environment that was designed for
a different purpose to be massively scalable is a formidable task. When
building a massively scalable environment from the ground up, make sure
the initial deployment is built with the same principles and choices that ap-
ply as the environment grows. For example, a good approach is to deploy
the first site as a multi-site environment. This allows the same deployment
and segregation methods to be used as the environment grows to sepa-
rate locations across dedicated links or wide area networks. In a hyperscale
cloud, scale trumps redundancy. Applications must be modified with this in
mind, relying on the scale and homogeneity of the environment to provide
reliability rather than redundant infrastructure provided by non-commodi-
ty hardware solutions.

Infrastructure segregation

Fortunately, OpenStack services are designed to support massive horizon-
tal scale. Be aware that this is not the case for the entire supporting infras-
tructure. This is particularly a problem for the database management sys-
tems and message queues used by the various OpenStack services for data
storage and remote procedure call communications.

Traditional clustering techniques are typically used to provide high avail-
ability and some additional scale for these environments. In the quest for
massive scale, however, additional steps need to be taken to relieve the
performance pressure on these components to prevent them from nega-
tively impacting the overall performance of the environment. It is impor-
tant to make sure that all the components are in balance so that, if and
when the massively scalable environment fails, all the components are at,
or close to, maximum capacity.

Regions are used to segregate completely independent installations linked
only by an Identity and Dashboard (optional) installation. Services are in-
stalled with separate API endpoints for each region, complete with sepa-
rate database and queue installations. This exposes some awareness of the
environment's fault domains to users and gives them the ability to ensure
some degree of application resiliency while also imposing the requirement
to specify which region their actions must be applied to.

Architecture Guide September 13, 2014 current

190

Environments operating at massive scale typically need their regions or
sites subdivided further without exposing the requirement to specify the
failure domain to the user. This provides the ability to further divide the in-
stallation into failure domains while also providing a logical unit for main-
tenance and the addition of new hardware. At hyperscale, instead of
adding single compute nodes, administrators may add entire racks or even
groups of racks at a time with each new addition of nodes exposed via one
of the segregation concepts mentioned herein.

Cells provide the ability to subdivide the compute portion of an OpenStack
installation, including regions, while still exposing a single endpoint. In
each region an API cell is created along with a number of compute cells
where the workloads actually run. Each cell gets its own database and
message queue setup (ideally clustered), providing the ability to subdivide
the load on these subsystems, improving overall performance.

Within each compute cell a complete compute installation is provided,
complete with full database and queue installations, scheduler, conductor,
and multiple compute hosts. The cells scheduler handles placement of us-
er requests from the single API endpoint to a specific cell from those avail-
able. The normal filter scheduler then handles placement within the cell.

The downside of using cells is that they are not well supported by any of
the OpenStack services other than Compute. Also, they do not adequate-
ly support some relatively standard OpenStack functionality such as secu-
rity groups and host aggregates. Due to their relative newness and spe-
cialized use, they receive relatively little testing in the OpenStack gate. De-
spite these issues, however, cells are used in some very well known Open-
Stack installations operating at massive scale including those at CERN and
Rackspace.

Host aggregates

Host aggregates enable partitioning of OpenStack Compute deployments
into logical groups for load balancing and instance distribution. Host ag-
gregates may also be used to further partition an availability zone. Con-
sider a cloud which might use host aggregates to partition an availabili-
ty zone into groups of hosts that either share common resources, such as
storage and network, or have a special property, such as trusted comput-
ing hardware. Host aggregates are not explicitly user-targetable; instead
they are implicitly targeted via the selection of instance flavors with extra
specifications that map to host aggregate metadata.

Architecture Guide September 13, 2014 current

191

Availability zones

Availability zones provide another mechanism for subdividing an installa-
tion or region. They are, in effect, host aggregates that are exposed for
(optional) explicit targeting by users.

Unlike cells, they do not have their own database server or queue broker
but simply represent an arbitrary grouping of compute nodes. Typically,
grouping of nodes into availability zones is based on a shared failure do-
main based on a physical characteristic such as a shared power source,
physical network connection, and so on. Availability zones are exposed to
the user because they can be targeted; however, users are not required
to target them. An alternate approach is for the operator to set a default
availability zone to schedule instances to other than the default availability
zone of nova.

Segregation example

In this example the cloud is divided into two regions, one for each site,
with two availability zones in each based on the power layout of the data
centers. A number of host aggregates have also been defined to allow tar-
geting of virtual machine instances using flavors, that require special capa-
bilities shared by the target hosts such as SSDs, 10 GbE networks, or GPU
cards.

Architecture Guide September 13, 2014 current

192

Operational considerations
In order to run at massive scale, it is important to plan on the automation
of as many of the operational processes as possible. Automation includes
the configuration of provisioning, monitoring and alerting systems. Part of
the automation process includes the capability to determine when human
intervention is required and who should act. The objective is to increase
the ratio of operational staff to running systems as much as possible to re-
duce maintenance costs. In a massively scaled environment, it is impossible
for staff to give each system individual care.

Architecture Guide September 13, 2014 current

193

Configuration management tools such as Puppet or Chef allow operations
staff to categorize systems into groups based on their role and thus create
configurations and system states that are enforced through the provision-
ing system. Systems that fall out of the defined state due to errors or fail-
ures are quickly removed from the pool of active nodes and replaced.

At large scale the resource cost of diagnosing individual systems that have
failed is far greater than the cost of replacement. It is more economical to
immediately replace the system with a new system that can be provisioned
and configured automatically and quickly brought back into the pool of
active nodes. By automating tasks that are labor-intensive, repetitive, and
critical to operations with automation, cloud operations teams are able
to be managed more efficiently because fewer resources are needed for
these babysitting tasks. Administrators are then free to tackle tasks that
cannot be easily automated and have longer-term impacts on the business
such as capacity planning.

The bleeding edge

Running OpenStack at massive scale requires striking a balance between
stability and features. For example, it might be tempting to run an older
stable release branch of OpenStack to make deployments easier. However,
when running at massive scale, known issues that may be of some concern
or only have minimal impact in smaller deployments could become pain
points at massive scale. If the issue is well known, in many cases, it may be
resolved in more recent releases. The OpenStack community can help re-
solve any issues reported by the applying the collective expertise of the
OpenStack developers.

When issues crop up, the number of organizations running at a similar
scale is a relatively tiny proportion of the OpenStack community, there-
fore it is important to share these issues with the community and be a vo-
cal advocate for resolving them. Some issues only manifest when operating
at large scale and the number of organizations able to duplicate and vali-
date an issue is small, so it will be important to document and dedicate re-
sources to their resolution.

In some cases, the resolution to the problem is ultimately to deploy a more
recent version of OpenStack. Alternatively, when the issue needs to be re-
solved in a production environment where rebuilding the entire environ-
ment is not an option, it is possible to deploy just the more recent separate
underlying components required to resolve issues or gain significant per-
formance improvements. At first glance, this could be perceived as poten-

Architecture Guide September 13, 2014 current

194

tially exposing the deployment to increased risk to and instability. Howev-
er, in many cases it could be an issue that has not been discovered yet.

It is advisable to cultivate a development and operations organization
that is responsible for creating desired features, diagnose and resolve is-
sues, and also build the infrastructure for large scale continuous integra-
tion tests and continuous deployment. This helps catch bugs early and
make deployments quicker and less painful. In addition to development
resources, the recruitment of experts in the fields of message queues,
databases, distributed systems, and networking, cloud and storage is also
advisable.

Growth and capacity planning

An important consideration in running at massive scale is projecting
growth and utilization trends to plan capital expenditures for the near
and long term. Utilization metrics for compute, network, and storage as
well as a historical record of these metrics are required. While securing ma-
jor anchor tenants can lead to rapid jumps in the utilization rates of all re-
sources, the steady adoption of the cloud inside an organizations or by
public consumers in a public offering will also create a steady trend of in-
creased utilization.

Skills and training

Projecting growth for storage, networking, and compute is only one as-
pect of a growth plan for running OpenStack at massive scale. Growing
and nurturing development and operational staff is an additional consider-
ation. Sending team members to OpenStack conferences, meetup events,
and encouraging active participation in the mailing lists and committees is
a very important way to maintain skills and forge relationships in the com-
munity. A list of OpenStack training providers in the marketplace can be
found here: http://www.openstack.org/marketplace/training/.

http://www.openstack.org/marketplace/training/

Architecture Guide September 13, 2014 current

195

9. Specialized cases

Table of Contents
Multi-hypervisor example ... 196
Specialized networking example ... 198
Software-defined networking ... 198
Desktop-as-a-Service ... 201
OpenStack on OpenStack ... 203
Specialized hardware ... 207

Although most OpenStack architecture designs fall into one of the seven
major scenarios outlined in other sections (compute focused, network fo-
cused, storage focused, general purpose, multi-site, hybrid cloud, and mas-
sively scalable), there are a few other use cases that are unique enough
they can't be neatly categorized into one of the other major sections. This
section discusses some of these unique use cases with some additional de-
tails and design considerations for each use case:

• Specialized Networking: This describes running networking-oriented
software that may involve reading packets directly from the wire or par-
ticipating in routing protocols.

• Software-defined networking (SDN): This use case details both running
an SDN controller from within OpenStack as well as participating in a
software-defined network.

• Desktop-as-a-Service: This is for organizations that want to run a virtual-
ized desktop environment on a cloud. This can apply to private or public
clouds.

• OpenStack on OpenStack: Some organizations are finding that it makes
technical sense to build a multi-tiered cloud by running OpenStack on
top of an OpenStack installation.

• Specialized hardware: Some highly specialized situations will require the
use of specialized hardware devices from within the OpenStack environ-
ment.

Architecture Guide September 13, 2014 current

196

Multi-hypervisor example
A financial company requires a migration of its applications from a tradi-
tional virtualized environment to an API driven, orchestrated environment.
A number of their applications have strict support requirements which lim-
it what hypervisors they are supported on, however the rest do not have
such restrictions and do not need the same features. Because of these re-
quirements, the overall target environment needs multiple hypervisors.

The current environment consists of a vSphere environment with 20
VMware ESXi hypervisors supporting 300 instances of various sizes. Ap-
proximately 50 of the instances must be run on ESXi but the rest have
more flexible requirements.

The company has decided to bring the management of the overall system
into a common platform provided by OpenStack.

The approach is to run a host aggregate consisting of KVM hypervisors for
the general purpose instances and a separate host aggregate for instances
requiring ESXi. This way, workloads that must be run on ESXi can be tar-

Architecture Guide September 13, 2014 current

197

geted at those hypervisors, but the rest can be targeted at the KVM hyper-
visors.

Images in the OpenStack Image Service have particular hypervisor meta-
data attached so that when a user requests a certain image, the instance
will spawn on the relevant aggregate. Images for ESXi are stored in VMDK
format. QEMU disk images can be converted to VMDK, VMFS Flat Disks,
which includes thin, thick, zeroed-thick, and eager-zeroed-thick. Note that
once a VMFS thin disk is exported from VMFS to a non-VMFS location,
like the OpenStack Image Service, it becomes a preallocated flat disk. This
impacts the transfer time from the OpenStack Image Service to the data
store when the full preallocated flat disk, rather than the thin disk, must
be transferred.

This example has the additional complication that, rather than being
spawned directly on a hypervisor simply by calling a specific host aggre-
gate using the metadata of the image, the VMware host aggregate com-
pute nodes communicate with vCenter which then requests that the in-
stance be scheduled to run on an ESXi hypervisor. As of the Icehouse re-
lease, this functionality requires that VMware Distributed Resource Sched-
uler (DRS) be enabled on a cluster and set to "Fully Automated".

Due to the DRS requirement, note that vSphere requires shared storage
(DRS uses vMotion, which requires shared storage). The solution uses
shared storage to provide Block Storage capabilities to the KVM instances
while also providing the storage for vSphere. The environment uses a ded-
icated data network to provide this functionality, therefore the compute
hosts should have dedicated NICs to support this dedicated traffic. vSphere
supports the use of OpenStack Block Storage to present storage from a
VMFS datastore to an instance, so the use of Block Storage in this architec-
ture supports both hypervisors.

In this case, network connectivity is provided by OpenStack Networking
with the VMware NSX plug-in driver configured. Alternatively, the sys-
tem could use legacy networking (nova-network), which is supported by
both hypervisors used in this design, but has limitations. Specifically, secu-
rity groups are not supported on vSphere with legacy networking. With
VMware NSX as part of the design, however, when a user launches an in-
stance within either of the host aggregates, the instances are attached to
appropriate network overlay-based logical networks as defined by the us-
er.

Note that care must be taken with this approach, as there are design
considerations around the OpenStack Compute integration. When using
vSphere with OpenStack, the nova-compute service that is configured to

Architecture Guide September 13, 2014 current

198

communicate with vCenter shows up as a single large hypervisor repre-
senting the entire ESXi cluster (multiple instances of nova-compute can be
run to represent multiple ESXi clusters or to connect to multiple vCenter
servers). If the process running the nova-compute service crashes, the con-
nection to that particular vCenter Server-and any ESXi clusters behind it-
are severed and it will not be possible to provision more instances on that
vCenter, despite the fact that vSphere itself could be configured for high
availability. Therefore, it is important to monitor the nova-compute service
that connects to vSphere for any disruptions.

Specialized networking example
Some applications that interact with a network require more specialized
connectivity. Applications such as a looking glass require the ability to con-
nect to a BGP peer, or route participant applications may need to join a
network at a layer 2 level.

Challenges

Connecting specialized network applications to their required resources al-
ters the design of an OpenStack installation. Installations that rely on over-
lay networks are unable to support a routing participant, and may also
block layer-2 listeners.

Possible solutions

Deploying an OpenStack installation using OpenStack Networking with a
provider network will allow direct layer-2 connectivity to an upstream net-
working device. This design provides the layer-2 connectivity required to
communicate via Intermediate System-to-Intermediate System (ISIS) pro-
tocol or to pass packets controlled via an OpenFlow controller. Using the
multiple layer-2 plug-in with an agent such as Open vSwitch would allow
a private connection through a VLAN directly to a specific port in a layer-3
device. This would allow a BGP point to point link to exist that will join the
autonomous system. Avoid using layer-3 plug-ins as they will divide the
broadcast domain and prevent router adjacencies from forming.

Software-defined networking
Software-defined networking (SDN) is the separation of the data plane
and control plane. SDN has become a popular method of managing and

Architecture Guide September 13, 2014 current

199

controlling packet flows within networks. SDN uses overlays or directly
controlled layer-2 devices to determine flow paths, and as such presents
challenges to a cloud environment. Some designers may wish to run their
controllers within an OpenStack installation. Others may wish to have their
installations participate in an SDN-controlled network.

Challenges

SDN is a relatively new concept that is not yet standardized, so SDN sys-
tems come in a variety of different implementations. Because of this, a tru-
ly prescriptive architecture is not feasible. Instead, examine the differences
between an existing or intended OpenStack design and determine where
the potential conflict and gaps can be found.

Possible solutions

If an SDN implementation requires layer-2 access because it directly manip-
ulates switches, then running an overlay network or a layer-3 agent may
not be advisable. If the controller resides within an OpenStack installation,
it may be necessary to build an ML2 plug-in and schedule the controller in-
stances to connect to tenant VLANs that then talk directly to the switch
hardware. Alternatively, depending on the external device support, use a
tunnel that terminates at the switch hardware itself.

Diagram

OpenStack hosted SDN controller:

Architecture Guide September 13, 2014 current

200

OpenStack participating in an SDN controller network:

Architecture Guide September 13, 2014 current

201

Desktop-as-a-Service
Virtual Desktop Infrastructure (VDI) is a service that hosts user desktop en-
vironments on remote servers. This application is very sensitive to network
latency and requires a high performance compute environment. Tradition-
ally these types of environments have not been put on cloud environments
because few clouds are built to support such a demanding workload that
is so exposed to end users. Recently, as cloud environments become more

Architecture Guide September 13, 2014 current

202

robust, vendors are starting to provide services that allow virtual desktops
to be hosted in the cloud. In the not too distant future, OpenStack could
be used as the underlying infrastructure to run a virtual infrastructure envi-
ronment, either in-house or in the cloud.

Challenges

Designing an infrastructure that is suitable to host virtual desktops is a very
different task to that of most virtual workloads. The infrastructure will
need to be designed, for example:

• Boot storms: What happens when hundreds or thousands of users log in
during shift changes, affects the storage design.

• The performance of the applications running in these virtual desktops

• Operating system and compatibility with the OpenStack hypervisor

Broker

The connection broker is a central component of the architecture that de-
termines which remote desktop host will be assigned or connected to the
user. The broker is often a full-blown management product allowing for
the automated deployment and provisioning of remote desktop hosts.

Possible solutions

There are a number of commercial products available today that provide
such a broker solution but nothing that is native in the OpenStack project.
Not providing a broker is also an option, but managing this manually
would not suffice as a large scale, enterprise solution.

Architecture Guide September 13, 2014 current

203

Diagram

OpenStack on OpenStack
In some cases it is necessary to run OpenStack nested on top of another
OpenStack cloud. This scenario allows for complete OpenStack cloud en-
vironments to be managed and provisioned on instances running on hy-
pervisors and servers controlled by the underlying OpenStack cloud. Public

Architecture Guide September 13, 2014 current

204

cloud providers can use this technique to effectively manage the upgrade
and maintenance process on complete OpenStack-based clouds. Develop-
ers and those testing OpenStack can also use the guidance to provision
their own OpenStack environments on available OpenStack Compute re-
sources, whether public or private.

Challenges
The network aspect of deploying a nested cloud is the most complicated
aspect of this architecture. When using VLANs, these will need to be ex-
posed to the physical ports on which the undercloud runs, as the bare met-
al cloud owns all the hardware, but they also need to be exposed to the
nested levels as well. Alternatively, network overlay technologies can be
used on the overcloud (the OpenStack cloud running on OpenStack) to
provide the required software defined networking for the deployment.

Hypervisor
A key question to address in this scenario is the decision about which ap-
proach should be taken to provide a nested hypervisor in OpenStack. This
decision influences which operating systems can be used for the deploy-
ment of the nested OpenStack deployments.

Possible solutions: deployment
Deployment of a full stack can be challenging but this difficulty can be
readily be mitigated by creating a Heat template to deploy the entire stack
or a configuration management system. Once the Heat template is creat-
ed, deploying additional stacks will be a trivial thing and can be performed
in an automated fashion.

The OpenStack-on-OpenStack project (TripleO) addresses this issue—cur-
rently, however, the project does not completely cover nested stacks. For
more information, see https://wiki.openstack.org/wiki/TripleO.

Possible solutions: hypervisor
In the case of running TripleO, the underlying OpenStack cloud deploys
the Compute nodes as bare-metal. OpenStack would then be deployed on
these Compute bare-metal servers with the appropriate hypervisor, such as
KVM.

In the case of running smaller OpenStack clouds for testing purposes, and
performance would not be a critical factor, QEMU can be utilized instead.

https://wiki.openstack.org/wiki/TripleO

Architecture Guide September 13, 2014 current

205

It is also possible to run a KVM hypervisor in an instance (see http://
davejingtian.org/2014/03/30/nested-kvm-just-for-fun/), though this is not
a supported configuration, and could be a complex solution for such a use
case.

http://davejingtian.org/2014/03/30/nested-kvm-just-for-fun/
http://davejingtian.org/2014/03/30/nested-kvm-just-for-fun/

Architecture Guide September 13, 2014 current

206

Diagram

Architecture Guide September 13, 2014 current

207

Specialized hardware
Certain workloads require specialized hardware devices that are either
difficult to virtualize or impossible to share. Applications such as load bal-
ancers, highly parallel brute force computing, and direct to wire network-
ing may need capabilities that basic OpenStack components do not pro-
vide.

Challenges

Some applications need access to hardware devices to either improve per-
formance or provide capabilities that are not virtual CPU, RAM, network or
storage. These can be a shared resource, such as a cryptography processor,
or a dedicated resource such as a Graphics Processing Unit. OpenStack has
ways of providing some of these, while others may need extra work.

Solutions

In order to provide cryptography offloading to a set of instances, it is possi-
ble to use Image Service configuration options to assign the cryptography
chip to a device node in the guest. The OpenStack Command Line Refer-
ence contains further information on configuring this solution in the chap-
ter Image Service property keys , but it allows all guests using the config-
ured images to access the hypervisor cryptography device.

If direct access to a specific device is required, it can be dedicated to a sin-
gle instance per hypervisor through the use of PCI pass-through. The Open-
Stack administrator needs to define a flavor that specifically has the PCI de-
vice in order to properly schedule instances. More information regarding
PCI pass-through, including instructions for implementing and using it, is
available at https://wiki.openstack.org/wiki/Pci_passthrough.

http://docs.openstack.org/cli-reference/content/chapter_cli-glance-property.html
https://wiki.openstack.org/wiki/Pci_passthrough#How_to_check_PCI_status_with_PCI_api_patches

Architecture Guide September 13, 2014 current

208

Architecture Guide September 13, 2014 current

209

10. References
Data Protection framework of the European Union: Guidance on Data Pro-
tection laws governed by the EU.

Depletion of IPv4 Addresses: describing how IPv4 addresses and the migra-
tion to IPv6 is inevitable.

Ethernet Switch Reliability: Research white paper on Ethernet Switch relia-
bility.

Financial Industry Regulatory Authority: Requirements of the Financial In-
dustry Regulatory Authority in the USA.

Image Service property keys: Glance API property keys allows the adminis-
trator to attach custom characteristics to images.

LibGuestFS Documentation: Official LibGuestFS documentation.

Logging and Monitoring: Official OpenStack Operations documentation.

ManageIQ Cloud Management Platform: An Open Source Cloud Manage-
ment Platform for managing multiple clouds.

N-Tron Network Availability: Research white paper on network availability.

Nested KVM: Post on how to nest KVM under KVM.

Open Compute Project: The Open Compute Project Foundation’s mission is
to design and enable the delivery of the most efficient server, storage and
data center hardware designs for scalable computing.

OpenStack Flavors: Official OpenStack documentation.

OpenStack High Availability Guide: Information on how to provide redun-
dancy for the OpenStack components.

OpenStack Hypervisor Support Matrix: Matrix of supported hypervisors
and capabilities when used with OpenStack.

OpenStack Object Store (Swift) Replication Reference: Developer docu-
mentation of Swift replication.

OpenStack Operations Guide: The OpenStack Operations Guide provides
information on setting up and installing OpenStack.

http://ec.europa.eu/justice/data-protection/
http://www.internetsociety.org/deploy360/blog/2014/05/goodbye-ipv4-iana-starts-allocating-final-address-blocks/
http://www.garrettcom.com/techsupport/papers/ethernet_switch_reliability.pdf
http://www.finra.org/Industry/Regulation/FINRARules/
http://docs.openstack.org/cli-reference/content/chapter_cli-glance-property.html
http://libguestfs.org
http://docs.openstack.org/openstack-ops/content/logging_monitoring.html
http://manageiq.org/
http://www.n-tron.com/pdf/network_availability.pdf
http://davejingtian.org/2014/03/30/nested-kvm-just-for-fun
http://www.opencompute.org/
http://docs.openstack.org/openstack-ops/content/flavors.html
http://docs.openstack.org/high-availability-guide/content/
https://wiki.openstack.org/wiki/HypervisorSupportMatrix
http://docs.openstack.org/developer/swift/replication_network.html
http://docs.openstack.org/openstack-ops/

Architecture Guide September 13, 2014 current

210

OpenStack Security Guide: The OpenStack Security Guide provides infor-
mation on securing OpenStack deployments.

OpenStack Training Marketplace: The OpenStack Market for training and
Vendors providing training on OpenStack.

PCI passthrough: The PCI API patches extend the servers/os-hypervisor to
show PCI information for instance and compute node, and also provides a
resource endpoint to show PCI information.

TripleO: TripleO is a program aimed at installing, upgrading and operating
OpenStack clouds using OpenStack's own cloud facilities as the foundation.

http://docs.openstack.org/security-guide/
http://www.openstack.org/marketplace/training
https://wiki.openstack.org/wiki/Pci_passthrough#How_to_check_PCI_status_with_PCI_api_paches
https://wiki.openstack.org/wiki/TripleO

Architecture Guide September 13, 2014 current

211

Appendix A. Community support

Table of Contents
Documentation .. 211
ask.openstack.org .. 213
OpenStack mailing lists ... 213
The OpenStack wiki ... 213
The Launchpad Bugs area .. 213
The OpenStack IRC channel .. 215
Documentation feedback ... 215
OpenStack distribution packages .. 215

The following resources are available to help you run and use OpenStack.
The OpenStack community constantly improves and adds to the main fea-
tures of OpenStack, but if you have any questions, do not hesitate to ask.
Use the following resources to get OpenStack support, and troubleshoot
your installations.

Documentation
For the available OpenStack documentation, see docs.openstack.org.

To provide feedback on documentation, join and use the
<openstack-docs@lists.openstack.org> mailing list at OpenStack
Documentation Mailing List, or report a bug.

The following books explain how to install an OpenStack cloud and its as-
sociated components:

• Installation Guide for Debian 7.0

• Installation Guide for openSUSE and SUSE Linux Enterprise Server

• Installation Guide for Red Hat Enterprise Linux, CentOS, and Fedora

• Installation Guide for Ubuntu 14.04 (LTS)

The following books explain how to configure and run an OpenStack
cloud:

http://docs.openstack.org
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-docs
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-docs
https://bugs.launchpad.net/openstack-manuals/+filebug
http://docs.openstack.org/trunk/install-guide/install/apt-debian/content/
http://docs.openstack.org/trunk/install-guide/install/zypper/content/
http://docs.openstack.org/trunk/install-guide/install/yum/content/
http://docs.openstack.org/trunk/install-guide/install/apt/content/

Architecture Guide September 13, 2014 current

212

• Architecture Design Guide

• Cloud Administrator Guide

• Configuration Reference

• Operations Guide

• High Availability Guide

• Security Guide

• Virtual Machine Image Guide

The following books explain how to use the OpenStack dashboard and
command-line clients:

• API Quick Start

• End User Guide

• Admin User Guide

• Command-Line Interface Reference

The following documentation provides reference and guidance informa-
tion for the OpenStack APIs:

• OpenStack API Complete Reference (HTML)

• API Complete Reference (PDF)

• OpenStack Block Storage Service API v2 Reference

• OpenStack Compute API v2 and Extensions Reference

• OpenStack Identity Service API v2.0 Reference

• OpenStack Image Service API v2 Reference

• OpenStack Networking API v2.0 Reference

• OpenStack Object Storage API v1 Reference

The Training Guides offer software training for cloud administration and
management.

http://docs.openstack.org/arch-design/content/
http://docs.openstack.org/admin-guide-cloud/content/
http://docs.openstack.org/trunk/config-reference/content/
http://docs.openstack.org/ops/
http://docs.openstack.org/high-availability-guide/content/
http://docs.openstack.org/sec/
http://docs.openstack.org/image-guide/content/
http://docs.openstack.org/api/quick-start/content/
http://docs.openstack.org/user-guide/content/
http://docs.openstack.org/user-guide-admin/content/
http://docs.openstack.org/cli-reference/content/
http://developer.openstack.org/api-ref.html
http://developer.openstack.org/api-ref-guides/bk-api-ref.pdf
http://docs.openstack.org/api/openstack-block-storage/2.0/content/
http://docs.openstack.org/api/openstack-compute/2/content/
http://docs.openstack.org/api/openstack-identity-service/2.0/content/
http://docs.openstack.org/api/openstack-image-service/2.0/content/
http://docs.openstack.org/api/openstack-network/2.0/content/
http://docs.openstack.org/api/openstack-object-storage/1.0/content/
http://docs.openstack.org/training-guides/content/

Architecture Guide September 13, 2014 current

213

ask.openstack.org
During the set up or testing of OpenStack, you might have questions
about how a specific task is completed or be in a situation where a feature
does not work correctly. Use the ask.openstack.org site to ask questions
and get answers. When you visit the http://ask.openstack.org site, scan
the recently asked questions to see whether your question has already
been answered. If not, ask a new question. Be sure to give a clear, concise
summary in the title and provide as much detail as possible in the descrip-
tion. Paste in your command output or stack traces, links to screen shots,
and any other information which might be useful.

OpenStack mailing lists
A great way to get answers and insights is to post your question or
problematic scenario to the OpenStack mailing list. You can learn from
and help others who might have similar issues. To subscribe or view the
archives, go to http://lists.openstack.org/cgi-bin/mailman/listinfo/open-
stack. You might be interested in the other mailing lists for specific projects
or development, which you can find on the wiki. A description of all mail-
ing lists is available at http://wiki.openstack.org/MailingLists.

The OpenStack wiki
The OpenStack wiki contains a broad range of topics but some of the in-
formation can be difficult to find or is a few pages deep. Fortunately, the
wiki search feature enables you to search by title or content. If you search
for specific information, such as about networking or nova, you can find
a large amount of relevant material. More is being added all the time, so
be sure to check back often. You can find the search box in the upper-right
corner of any OpenStack wiki page.

The Launchpad Bugs area
The OpenStack community values your set up and testing efforts and
wants your feedback. To log a bug, you must sign up for a Launchpad ac-
count at https://launchpad.net/+login. You can view existing bugs and
report bugs in the Launchpad Bugs area. Use the search feature to deter-
mine whether the bug has already been reported or already been fixed. If
it still seems like your bug is unreported, fill out a bug report.

Some tips:

http://ask.openstack.org
http://ask.openstack.org
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack
http://wiki.openstack.org/MailingLists
http://wiki.openstack.org/MailingLists
http://wiki.openstack.org/
https://launchpad.net/+login

Architecture Guide September 13, 2014 current

214

• Give a clear, concise summary.

• Provide as much detail as possible in the description. Paste in your com-
mand output or stack traces, links to screen shots, and any other infor-
mation which might be useful.

• Be sure to include the software and package versions that
you are using, especially if you are using a development
branch, such as, "Juno release" vs git commit
bc79c3ecc55929bac585d04a03475b72e06a3208.

• Any deployment-specific information is helpful, such as whether you are
using Ubuntu 14.04 or are performing a multi-node installation.

The following Launchpad Bugs areas are available:

• Bugs: OpenStack Block Storage (cinder)

• Bugs: OpenStack Compute (nova)

• Bugs: OpenStack Dashboard (horizon)

• Bugs: OpenStack Identity (keystone)

• Bugs: OpenStack Image Service (glance)

• Bugs: OpenStack Networking (neutron)

• Bugs: OpenStack Object Storage (swift)

• Bugs: Bare Metal (ironic)

• Bugs: Data Processing Service (sahara)

• Bugs: Database Service (trove)

• Bugs: Orchestration (heat)

• Bugs: Telemetry (ceilometer)

• Bugs: Queue Service (marconi)

• Bugs: OpenStack API Documentation (developer.openstack.org)

• Bugs: OpenStack Documentation (docs.openstack.org)

https://bugs.launchpad.net/cinder
https://bugs.launchpad.net/nova
https://bugs.launchpad.net/horizon
https://bugs.launchpad.net/keystone
https://bugs.launchpad.net/glance
https://bugs.launchpad.net/neutron
https://bugs.launchpad.net/swift
https://bugs.launchpad.net/ironic
https://bugs.launchpad.net/sahara
https://bugs.launchpad.net/trove
https://bugs.launchpad.net/heat
https://bugs.launchpad.net/ceilometer
https://bugs.launchpad.net/marconi
https://bugs.launchpad.net/openstack-api-site
https://bugs.launchpad.net/openstack-manuals

Architecture Guide September 13, 2014 current

215

The OpenStack IRC channel
The OpenStack community lives in the #openstack IRC channel on the
Freenode network. You can hang out, ask questions, or get immediate
feedback for urgent and pressing issues. To install an IRC client or use
a browser-based client, go to http://webchat.freenode.net/. You can
also use Colloquy (Mac OS X, http://colloquy.info/), mIRC (Windows,
http://www.mirc.com/), or XChat (Linux). When you are in the IRC chan-
nel and want to share code or command output, the generally accepted
method is to use a Paste Bin. The OpenStack project has one at http://
paste.openstack.org. Just paste your longer amounts of text or logs in
the web form and you get a URL that you can paste into the channel. The
OpenStack IRC channel is #openstack on irc.freenode.net. You can
find a list of all OpenStack IRC channels at https://wiki.openstack.org/wi-
ki/IRC.

Documentation feedback
To provide feedback on documentation, join and use the
<openstack-docs@lists.openstack.org> mailing list at OpenStack
Documentation Mailing List, or report a bug.

OpenStack distribution packages
The following Linux distributions provide community-supported packages
for OpenStack:

• Debian: http://wiki.debian.org/OpenStack

• CentOS, Fedora, and Red Hat Enterprise Linux: http://
openstack.redhat.com/

• openSUSE and SUSE Linux Enterprise Server: http://en.opensuse.org/
Portal:OpenStack

• Ubuntu: https://wiki.ubuntu.com/ServerTeam/CloudArchive

http://webchat.freenode.net
http://colloquy.info/
http://www.mirc.com/
http://paste.openstack.org
http://paste.openstack.org
https://wiki.openstack.org/wiki/IRC
https://wiki.openstack.org/wiki/IRC
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-docs
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-docs
https://bugs.launchpad.net/openstack-manuals/+filebug
http://wiki.debian.org/OpenStack
http://openstack.redhat.com/
http://openstack.redhat.com/
http://en.opensuse.org/Portal:OpenStack
http://en.opensuse.org/Portal:OpenStack
https://wiki.ubuntu.com/ServerTeam/CloudArchive

Architecture Guide September 13, 2014 current

217

Glossary
6to4

A mechanism that allows IPv6 packets to be transmitted over an IPv4 network,
providing a strategy for migrating to IPv6.

Address Resolution Protocol (ARP)
The protocol by which layer-3 IP addresses are resolved into layer-2 link local ad-
dresses.

Block Storage
The OpenStack core project that enables management of volumes, volume snap-
shots, and volume types. The project name of Block Storage is cinder.

Border Gateway Protocol (BGP)
The Border Gateway Protocol is a dynamic routing protocol that connects au-
tonomous systems. Considered the backbone of the Internet, this protocol con-
nects disparate networks to form a larger network.

bursting
The practice of utilizing a secondary environment to elastically build instances on-
demand when the primary environment is resource constrained.

ceilometer
The project name for the Telemetry service, which is an integrated project that
provides metering and measuring facilities for OpenStack.

cell
Provides logical partitioning of Compute resources in a child and parent relation-
ship. Requests are passed from parent cells to child cells if the parent cannot pro-
vide the requested resource.

cinder
A core OpenStack project that provides block storage services for VMs.

Compute
The OpenStack core project that provides compute services. The project name of
Compute service is nova.

content delivery network (CDN)
A content delivery network is a specialized network that is used to distribute con-
tent to clients, typically located close to the client for increased performance.

dashboard
The web-based management interface for OpenStack. An alternative name for
horizon.

Architecture Guide September 13, 2014 current

218

Database Service
An integrated project that provide scalable and reliable Cloud Database-as-a-Ser-
vice functionality for both relational and non-relational database engines. The
project name of Database Service is trove.

denial of service (DoS)
Denial of service (DoS) is a short form for denial-of-service attack. This is a mali-
cious attempt to prevent legitimate users from using a service.

Desktop-as-a-Service
A platform that provides a suite of desktop environments that users may log in to
receive a desktop experience from any location. This may provide general use, de-
velopment, or even homogeneous testing environments.

east-west traffic
Network traffic between servers in the same cloud or data center. See also north-
south traffic.

encapsulation
The practice of placing one packet type within another for the purposes of ab-
stracting or securing data. Examples include GRE, MPLS, or IPsec.

glance
A core project that provides the OpenStack Image Service.

heat
An integrated project that aims to orchestrate multiple cloud applications for
OpenStack.

Heat Orchestration Template (HOT)
Heat input in the format native to OpenStack.

high availability (HA)
A high availability system design approach and associated service implementation
ensures that a prearranged level of operational performance will be met during a
contractual measurement period. High availability systems seeks to minimize sys-
tem downtime and data loss.

horizon
OpenStack project that provides a dashboard, which is a web interface.

hybrid cloud
A hybrid cloud is a composition of two or more clouds (private, community or
public) that remain distinct entities but are bound together, offering the benefits
of multiple deployment models. Hybrid cloud can also mean the ability to con-
nect colocation, managed and/or dedicated services with cloud resources.

Architecture Guide September 13, 2014 current

219

IaaS
Infrastructure-as-a-Service. IaaS is a provisioning model in which an organization
outsources physical components of a data center, such as storage, hardware,
servers, and networking components. A service provider owns the equipment
and is responsible for housing, operating and maintaining it. The client typically
pays on a per-use basis. IaaS is a model for providing cloud services.

Image Service
An OpenStack core project that provides discovery, registration, and delivery ser-
vices for disk and server images. The project name of the Image Service is glance.

IOPS
IOPS (Input/Output Operations Per Second) are a common performance mea-
surement used to benchmark computer storage devices like hard disk drives, solid
state drives, and storage area networks.

kernel-based VM (KVM)
An OpenStack-supported hypervisor. KVM is a full virtualization solution for Linux
on x86 hardware containing virtualization extensions (Intel VT or AMD-V), ARM,
IBM Power, and IBM zSeries. It consists of a loadable kernel module, that pro-
vides the core virtualization infrastructure and a processor specific module.

keystone
The project that provides OpenStack Identity services.

Layer-2 network
Term used in the OSI network architecture for the data link layer. The data link
layer is responsible for media access control, flow control and detecting and pos-
sibly correcting erros that may occur in the physical layer.

Layer-3 network
Term used in the OSI network architecture for the network layer. The network
layer is responsible for packet forwarding including routing from one node to an-
other.

Networking
A core OpenStack project that provides a network connectivity abstraction layer
to OpenStack Compute. The project name of Networking is neutron.

neutron
A core OpenStack project that provides a network connectivity abstraction layer
to OpenStack Compute.

north-south traffic
Network traffic between a user or client (north) and a server (south), or traffic in-
to the cloud (south) and out of the cloud (north). See also east-west traffic.

Architecture Guide September 13, 2014 current

220

nova
OpenStack project that provides compute services.

Object Storage
The OpenStack core project that provides eventually consistent and redundant
storage and retrieval of fixed digital content. The project name of OpenStack Ob-
ject Storage is swift.

Open vSwitch
Open vSwitch is a production quality, multilayer virtual switch licensed under
the open source Apache 2.0 license. It is designed to enable massive network au-
tomation through programmatic extension, while still supporting standard man-
agement interfaces and protocols (for example NetFlow, sFlow, SPAN, RSPAN,
CLI, LACP, 802.1ag).

OpenStack
OpenStack is a cloud operating system that controls large pools of compute, stor-
age, and networking resources throughout a data center, all managed through a
dashboard that gives administrators control while empowering their users to pro-
vision resources through a web interface. OpenStack is an open source project li-
censed under the Apache License 2.0.

Orchestration
An integrated project that orchestrates multiple cloud applications for Open-
Stack. The project name of Orchestration is heat.

Platform-as-a-Service (PaaS)
Provides to the consumer the ability to deploy applications through a program-
ming language or tools supported by the cloud platform provider. An example of
Platform-as-a-Service is an Eclipse/Java programming platform provided with no
downloads required.

swift
An OpenStack core project that provides object storage services.

Telemetry
An integrated project that provides metering and measuring facilities for Open-
Stack. The project name of Telemetry is ceilometer.

TripleO
OpenStack-on-OpenStack program. The code name for the OpenStack Deploy-
ment program.

trove
OpenStack project that provides database services to applications.

Architecture Guide September 13, 2014 current

221

Xen
Xen is a hypervisor using a microkernel design, providing services that allow mul-
tiple computer operating systems to execute on the same computer hardware
concurrently.

	OpenStack Architecture Design Guide
	Table of Contents
	Preface
	Conventions
	Document change history

	1. Introduction
	Intended audience
	How this book is organized
	Why and how we wrote this book
	Methodology
	Application cloud readiness
	Determining whether an application is cloud-ready
	Designing for the cloud

	2. General purpose
	User requirements
	Legal requirements
	Technical requirements

	Technical considerations
	Designing compute resources
	Designing network resources
	Designing storage resources
	Designing OpenStack Object Storage
	Designing OpenStack Block Storage
	Software selection
	Hypervisor
	OpenStack components
	Supplemental software
	Performance
	Controller infrastructure
	Network performance
	Compute host
	Storage performance
	Availability
	Security

	Operational considerations
	Support and maintainability
	Monitoring
	Downtime
	Capacity planning

	Architecture
	Selecting storage hardware
	Selecting networking hardware
	Software selection
	Operating system and hypervisor
	OpenStack components
	Supplemental components
	Networking software
	Management software
	Database software
	Addressing performance-sensitive workloads
	Compute-focused workloads
	Network-focused workloads
	Storage-focused workloads

	Prescriptive example

	3. Compute focused
	User requirements
	Legal requirements
	Technical considerations
	Operational considerations

	Technical considerations
	Expansion planning
	CPU and RAM
	Additional hardware
	Utilization
	Performance
	Security
	OpenStack components

	Operational considerations
	Support and maintainability
	Monitoring
	Expected and unexpected server downtime
	Capacity planning

	Architecture
	Storage hardware selection
	Selecting networking hardware
	Software selection
	Operating system and hypervisor
	OpenStack components
	Supplemental software
	Networking software
	Management software
	Database software

	Prescriptive examples
	Network architecture
	Storage architecture
	Monitoring
	References

	4. Storage focused
	User requirements
	Legal requirements
	Technical requirements

	Technical considerations
	Operational considerations
	Management efficiency
	Application awareness
	Fault tolerance and availability
	Object Storage fault tolerance and availability
	Scaling storage services
	Scaling Block Storage
	Scaling Object Storage

	Architecture
	Compute (server) hardware selection
	Networking hardware selection
	Software selection
	Operating system and hypervisor
	OpenStack components
	Supplemental software
	Networking software
	Management software
	Database software

	Prescriptive examples
	Compute analytics with Data processing service for OpenStack
	High performance database with Database service for OpenStack

	5. Network focused
	User requirements
	High availability issues
	Risks
	Security

	Technical considerations
	Layer-2 architecture limitations
	Layer-3 architecture advantages
	Layer-3 architecture limitations

	Network recommendations overview
	Additional considerations
	OpenStack Networking versus legacy networking (nova-network) considerations
	Redundant networking: ToR switch high availability risk analysis
	Preparing for the future: IPv6 support
	Asymmetric links
	Performance

	Operational considerations
	Architecture
	Design impacts
	Tunable networking components

	Prescriptive examples
	Load balancing
	Overlay networks
	Performance tuning
	Network functions
	Cloud storage

	6. Multi-site
	User requirements
	Workload characteristics
	Consistency of images and templates across different sites
	High availability
	Application readiness
	Cost
	Site loss and recovery
	Compliance and geo-location
	Auditing
	Separation of duties
	Authentication between sites

	Technical considerations
	Utilization
	Performance
	Security
	OpenStack components

	Operational considerations
	Licensing
	Logging and monitoring
	Upgrades
	Quota management
	Policy management
	Documentation

	Architecture
	OpenStack services architecture
	Storage
	Networking
	Dependencies

	Prescriptive examples
	Geo-redundant load balancing
	Location-local service

	7. Hybrid
	User requirements
	Legal requirements
	Workload considerations
	Tools considerations
	Network considerations
	Risk mitigation and management considerations

	Technical considerations
	Capacity planning
	Security
	Utilization
	Performance
	Components
	Special considerations

	Operational considerations
	Agility
	Application readiness
	Upgrades
	Network Operation Center
	Maintainability

	Architecture
	Image portability
	Upper-layer services
	Network services
	Data

	Prescriptive examples
	Bursting to a public non-OpenStack cloud
	High availability/disaster recovery

	8. Massively scalable
	User requirements
	User requirements
	Operator requirements

	Technical considerations
	Infrastructure segregation
	Host aggregates
	Availability zones
	Segregation example

	Operational considerations
	The bleeding edge
	Growth and capacity planning
	Skills and training

	9. Specialized cases
	Multi-hypervisor example
	Specialized networking example
	Challenges
	Possible solutions

	Software-defined networking
	Challenges
	Possible solutions
	Diagram

	Desktop-as-a-Service
	Challenges
	Broker
	Possible solutions
	Diagram

	OpenStack on OpenStack
	Challenges
	Hypervisor
	Possible solutions: deployment
	Possible solutions: hypervisor
	Diagram

	Specialized hardware
	Challenges
	Solutions

	10. References
	Appendix A. Community support
	Documentation
	ask.openstack.org
	OpenStack mailing lists
	The OpenStack wiki
	The Launchpad Bugs area
	The OpenStack IRC channel
	Documentation feedback
	OpenStack distribution packages

	Glossary

