
OpenStack Ops Guide September 12, 2014

i

OpenStack Operations Guide
Copyright © 2014 OpenStack Foundation Some rights reserved.

This book provides information about designing and operating OpenStack clouds.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/legalcode

http://creativecommons.org/licenses/by/3.0/legalcode
http://creativecommons.org/licenses/by/3.0/legalcode
http://creativecommons.org/licenses/by/3.0/legalcode

OpenStack Ops Guide September 12, 2014

iii

Acknowledgments
The OpenStack Foundation supported the creation of this book with
plane tickets to Austin, lodging (including one adventurous evening
without power after a windstorm), and delicious food. For about USD
$10,000, we could collaborate intensively for a week in the same room
at the Rackspace Austin office. The authors are all members of the Open-
Stack Foundation, which you can join. Go to the Foundation web site at
http://openstack.org/join.

We want to acknowledge our excellent host Rackers at Rackspace in
Austin:

• Emma Richards of Rackspace Guest Relations took excellent care of our
lunch orders and even set aside a pile of sticky notes that had fallen off
the walls.

• Betsy Hagemeier, a Fanatical Executive Assistant, took care of a room
reshuffle and helped us settle in for the week.

• The Real Estate team at Rackspace in Austin, also known as "The Vic-
tors," were super responsive.

• Adam Powell in Racker IT supplied us with bandwidth each day and sec-
ond monitors for those of us needing more screens.

• On Wednesday night we had a fun happy hour with the Austin Open-
Stack Meetup group and Racker Katie Schmidt took great care of our
group.

We also had some excellent input from outside of the room:

• Tim Bell from CERN gave us feedback on the outline before we started
and reviewed it mid-week.

• Sébastien Han has written excellent blogs and generously gave his per-
mission for re-use.

• Oisin Feeley read it, made some edits, and provided emailed feedback
right when we asked.

Inside the book sprint room with us each day was our book sprint fa-
cilitator Adam Hyde. Without his tireless support and encouragement,
we would have thought a book of this scope was impossible in five
days. Adam has proven the book sprint method effectively again and

https://www.openstack.org/join

OpenStack Ops Guide September 12, 2014

iv

again. He creates both tools and faith in collaborative authoring at
www.booksprints.net.

We couldn't have pulled it off without so much supportive help and en-
couragement.

http://www.booksprints.net/

OpenStack Ops Guide September 12, 2014

v

Table of Contents
Preface .. 15

Introduction to OpenStack ... 15
Getting Started with OpenStack ... 15
Who This Book Is For ... 17
How This Book Is Organized .. 19
Why and How We Wrote This Book ... 22
How to Contribute to This Book .. 26
Conventions Used in This Book .. 27

I. Architecture .. 1
1. Example Architectures .. 3

Example Architecture—Legacy Networking (nova) 3
Example Architecture—OpenStack Networking 9
Parting Thoughts on Architectures 25

2. Provisioning and Deployment ... 27
Automated Deployment .. 27
Automated Configuration .. 30
Remote Management .. 31
Parting Thoughts for Provisioning and Deploying Open-
Stack .. 31
Conclusion ... 32

3. Designing for Cloud Controllers and Cloud Management 33
Hardware Considerations ... 35
Separation of Services .. 35
Database ... 36
Message Queue ... 36
Conductor Services ... 37
Application Programming Interface (API) 38
Extensions .. 38
Scheduling ... 39
Images ... 39
Dashboard ... 40
Authentication and Authorization .. 40
Network Considerations ... 41

4. Compute Nodes ... 43
Choosing a CPU ... 43
Choosing a Hypervisor ... 44
Instance Storage Solutions ... 45
Overcommitting ... 49
Logging ... 50
Networking .. 50
Conclusion ... 50

OpenStack Ops Guide September 12, 2014

vi

5. Scaling ... 51
The Starting Point .. 51
Adding Cloud Controller Nodes .. 53
Segregating Your Cloud ... 54
Scalable Hardware ... 58

6. Storage Decisions ... 61
Ephemeral Storage ... 61
Persistent Storage .. 61
OpenStack Storage Concepts ... 64
Choosing Storage Backends ... 64
Conclusion ... 70

7. Network Design ... 71
Management Network ... 71
Public Addressing Options .. 72
IP Address Planning ... 72
Network Topology ... 74
Services for Networking ... 76
Conclusion ... 76

II. Operations ... 77
8. Lay of the Land ... 79

Using the OpenStack Dashboard for Administration 79
Command-Line Tools .. 79
Network Inspection .. 87
Users and Projects .. 88
Running Instances .. 88
Summary ... 89

9. Managing Projects and Users ... 91
Projects or Tenants? ... 91
Managing Projects ... 91
Quotas ... 93
User Management ... 102
Creating New Users .. 102
Associating Users with Projects ... 104
Summary .. 108

10. User-Facing Operations ... 109
Images ... 109
Flavors ... 112
Security Groups .. 114
Block Storage ... 118
Instances .. 120
Associating Security Groups .. 124
Floating IPs .. 125
Attaching Block Storage ... 125

OpenStack Ops Guide September 12, 2014

vii

Taking Snapshots ... 127
Instances in the Database .. 130
Good Luck! .. 131

11. Maintenance, Failures, and Debugging 133
Cloud Controller and Storage Proxy Failures and Mainte-
nance ... 133
Compute Node Failures and Maintenance 135
Storage Node Failures and Maintenance 141
Handling a Complete Failure .. 143
Configuration Management ... 143
Working with Hardware ... 144
Databases .. 145
HDWMY .. 146
Determining Which Component Is Broken 147
Uninstalling .. 150

12. Network Troubleshooting ... 151
Using "ip a" to Check Interface States 151
Visualizing nova-network Traffic in the Cloud 152
Visualizing OpenStack Networking Service Traffic in the
Cloud ... 153
Finding a Failure in the Path ... 160
tcpdump .. 160
iptables .. 162
Network Configuration in the Database for nova-network
... 162
Debugging DHCP Issues with nova-network 164
Debugging DNS Issues .. 168
Troubleshooting Open vSwitch ... 170
Dealing with Network Namespaces 171
Summary .. 172

13. Logging and Monitoring ... 173
Where Are the Logs? ... 173
Reading the Logs ... 174
Tracing Instance Requests .. 176
Adding Custom Logging Statements 176
RabbitMQ Web Management Interface or rabbitmqctl 177
Centrally Managing Logs .. 178
StackTach ... 180
Monitoring ... 180
Summary .. 187

14. Backup and Recovery ... 189
What to Back Up ... 189
Database Backups .. 190

OpenStack Ops Guide September 12, 2014

viii

File System Backups ... 190
Recovering Backups .. 192
Summary .. 193

15. Customization .. 195
Create an OpenStack Development Environment 195
Customizing Object Storage (Swift) Middleware 198
Customizing the OpenStack Compute (nova) Scheduler 205
Customizing the Dashboard (Horizon) 210
Conclusion ... 210

16. Upstream OpenStack .. 211
Getting Help .. 211
Reporting Bugs .. 212
Join the OpenStack Community .. 215
How to Contribute to the Documentation 216
Security Information ... 216
Finding Additional Information .. 217

17. Advanced Configuration ... 219
Differences Between Various Drivers 219
Implementing Periodic Tasks .. 219
Specific Configuration Topics .. 221

18. Upgrades ... 223
Pre-Upgrade Testing Environment 223
Preparing for a Rollback ... 225
Upgrades ... 226
Upgrade Levels .. 227
How to Perform an Upgrade from Grizzly to Havana—
Ubuntu .. 228
How to Perform an Upgrade from Grizzly to Havana—Red
Hat Enterprise Linux and Derivatives 235
How to Perform an Upgrade from Havana to Icehouse—
Ubuntu .. 242
How to Perform an Upgrade from Havana to Icehouse—
Red Hat Enterprise Linux and Derivatives 252
Cleaning Up and Final Configuration File Updates 262
Rolling Back a Failed Upgrade .. 263

A. Use Cases .. 269
NeCTAR ... 269
MIT CSAIL .. 270
DAIR .. 271
CERN ... 272

B. Tales From the Cryp^H^H^H^H Cloud ... 275
Double VLAN ... 275
"The Issue" ... 278

OpenStack Ops Guide September 12, 2014

ix

Disappearing Images .. 280
The Valentine's Day Compute Node Massacre 282
Down the Rabbit Hole ... 283
Havana Haunted by the Dead .. 285

C. Working with Roadmaps .. 287
Information Available to You ... 288
Influencing the Roadmap ... 289
Aspects to Watch ... 290
Replacement of Open vSwitch Plug-in with Modular Layer 2 292
Compute V3 API .. 292
OpenStack on OpenStack (TripleO) .. 292
Data Processing (Sahara) .. 292
Bare-Metal Deployment (Ironic) ... 292
Database as a Service (Trove) ... 293
Messaging as a Service (Marconi) ... 293
Scheduler Improvements .. 293

D. Resources .. 295
OpenStack ... 295
Cloud (General) .. 295
Python ... 295
Networking .. 295
Systems Administration .. 296
Virtualization ... 296
Configuration Management ... 296

Glossary ... 297
Index ... 357

OpenStack Ops Guide September 12, 2014

xi

List of Figures
1. OpenStack Logical Architecture () .. 2
1.1. Basic node deployment ... 16
1.2. Performance node deployment ... 17
1.3. Controller node ... 18
1.4. Compute node .. 19
1.5. Network node ... 20
1.6. Storage node .. 21
2.1. Partition setup of drives .. 29
9.1. Dashboard's Create Project form ... 92
9.2. Edit Project Members tab ... 105
12.1. Traffic route for ping packet .. 152
12.2. Neutron network paths ... 154
C.1. Release cycle diagram ... 288

OpenStack Ops Guide September 12, 2014

xiii

List of Tables
1.1. Node types ... 12
1.2. Third-party component configuration .. 21
1.3. OpenStack component configuration .. 23
3.1. Cloud controller hardware sizing considerations 35
3.2. Deployment scenarios ... 36
5.1. OpenStack default flavors ... 52
5.2. OpenStack segregation methods ... 54
6.1. OpenStack storage .. 64
6.2. Persistent file-based storage support ... 65
7.1. Networking deployment options ... 74
9.1. Compute quota descriptions .. 94
9.2. Block Storage quota descriptions ... 100
10.1. Flavor parameters .. 113
11.1. Example service restoration priority list 143
13.1. OpenStack log locations .. 173

OpenStack Ops Guide September 12, 2014

15

Preface
Introduction to OpenStack ... 15
Getting Started with OpenStack ... 15
Who This Book Is For ... 17
How This Book Is Organized .. 19
Why and How We Wrote This Book ... 22
How to Contribute to This Book .. 26
Conventions Used in This Book .. 27

OpenStack is an open source platform that lets you build an Infrastructure
as a Service (IaaS) cloud that runs on commodity hardware.

Introduction to OpenStack
OpenStack believes in open source, open design, open development, all in
an open community that encourages participation by anyone. The long-
term vision for OpenStack is to produce a ubiquitous open source cloud
computing platform that meets the needs of public and private cloud
providers regardless of size. OpenStack services control large pools of com-
pute, storage, and networking resources throughout a data center.

The technology behind OpenStack consists of a series of interrelated
projects delivering various components for a cloud infrastructure solu-
tion. Each service provides an open API so that all of these resources can
be managed through a dashboard that gives administrators control while
empowering users to provision resources through a web interface, a com-
mand-line client, or software development kits that support the API. Many
OpenStack APIs are extensible, meaning you can keep compatibility with
a core set of calls while providing access to more resources and innovating
through API extensions. The OpenStack project is a global collaboration
of developers and cloud computing technologists. The project produces
an open standard cloud computing platform for both public and private
clouds. By focusing on ease of implementation, massive scalability, a vari-
ety of rich features, and tremendous extensibility, the project aims to deliv-
er a practical and reliable cloud solution for all types of organizations.

Getting Started with OpenStack
As an open source project, one of the unique aspects of OpenStack is that
it has many different levels at which you can begin to engage with it—you
don't have to do everything yourself.

OpenStack Ops Guide September 12, 2014

16

Using OpenStack
You could ask, "Do I even need to build a cloud?" If you want to start us-
ing a compute or storage service by just swiping your credit card, you can
go to eNovance, HP, Rackspace, or other organizations to start using their
public OpenStack clouds. Using their OpenStack cloud resources is similar
to accessing the publicly available Amazon Web Services Elastic Compute
Cloud (EC2) or Simple Storage Solution (S3).

Plug and Play OpenStack
However, the enticing part of OpenStack might be to build your own pri-
vate cloud, and there are several ways to accomplish this goal. Perhaps the
simplest of all is an appliance-style solution. You purchase an appliance,
unpack it, plug in the power and the network, and watch it transform in-
to an OpenStack cloud with minimal additional configuration. Few, if any,
other open source cloud products have such turnkey options. If a turnkey
solution is interesting to you, take a look at Nebula One.

However, hardware choice is important for many applications, so if that
applies to you, consider that there are several software distributions avail-
able that you can run on servers, storage, and network products of your
choosing. Canonical (where OpenStack replaced Eucalyptus as the default
cloud option in 2011), Red Hat, and SUSE offer enterprise OpenStack so-
lutions and support. You may also want to take a look at some of the spe-
cialized distributions, such as those from Rackspace, Piston, SwiftStack, or
Cloudscaling.

Alternatively, if you want someone to help guide you through the deci-
sions about the underlying hardware or your applications, perhaps adding
in a few features or integrating components along the way, consider con-
tacting one of the system integrators with OpenStack experience, such as
Mirantis or Metacloud.

If your preference is to build your own OpenStack expertise internally, a
good way to kick-start that might be to attend or arrange a training ses-
sion. The OpenStack Foundation recently launched a Training Marketplace
where you can look for nearby events. Also, the OpenStack community is
working to produce open source training materials.

Roll Your Own OpenStack
However, this guide has a different audience—those seeking flexibility
from the OpenStack framework by conducting do-it-yourself solutions.

http://www.openstack.org/marketplace/training
https://wiki.openstack.org/wiki/Training-manuals

OpenStack Ops Guide September 12, 2014

17

OpenStack is designed for horizontal scalability, so you can easily add new
compute, network, and storage resources to grow your cloud over time.
In addition to the pervasiveness of massive OpenStack public clouds, many
organizations, such as PayPal, Intel, and Comcast, build large-scale private
clouds. OpenStack offers much more than a typical software package be-
cause it lets you integrate a number of different technologies to construct
a cloud. This approach provides great flexibility, but the number of options
might be daunting at first.

Who This Book Is For
This book is for those of you starting to run OpenStack clouds as well as
those of you who were handed an operational one and want to keep it
running well. Perhaps you're on a DevOps team, perhaps you are a system
administrator starting to dabble in the cloud, or maybe you want to get on
the OpenStack cloud team at your company. This book is for all of you.

This guide assumes that you are familiar with a Linux distribution that sup-
ports OpenStack, SQL databases, and virtualization. You must be comfort-
able administering and configuring multiple Linux machines for network-
ing. You must install and maintain an SQL database and occasionally run
queries against it.

One of the most complex aspects of an OpenStack cloud is the network-
ing configuration. You should be familiar with concepts such as DHCP, Lin-
ux bridges, VLANs, and iptables. You must also have access to a network
hardware expert who can configure the switches and routers required in
your OpenStack cloud.

Tip

Cloud computing is a quite advanced topic, and this book
requires a lot of background knowledge. However, if you
are fairly new to cloud computing, we recommend that you
make use of the Glossary [297] at the back of the book,
as well as the online documentation for OpenStack and ad-
ditional resources mentioned in this book in Appendix D, Re-
sources [295].

Further Reading

There are other books on the OpenStack documentation website that can
help you get the job done.

http://docs.openstack.org

OpenStack Ops Guide September 12, 2014

18

OpenStack Guides

OpenStack Installation Guides Describes a manual installation process,
as in, by hand, without automation, for
multiple distributions based on a pack-
aging system:

• Installation Guide for Debian 7.0

• Installation Guide for openSUSE and
SUSE Linux Enterprise Server

• Installation Guide for Red Hat Enter-
prise Linux, CentOS, and Fedora

• Installation Guide for Ubuntu
12.04/14.04 (LTS) Server

OpenStack Configuration Refer-
ence

Contains a reference listing of all con-
figuration options for core and inte-
grated OpenStack services by release
version

OpenStack Cloud Administrator
Guide

Contains how-to information for man-
aging an OpenStack cloud as need-
ed for your use cases, such as storage,
computing, or software-defined-net-
working

OpenStack High Availability
Guide

Describes potential strategies for mak-
ing your OpenStack services and relat-
ed controllers and data stores highly
available

OpenStack Security Guide Provides best practices and conceptu-
al information about securing an Open-
Stack cloud

Virtual Machine Image Guide Shows you how to obtain, create, and
modify virtual machine images that are
compatible with OpenStack

OpenStack End User Guide Shows OpenStack end users how to
create and manage resources in an
OpenStack cloud with the OpenStack

http://docs.openstack.org/icehouse/install-guide/install/apt-debian/content/
http://docs.openstack.org/icehouse/install-guide/install/zypper/content/
http://docs.openstack.org/icehouse/install-guide/install/zypper/content/
http://docs.openstack.org/icehouse/install-guide/install/yum/content/
http://docs.openstack.org/icehouse/install-guide/install/yum/content/
http://docs.openstack.org/icehouse/install-guide/install/apt/content/
http://docs.openstack.org/icehouse/install-guide/install/apt/content/
http://docs.openstack.org/havana/config-reference/content/
http://docs.openstack.org/havana/config-reference/content/
http://docs.openstack.org/admin-guide-cloud/content/
http://docs.openstack.org/admin-guide-cloud/content/
http://docs.openstack.org/high-availability-guide/content/index.html
http://docs.openstack.org/high-availability-guide/content/index.html
http://docs.openstack.org/sec/
http://docs.openstack.org/image-guide/content/
http://docs.openstack.org/user-guide/content/

OpenStack Ops Guide September 12, 2014

19

dashboard and OpenStack client com-
mands

OpenStack Admin User Guide Shows OpenStack administrators how
to create and manage resources in an
OpenStack cloud with the OpenStack
dashboard and OpenStack client com-
mands

OpenStack API Quick Start A brief overview of how to send REST
API requests to endpoints for Open-
Stack services

How This Book Is Organized
This book is organized in two parts: the architecture decisions for design-
ing OpenStack clouds and the repeated operations for running OpenStack
clouds.

Part I:

Chapter 1, “Example Architec-
tures” [3]

Because of all the decisions the other
chapters discuss, this chapter describes
the decisions made for this particular
book and much of the justification for
the example architecture.

Chapter 2, “Provisioning and
Deployment” [27]

While this book doesn't describe instal-
lation, we do recommend automation
for deployment and configuration, dis-
cussed in this chapter.

Chapter 3, “Designing for Cloud
Controllers and Cloud Manage-
ment” [33]

The cloud controller is an invention for
the sake of consolidating and describ-
ing which services run on which nodes.
This chapter discusses hardware and
network considerations as well as how
to design the cloud controller for per-
formance and separation of services.

Chapter 4, “Compute
Nodes” [43]

This chapter describes the compute
nodes, which are dedicated to running
virtual machines. Some hardware choic-
es come into play here, as well as log-
ging and networking descriptions.

http://docs.openstack.org/user-guide-admin/content/
http://docs.openstack.org/api/quick-start/content/

OpenStack Ops Guide September 12, 2014

20

Chapter 5, “Scaling” [51] This chapter discusses the growth of
your cloud resources through scaling
and segregation considerations.

Chapter 6, “Storage Deci-
sions” [61]

As with other architecture decisions,
storage concepts within OpenStack
take a lot of consideration, and this
chapter lays out the choices for you.

Chapter 7, “Network De-
sign” [71]

Your OpenStack cloud networking
needs to fit into your existing networks
while also enabling the best design for
your users and administrators, and this
chapter gives you in-depth information
about networking decisions.

Part II:

Chapter 8, “Lay of the
Land” [79]

This chapter is written to let you
get your hands wrapped around
your OpenStack cloud through com-
mand-line tools and understanding
what is already set up in your cloud.

Chapter 9, “Managing Projects
and Users” [91]

This chapter walks through user-en-
abling processes that all admins must
face to manage users, give them quo-
tas to parcel out resources, and so on.

Chapter 10, “User-Facing Opera-
tions” [109]

This chapter shows you how to use
OpenStack cloud resources and train
your users as well.

Chapter 11, “Maintenance, Fail-
ures, and Debugging” [133]

This chapter goes into the common fail-
ures that the authors have seen while
running clouds in production, including
troubleshooting.

Chapter 12, “Network Trou-
bleshooting” [151]

Because network troubleshooting is es-
pecially difficult with virtual resources,
this chapter is chock-full of helpful tips
and tricks for tracing network traffic,
finding the root cause of networking
failures, and debugging related ser-
vices, such as DHCP and DNS.

OpenStack Ops Guide September 12, 2014

21

Chapter 13, “Logging and Moni-
toring” [173]

This chapter shows you where Open-
Stack places logs and how to best read
and manage logs for monitoring pur-
poses.

Chapter 14, “Backup and Recov-
ery” [189]

This chapter describes what you need
to back up within OpenStack as well as
best practices for recovering backups.

Chapter 15, “Customiza-
tion” [195]

For readers who need to get a special-
ized feature into OpenStack, this chap-
ter describes how to use DevStack to
write custom middleware or a custom
scheduler to rebalance your resources.

Chapter 16, “Upstream Open-
Stack” [211]

Because OpenStack is so, well, open,
this chapter is dedicated to helping you
navigate the community and find out
where you can help and where you can
get help.

Chapter 17, “Advanced Configu-
ration” [219]

Much of OpenStack is driver-oriented,
so you can plug in different solutions
to the base set of services. This chapter
describes some advanced configuration
topics.

Chapter 18, “Up-
grades” [223]

This chapter provides upgrade informa-
tion based on the architectures used in
this book.

OpenStack Ops Guide September 12, 2014

22

Back matter:

Appendix A, Use Cases [269] You can read a small selection of use
cases from the OpenStack community
with some technical details and further
resources.

Appendix B, Tales From the
Cryp^H^H^H^H Cloud [275]

These are shared legendary tales of im-
age disappearances, VM massacres,
and crazy troubleshooting techniques
to share those hard-learned lessons and
wisdom.

Appendix C, Working with
Roadmaps [287]

Read about how to track the Open-
Stack roadmap through the open and
transparent development processes.

Appendix D, Resources [295] So many OpenStack resources are avail-
able online because of the fast-mov-
ing nature of the project, but there
are also resources listed here that the
authors found helpful while learning
themselves.

Glossary [297] A list of terms used in this book is in-
cluded, which is a subset of the larger
OpenStack glossary available online.

Why and How We Wrote This Book
We wrote this book because we have deployed and maintained Open-
Stack clouds for at least a year, and wanted to be able to distribute this
knowledge to others. After months of being the point people for an Open-
Stack cloud, we also wanted to have a document to hand to our system
administrators so that they'd know how to operate the cloud on a daily
basis—both reactively and pro-actively. We wanted to provide more de-
tailed technical information about the decisions that deployers make along
the way.

We wrote this book to help you:

• Design and create an architecture for your first nontrivial OpenStack
cloud. After you read this guide, you'll know which questions to ask and
how to organize your compute, networking, and storage resources and
the associated software packages.

OpenStack Ops Guide September 12, 2014

23

• Perform the day-to-day tasks required to administer a cloud.

We wrote this book in a book sprint, which is a facilitated, rapid develop-
ment production method for books. For more information, see the Book-
Sprints site. Your authors cobbled this book together in five days during
February 2013, fueled by caffeine and the best takeout food that Austin,
Texas, could offer.

On the first day, we filled white boards with colorful sticky notes to start to
shape this nebulous book about how to architect and operate clouds:

We wrote furiously from our own experiences and bounced ideas between
each other. At regular intervals we reviewed the shape and organization
of the book and further molded it, leading to what you see today.

The team includes:

Tom Fifield After learning about scalability in com-
puting from particle physics exper-
iments, such as ATLAS at the Large
Hadron Collider (LHC) at CERN, Tom
worked on OpenStack clouds in pro-
duction to support the Australian pub-
lic research sector. Tom currently serves

http://www.booksprints.net/
http://www.booksprints.net/

OpenStack Ops Guide September 12, 2014

24

as an OpenStack community manager
and works on OpenStack documenta-
tion in his spare time.

Diane Fleming Diane works on the OpenStack API
documentation tirelessly. She helped
out wherever she could on this project.

Anne Gentle Anne is the documentation coordinator
for OpenStack and also served as an in-
dividual contributor to the Google Doc-
umentation Summit in 2011, working
with the Open Street Maps team. She
has worked on book sprints in the past,
with FLOSS Manuals’ Adam Hyde facili-
tating. Anne lives in Austin, Texas.

Lorin Hochstein An academic turned software-develop-
er-slash-operator, Lorin worked as the
lead architect for Cloud Services at Nim-
bis Services, where he deploys Open-
Stack for technical computing applica-
tions. He has been working with Open-
Stack since the Cactus release. Previ-
ously, he worked on high-performance
computing extensions for OpenStack
at University of Southern California's In-
formation Sciences Institute (USC-ISI).

Adam Hyde Adam facilitated this book sprint. He al-
so founded the books sprint methodol-
ogy and is the most experienced book-
sprint facilitator around. See http://
www.booksprints.net for more infor-
mation. Adam founded FLOSS Manu-
als—a community of some 3,000 indi-
viduals developing Free Manuals about
Free Software. He is also the founder
and project manager for Booktype, an
open source project for writing, edit-
ing, and publishing books online and in
print.

Jonathan Proulx Jon has been piloting an OpenStack
cloud as a senior technical architect at

http://www.booksprints.net
http://www.booksprints.net

OpenStack Ops Guide September 12, 2014

25

the MIT Computer Science and Artifi-
cial Intelligence Lab for his researchers
to have as much computing power as
they need. He started contributing to
OpenStack documentation and review-
ing the documentation so that he could
accelerate his learning.

Everett Toews Everett is a developer advocate at
Rackspace making OpenStack and the
Rackspace Cloud easy to use. Some-
times developer, sometimes advocate,
and sometimes operator, he's built web
applications, taught workshops, given
presentations around the world, and
deployed OpenStack for production
use by academia and business.

Joe Topjian Joe has designed and deployed sever-
al clouds at Cybera, a nonprofit where
they are building e-infrastructure to
support entrepreneurs and local re-
searchers in Alberta, Canada. He also
actively maintains and operates these
clouds as a systems architect, and his
experiences have generated a wealth
of troubleshooting skills for cloud envi-
ronments.

OpenStack community mem-
bers

Many individual efforts keep a commu-
nity book alive. Our community mem-
bers updated content for this book
year-round. Also, a year after the first
sprint, Jon Proulx hosted a second two-
day mini-sprint at MIT with the goal
of updating the book for the latest re-
lease. Since the book's inception, more
than 30 contributors have supported
this book. We have a tool chain for re-
views, continuous builds, and trans-
lations. Writers and developers con-
tinuously review patches, enter doc
bugs, edit content, and fix doc bugs.
We want to recognize their efforts!

OpenStack Ops Guide September 12, 2014

26

The following people have contribut-
ed to this book: Akihiro Motoki, Ale-
jandro Avella, Alexandra Settle, An-
dreas Jaeger, Andy McCallum, Ben-
jamin Stassart, Chandan Kumar, Chris
Ricker, David Cramer, David Wittman,
Denny Zhang, Emilien Macchi, Gau-
vain Pocentek, Ignacio Barrio, James
E. Blair, Jay Clark, Jeff White, Jeremy
Stanley, K Jonathan Harker, KATO To-
moyuki, Lana Brindley, Laura Alves, Lee
Li, Lukasz Jernas, Mario B. Codeniera,
Matthew Kassawara, Michael Still,
Monty Taylor, Nermina Miller, Nigel
Williams, Phil Hopkins, Russell Bryant,
Sahid Orentino Ferdjaoui, Sandy Walsh,
Sascha Peilicke, Sean M. Collins, Sergey
Lukjanov, Shilla Saebi, Stephen Gordon,
Summer Long, Uwe Stuehler, Vaibhav
Bhatkar, Veronica Musso, Ying Chun
"Daisy" Guo, Zhengguang Ou, and
ZhiQiang Fan.

How to Contribute to This Book
The genesis of this book was an in-person event, but now that the book is
in your hands, we want you to contribute to it. OpenStack documentation
follows the coding principles of iterative work, with bug logging, investi-
gating, and fixing. We also store the source content on GitHub and invite
collaborators through the OpenStack Gerrit installation, which offers re-
views. For the O'Reilly edition of this book, we are using the company's At-
las system, which also stores source content on GitHub and enables collab-
oration among contributors.

Learn more about how to contribute to the OpenStack docs at Documen-
tation How To.

If you find a bug and can't fix it or aren't sure it's really a doc bug, log a
bug at OpenStack Manuals. Tag the bug under Extra options with the
ops-guide tag to indicate that the bug is in this guide. You can assign
the bug to yourself if you know how to fix it. Also, a member of the Open-
Stack doc-core team can triage the doc bug.

https://wiki.openstack.org/wiki/Documentation/HowTo
https://wiki.openstack.org/wiki/Documentation/HowTo
https://bugs.launchpad.net/openstack-manuals

OpenStack Ops Guide September 12, 2014

27

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic Indicates new terms, URLs, email addresses,
filenames, and file extensions.

Constant width Used for program listings, as well as with-
in paragraphs to refer to program ele-
ments such as variable or function names,
databases, data types, environment vari-
ables, statements, and keywords.

Constant width bold Shows commands or other text that should
be typed literally by the user.

Constant width italic Shows text that should be replaced with us-
er-supplied values or by values determined
by context.

Command prompts Commands prefixed with the # prompt
should be executed by the root user.
These examples can also be executed using
the sudo command, if available.

Commands prefixed with the $ prompt can
be executed by any user, including root.

Tip

This element signifies a tip or suggestion.

Note

This element signifies a general note.

Warning

This element indicates a warning or caution.

Part I. Architecture
Designing an OpenStack cloud is a great achievement. It requires a robust under-
standing of the requirements and needs of the cloud's users to determine the best
possible configuration to meet them. OpenStack provides a great deal of flexibility to
achieve your needs, and this part of the book aims to shine light on many of the deci-
sions you need to make during the process.

To design, deploy, and configure OpenStack, administrators must understand the
logical architecture. A diagram can help you envision all the integrated services with-
in OpenStack and how they interact with each other.

OpenStack modules are one of the following types:

Daemon Runs as a background process. On Linux plat-
forms, a daemon is usually installed as a service.

Script Installs a virtual environment and runs tests.

Command-line interface (CLI) Enables users to submit API calls to OpenStack
services through commands.

As shown, end users can interact through the dashboard, CLIs, and APIs. All services
authenticate through a common Identity Service, and individual services interact with
each other through public APIs, except where privileged administrator commands
are necessary. Figure 1, “OpenStack Logical Architecture ()” [2] shows the most
common, but not the only logical architecture for an OpenStack cloud.

OpenStack Ops Guide September 12, 2014

2

Figure 1. OpenStack Logical Architecture (http://docs.openstack.org/
openstack-ops/content/figures/2/figures/osog_0001.png)

http://docs.openstack.org/openstack-ops/content/figures/2/figures/osog_0001.png
http://docs.openstack.org/openstack-ops/content/figures/2/figures/osog_0001.png

OpenStack Ops Guide September 12, 2014

3

1. Example Architectures
Example Architecture—Legacy Networking (nova) 3
Example Architecture—OpenStack Networking 9
Parting Thoughts on Architectures ... 25

To understand the possibilities OpenStack offers, it's best to start with ba-
sic architectures that are tried-and-true and have been tested in produc-
tion environments. We offer two such examples with basic pivots on the
base operating system (Ubuntu and Red Hat Enterprise Linux) and the net-
working architectures. There are other differences between these two ex-
amples, but you should find the considerations made for the choices in
each as well as a rationale for why it worked well in a given environment.

Because OpenStack is highly configurable, with many different backends
and network configuration options, it is difficult to write documentation
that covers all possible OpenStack deployments. Therefore, this guide de-
fines example architectures to simplify the task of documenting, as well as
to provide the scope for this guide. Both of the offered architecture exam-
ples are currently running in production and serving users.

Tip

As always, refer to the Glossary [297] if you are unclear
about any of the terminology mentioned in these architec-
tures.

Example Architecture—Legacy Network-
ing (nova)

This particular example architecture has been upgraded from Grizzly to
Havana and tested in production environments where many public IP ad-
dresses are available for assignment to multiple instances. You can find a
second example architecture that uses OpenStack Networking (neutron)
after this section. Each example offers high availability, meaning that if a
particular node goes down, another node with the same configuration can
take over the tasks so that service continues to be available.

Overview
The simplest architecture you can build upon for Compute has a single
cloud controller and multiple compute nodes. The simplest architecture for

OpenStack Ops Guide September 12, 2014

4

Object Storage has five nodes: one for identifying users and proxying re-
quests to the API, then four for storage itself to provide enough replica-
tion for eventual consistency. This example architecture does not dictate
a particular number of nodes, but shows the thinking and considerations
that went into choosing this architecture including the features offered.

Components

Component Details

OpenStack release Havana

Host operating system Ubuntu 12.04 LTS or Red Hat Enterprise Linux 6.5, includ-
ing derivatives such as CentOS and Scientific Linux

OpenStack package repository Ubuntu Cloud Archive or RDO*

Hypervisor KVM

Database MySQL*

Message queue RabbitMQ for Ubuntu; Qpid for Red Hat Enterprise Linux
and derivatives

Networking service nova-network

Network manager FlatDHCP

Single nova-network or multi-host? multi-host*

Image Service (glance) backend file

Identity Service (keystone) driver SQL

Block Storage Service (cinder) back-
end

LVM/iSCSI

Live Migration backend Shared storage using NFS*

Object storage OpenStack Object Storage (swift)

An asterisk (*) indicates when the example architecture deviates from the
settings of a default installation. We'll offer explanations for those devia-
tions next.

Note

The following features of OpenStack are supported by the ex-
ample architecture documented in this guide, but are optional:

• Dashboard: You probably want to offer a dashboard, but
your users may be more interested in API access only.

• Block storage: You don't have to offer users block storage
if their use case only needs ephemeral storage on compute
nodes, for example.

https://wiki.ubuntu.com/ServerTeam/CloudArchive
http://openstack.redhat.com/Frequently_Asked_Questions

OpenStack Ops Guide September 12, 2014

5

• Floating IP address: Floating IP addresses are public IP ad-
dresses that you allocate from a predefined pool to assign to
virtual machines at launch. Floating IP address ensure that
the public IP address is available whenever an instance is
booted. Not every organization can offer thousands of pub-
lic floating IP addresses for thousands of instances, so this
feature is considered optional.

• Live migration: If you need to move running virtual machine
instances from one host to another with little or no service
interruption, you would enable live migration, but it is con-
sidered optional.

• Object storage: You may choose to store machine images on
a file system rather than in object storage if you do not have
the extra hardware for the required replication and redun-
dancy that OpenStack Object Storage offers.

Rationale

This example architecture has been selected based on the current default
feature set of OpenStack Havana, with an emphasis on stability. We be-
lieve that many clouds that currently run OpenStack in production have
made similar choices.

You must first choose the operating system that runs on all of the physical
nodes. While OpenStack is supported on several distributions of Linux, we
used Ubuntu 12.04 LTS (Long Term Support), which is used by the majority
of the development community, has feature completeness compared with
other distributions and has clear future support plans.

We recommend that you do not use the default Ubuntu OpenStack install
packages and instead use the Ubuntu Cloud Archive. The Cloud Archive is
a package repository supported by Canonical that allows you to upgrade
to future OpenStack releases while remaining on Ubuntu 12.04.

KVM as a hypervisor complements the choice of Ubuntu—being a matched
pair in terms of support, and also because of the significant degree of at-
tention it garners from the OpenStack development community (including
the authors, who mostly use KVM). It is also feature complete, free from li-
censing charges and restrictions.

MySQL follows a similar trend. Despite its recent change of ownership, this
database is the most tested for use with OpenStack and is heavily docu-

https://wiki.ubuntu.com/ServerTeam/CloudArchive

OpenStack Ops Guide September 12, 2014

6

mented. We deviate from the default database, SQLite, because SQLite is
not an appropriate database for production usage.

The choice of RabbitMQ over other AMQP compatible options that are
gaining support in OpenStack, such as ZeroMQ and Qpid, is due to its ease
of use and significant testing in production. It also is the only option that
supports features such as Compute cells. We recommend clustering with
RabbitMQ, as it is an integral component of the system and fairly simple to
implement due to its inbuilt nature.

As discussed in previous chapters, there are several options for networking
in OpenStack Compute. We recommend FlatDHCP and to use Multi-Host
networking mode for high availability, running one nova-network dae-
mon per OpenStack compute host. This provides a robust mechanism for
ensuring network interruptions are isolated to individual compute hosts,
and allows for the direct use of hardware network gateways.

Live Migration is supported by way of shared storage, with NFS as the dis-
tributed file system.

Acknowledging that many small-scale deployments see running Object
Storage just for the storage of virtual machine images as too costly, we
opted for the file backend in the OpenStack Image Service (Glance). If your
cloud will include Object Storage, you can easily add it as a backend.

We chose the SQL backend for Identity Service (keystone) over others, such
as LDAP. This backend is simple to install and is robust. The authors ac-
knowledge that many installations want to bind with existing directory ser-
vices and caution careful understanding of the array of options available.

Block Storage (cinder) is installed natively on external storage nodes and
uses the LVM/iSCSI plug-in. Most Block Storage Service plug-ins are tied to
particular vendor products and implementations limiting their use to con-
sumers of those hardware platforms, but LVM/iSCSI is robust and stable
on commodity hardware.

http://docs.openstack.org/havana/config-reference/content/ch_configuring-openstack-identity.html#configuring-keystone-for-ldap-backend

OpenStack Ops Guide September 12, 2014

7

While the cloud can be run without the OpenStack Dashboard, we consid-
er it to be indispensable, not just for user interaction with the cloud, but
also as a tool for operators. Additionally, the dashboard's use of Django
makes it a flexible framework for extension.

Why not use the OpenStack Network Service (neutron)?

This example architecture does not use the OpenStack Network Service
(neutron), because it does not yet support multi-host networking and our
organizations (university, government) have access to a large range of
publicly-accessible IPv4 addresses.

Why use multi-host networking?

In a default OpenStack deployment, there is a single nova-network ser-
vice that runs within the cloud (usually on the cloud controller) that pro-
vides services such as network address translation (NAT), DHCP, and DNS
to the guest instances. If the single node that runs the nova-network
service goes down, you cannot access your instances, and the instances
cannot access the Internet. The single node that runs the nova-network
service can become a bottleneck if excessive network traffic comes in and
goes out of the cloud.

Tip

Multi-host is a high-availability option for the network configu-
ration, where the nova-network service is run on every com-
pute node instead of running on only a single node.

Detailed Description

The reference architecture consists of multiple compute nodes, a cloud
controller, an external NFS storage server for instance storage, and an
OpenStack Block Storage server for volume storage. A network time ser-
vice (Network Time Protocol, or NTP) synchronizes time on all the nodes.
FlatDHCPManager in multi-host mode is used for the networking. A logical
diagram for this example architecture shows which services are running on
each node:

http://docs.openstack.org/havana/install-guide/install/apt/content/nova-network.html

OpenStack Ops Guide September 12, 2014

8

The cloud controller runs the dashboard, the API services, the database
(MySQL), a message queue server (RabbitMQ), the scheduler for choosing
compute resources (nova-scheduler), Identity services (keystone, no-
va-consoleauth), Image services (glance-api, glance-registry),
services for console access of guests, and Block Storage services, including
the scheduler for storage resources (cinder-api and cinder-sched-
uler).

Compute nodes are where the computing resources are held, and in our
example architecture, they run the hypervisor (KVM), libvirt (the driver
for the hypervisor, which enables live migration from node to node), no-
va-compute, nova-api-metadata (generally only used when run-
ning in multi-host mode, it retrieves instance-specific metadata), no-
va-vncproxy, and nova-network.

OpenStack Ops Guide September 12, 2014

9

The network consists of two switches, one for the management or private
traffic, and one that covers public access, including floating IPs. To sup-
port this, the cloud controller and the compute nodes have two network
cards. The OpenStack Block Storage and NFS storage servers only need to
access the private network and therefore only need one network card, but
multiple cards run in a bonded configuration are recommended if possi-
ble. Floating IP access is direct to the Internet, whereas Flat IP access goes
through a NAT. To envision the network traffic, use this diagram:

Optional Extensions

You can extend this reference architecture as follows:

• Add additional cloud controllers (see Chapter 11, “Maintenance, Fail-
ures, and Debugging” [133]).

• Add an OpenStack Storage service (see the Object Storage chapter in
the OpenStack Installation Guide for your distribution).

• Add additional OpenStack Block Storage hosts (see Chapter 11, “Mainte-
nance, Failures, and Debugging” [133]).

Example Architecture—OpenStack Net-
working

This chapter provides an example architecture using OpenStack Network-
ing, also known as the Neutron project, in a highly available environment.

OpenStack Ops Guide September 12, 2014

10

Overview

A highly-available environment can be put into place if you require an en-
vironment that can scale horizontally, or want your cloud to continue to
be operational in case of node failure. This example architecture has been
written based on the current default feature set of OpenStack Havana,
with an emphasis on high availability.

Components

Component Details

OpenStack release Havana

Host operating system Red Hat Enterprise Linux 6.5

OpenStack package repository Red Hat Distributed OpenStack (RDO)

Hypervisor KVM

Database MySQL

Message queue Qpid

Networking service OpenStack Networking

Tenant Network Separation VLAN

Image Service (glance) backend GlusterFS

Identity Service (keystone) driver SQL

Block Storage Service (cinder) back-
end

GlusterFS

Rationale

This example architecture has been selected based on the current default
feature set of OpenStack Havana, with an emphasis on high availability.
This architecture is currently being deployed in an internal Red Hat Open-
Stack cloud and used to run hosted and shared services, which by their na-
ture must be highly available.

This architecture's components have been selected for the following rea-
sons:

Red Hat Enterprise Linux You must choose an operating sys-
tem that can run on all of the physi-
cal nodes. This example architecture
is based on Red Hat Enterprise Linux,
which offers reliability, long-term sup-
port, certified testing, and is hardened.
Enterprise customers, now moving in-

https://repos.fedorapeople.org/repos/openstack/openstack-havana/rdo-release-havana-7.noarch.rpm

OpenStack Ops Guide September 12, 2014

11

to OpenStack usage, typically require
these advantages.

RDO The Red Hat Distributed OpenStack
package offers an easy way to down-
load the most current OpenStack re-
lease that is built for the Red Hat Enter-
prise Linux platform.

KVM KVM is the supported hypervisor of
choice for Red Hat Enterprise Linux
(and included in distribution). It is fea-
ture complete and free from licensing
charges and restrictions.

MySQL MySQL is used as the database back-
end for all databases in the OpenStack
environment. MySQL is the supported
database of choice for Red Hat Enter-
prise Linux (and included in distribu-
tion); the database is open source, scal-
able, and handles memory well.

Qpid Apache Qpid offers 100 percent com-
patibility with the Advanced Message
Queuing Protocol Standard, and its
broker is available for both C++ and Ja-
va.

OpenStack Networking OpenStack Networking offers sophisti-
cated networking functionality, includ-
ing Layer 2 (L2) network segregation
and provider networks.

VLAN Using a virtual local area network of-
fers broadcast control, security, and
physical layer transparency. If need-
ed, use VXLAN to extend your address
space.

GlusterFS GlusterFS offers scalable storage. As
your environment grows, you can con-
tinue to add more storage nodes (in-
stead of being restricted, for example,
by an expensive storage array).

OpenStack Ops Guide September 12, 2014

12

Detailed Description

Node types

This section gives you a breakdown of the different nodes that make up
the OpenStack environment. A node is a physical machine that is provi-
sioned with an operating system, and running a defined software stack on
top of it. Table 1.1, “Node types” [12] provides node descriptions and
specifications.

Table 1.1. Node types

Type Description Example hardware

Con-
troller

Controller nodes are responsible for running the manage-
ment software services needed for the OpenStack environ-
ment to function. These nodes:

• Provide the front door that people access as well as the
API services that all other components in the environ-
ment talk to.

• Run a number of services in a highly available fashion,
utilizing Pacemaker and HAProxy to provide a virtual IP
and load-balancing functions so all controller nodes are
being used.

• Supply highly available "infrastructure" services, such as
MySQL and Qpid, that underpin all the services.

• Provide what is known as "persistent storage" through
services run on the host as well. This persistent storage is
backed onto the storage nodes for reliability.

See Figure 1.3, “Controller node” [18].

Model: Dell R620

CPU: 2 x Intel® Xeon®
CPU E5-2620 0 @ 2.00
GHz

Memory: 32 GB

Disk: 2 x 300 GB 10000
RPM SAS Disks

Network: 2 x 10G net-
work ports

Compute Compute nodes run the virtual machine instances in Open-
Stack. They:

• Run the bare minimum of services needed to facilitate
these instances.

• Use local storage on the node for the virtual machines so
that no VM migration or instance recovery at node fail-
ure is possible.

See Figure 1.4, “Compute node” [19].

Model: Dell R620

CPU: 2x Intel® Xeon®
CPU E5-2650 0 @ 2.00
GHz

Memory: 128 GB

Disk: 2 x 600 GB 10000
RPM SAS Disks

Network: 4 x 10G net-
work ports (For future
proofing expansion)

Storage Storage nodes store all the data required for the environ-
ment, including disk images in the Image Service library,
and the persistent storage volumes created by the Block
Storage service. Storage nodes use GlusterFS technology to
keep the data highly available and scalable.

Model: Dell R720xd

CPU: 2 x Intel® Xeon®
CPU E5-2620 0 @ 2.00
GHz

OpenStack Ops Guide September 12, 2014

13

Type Description Example hardware

See Figure 1.6, “Storage node” [21]. Memory: 64 GB

Disk: 2 x 500 GB 7200
RPM SAS Disks + 24 x
600 GB 10000 RPM SAS
Disks

Raid Controller: PERC
H710P Integrated RAID
Controller, 1 GB NV
Cache

Network: 2 x 10G net-
work ports

Network Network nodes are responsible for doing all the virtual net-
working needed for people to create public or private net-
works and uplink their virtual machines into external net-
works. Network nodes:

• Form the only ingress and egress point for instances run-
ning on top of OpenStack.

• Run all of the environment's networking services, with
the exception of the networking API service (which runs
on the controller node).

See Figure 1.5, “Network node” [20].

Model: Dell R620

CPU: 1 x Intel® Xeon®
CPU E5-2620 0 @ 2.00
GHz

Memory: 32 GB

Disk: 2 x 300 GB 10000
RPM SAS Disks

Network: 5 x 10G net-
work ports

Utility Utility nodes are used by internal administration staff on-
ly to provide a number of basic system administration func-
tions needed to get the environment up and running and
to maintain the hardware, OS, and software on which it
runs.

These nodes run services such as provisioning, configuration
management, monitoring, or GlusterFS management soft-
ware. They are not required to scale, although these ma-
chines are usually backed up.

Model: Dell R620

CPU: 2x Intel® Xeon®
CPU E5-2620 0 @ 2.00
GHz

Memory: 32 GB

Disk: 2 x 500 GB 7200
RPM SAS Disks

Network: 2 x 10G net-
work ports

Networking layout

The network contains all the management devices for all hardware in the
environment (for example, by including Dell iDrac7 devices for the hard-
ware nodes, and management interfaces for network switches). The net-
work is accessed by internal staff only when diagnosing or recovering a
hardware issue.

OpenStack internal network

This network is used for OpenStack management functions and traffic, in-
cluding services needed for the provisioning of physical nodes (pxe, tftp,

OpenStack Ops Guide September 12, 2014

14

kickstart), traffic between various OpenStack node types using Open-
Stack APIs and messages (for example, nova-compute talking to key-
stone or cinder-volume talking to nova-api), and all traffic for stor-
age data to the storage layer underneath by the Gluster protocol. All phys-
ical nodes have at least one network interface (typically eth0) in this net-
work. This network is only accessible from other VLANs on port 22 (for
ssh access to manage machines).

OpenStack Ops Guide September 12, 2014

15

Public Network

This network is a combination of:

• IP addresses for public-facing interfaces on the controller nodes (which
end users will access the OpenStack services)

• A range of publicly routable, IPv4 network addresses to be used by
OpenStack Networking for floating IPs. You may be restricted in your ac-
cess to IPv4 addresses; a large range of IPv4 addresses is not necessary.

• Routers for private networks created within OpenStack.

This network is connected to the controller nodes so users can access the
OpenStack interfaces, and connected to the network nodes to provide
VMs with publicly routable traffic functionality. The network is also con-
nected to the utility machines so that any utility services that need to be
made public (such as system monitoring) can be accessed.

VM traffic network

This is a closed network that is not publicly routable and is simply used as
a private, internal network for traffic between virtual machines in Open-
Stack, and between the virtual machines and the network nodes that pro-
vide l3 routes out to the public network (and floating IPs for connections
back in to the VMs). Because this is a closed network, we are using a differ-
ent address space to the others to clearly define the separation. Only Com-
pute and OpenStack Networking nodes need to be connected to this net-
work.

Node connectivity

The following section details how the nodes are connected to the differ-
ent networks (see the section called “Networking layout” [13]) and what
other considerations need to take place (for example, bonding) when con-
necting nodes to the networks.

Initial deployment

Initially, the connection setup should revolve around keeping the connec-
tivity simple and straightforward in order to minimize deployment com-
plexity and time to deploy. The deployment shown in Figure 1.1, “Basic
node deployment” [16] aims to have 1 x 10G connectivity available to
all compute nodes, while still leveraging bonding on appropriate nodes for
maximum performance.

OpenStack Ops Guide September 12, 2014

16

Figure 1.1. Basic node deployment

Connectivity for maximum performance

If the networking performance of the basic layout is not enough, you can
move to Figure 1.2, “Performance node deployment” [17], which pro-
vides 2 x 10G network links to all instances in the environment as well as
providing more network bandwidth to the storage layer.

OpenStack Ops Guide September 12, 2014

17

Figure 1.2. Performance node deployment

Node diagrams

The following diagrams (Figure 1.3, “Controller node” [18] through
Figure 1.6, “Storage node” [21]) include logical information about the
different types of nodes, indicating what services will be running on top of
them and how they interact with each other. The diagrams also illustrate
how the availability and scalability of services are achieved.

OpenStack Ops Guide September 12, 2014

18

Figure 1.3. Controller node

OpenStack Ops Guide September 12, 2014

19

Figure 1.4. Compute node

OpenStack Ops Guide September 12, 2014

20

Figure 1.5. Network node

OpenStack Ops Guide September 12, 2014

21

Figure 1.6. Storage node

Example Component Configuration
Table 1.2, “Third-party component configuration” [21] and Table 1.3,
“OpenStack component configuration” [23] include example config-
uration and considerations for both third-party and OpenStack compo-
nents:

Table 1.2. Third-party component configuration

Compo-
nent

Tuning Availability Scalability

MySQL binlog-format = row Master/master replication.
However, both nodes are
not used at the same time.
Replication keeps all nodes
as close to being up to date
as possible (although the
asynchronous nature of
the replication means a ful-
ly consistent state is not
possible). Connections to

Not heavily considered.
Once load on the MySQL
server increases enough
that scalability needs to be
considered, multiple mas-
ters or a master/slave setup
can be used.

OpenStack Ops Guide September 12, 2014

22

Compo-
nent

Tuning Availability Scalability

the database only happen
through a Pacemaker vir-
tual IP, ensuring that most
problems that occur with
master-master replication
can be avoided.

Qpid max-connections=1000
worker-threads=20
connection-back-
log=10, sasl security en-
abled with SASL-BASIC au-
thentication

Qpid is added as a resource
to the Pacemaker software
that runs on Controller
nodes where Qpid is situat-
ed. This ensures only one
Qpid instance is running
at one time, and the node
with the Pacemaker virtual
IP will always be the node
running Qpid.

Not heavily considered.
However, Qpid can be
changed to run on all con-
troller nodes for scalabili-
ty and availability purpos-
es, and removed from Pace-
maker.

HAProxy maxconn 3000 HAProxy is a software lay-
er-7 load balancer used
to front door all clustered
OpenStack API compo-
nents and do SSL termina-
tion. HAProxy can be added
as a resource to the Pace-
maker software that runs
on the Controller nodes
where HAProxy is situated.
This ensures that only one
HAProxy instance is running
at one time, and the node
with the Pacemaker virtual
IP will always be the node
running HAProxy.

Not considered. HAProxy
has small enough perfor-
mance overheads that a sin-
gle instance should scale
enough for this level of
workload. If extra scalability
is needed, keepalived or
other Layer-4 load balanc-
ing can be introduced to be
placed in front of multiple
copies of HAProxy.

Mem-
cached

MAXCONN="8192"
CACHESIZE="30457"

Memcached is a fast in-
memory key-value cache
software that is used by
OpenStack components for
caching data and increasing
performance. Memcached
runs on all controller nodes,
ensuring that should one go
down, another instance of
Memcached is available.

Not considered. A single
instance of Memcached
should be able to scale to
the desired workloads.
If scalability is desired,
HAProxy can be placed in
front of Memcached (in raw
tcp mode) to utilize multi-
ple Memcached instances
for scalability. However, this
might cause cache consis-
tency issues.

Pace-
maker

Configured to use
corosync and cman as
a cluster communication
stack/quorum manager,
and as a two-node cluster.

Pacemaker is the clustering
software used to ensure the
availability of services run-
ning on the controller and
network nodes:

• Because Pacemaker is
cluster software, the soft-
ware itself handles its

If more nodes need to
be made cluster aware,
Pacemaker can scale to 64
nodes.

OpenStack Ops Guide September 12, 2014

23

Compo-
nent

Tuning Availability Scalability

own availability, leverag-
ing corosync and cman
underneath.

• If you use the GlusterFS
native client, no virtual IP
is needed, since the client
knows all about nodes
after initial connection
and automatically routes
around failures on the
client side.

• If you use the NFS or SMB
adaptor, you will need
a virtual IP on which to
mount the GlusterFS vol-
umes.

Glus-
terFS

glusterfs performance
profile "virt" enabled on all
volumes. Volumes are setup
in two-node replication.

Glusterfs is a clustered file
system that is run on the
storage nodes to provide
persistent scalable data
storage in the environment.
Because all connections to
gluster use the gluster
native mount points, the
gluster instances them-
selves provide availability
and failover functionality.

The scalability of GlusterFS
storage can be achieved by
adding in more storage vol-
umes.

Table 1.3. OpenStack component configuration

Com-
po-
nent

Node
type

Tuning Availability Scalability

Dash-
board
(hori-
zon)

Con-
troller

Configured to use
Memcached as a ses-
sion store, neutron
support is enabled,
can_set_mount_point
= False

The dashboard is run on
all controller nodes, ensur-
ing at least one instance
will be available in case
of node failure. It also sits
behind HAProxy, which
detects when the soft-
ware fails and routes re-
quests around the failing
instance.

The dashboard is run on all
controller nodes, so scala-
bility can be achieved with
additional controller nodes.
HAProxy allows scalability
for the dashboard as more
nodes are added.

Iden-
tity
(key-
stone)

Con-
troller

Configured to use
Memcached for
caching and PKI for to-
kens.

Identity is run on all con-
troller nodes, ensuring at
least one instance will be
available in case of node
failure. Identity also sits
behind HAProxy, which
detects when the soft-
ware fails and routes re-

Identity is run on all con-
troller nodes, so scalabili-
ty can be achieved with ad-
ditional controller nodes.
HAProxy allows scalability
for Identity as more nodes
are added.

OpenStack Ops Guide September 12, 2014

24

Com-
po-
nent

Node
type

Tuning Availability Scalability

quests around the failing
instance.

Image
Ser-
vice
(glance)

Con-
troller

/var/lib/glance/
images is a GlusterFS
native mount to a
Gluster volume off the
storage layer.

The Image Service is run
on all controller nodes,
ensuring at least one in-
stance will be available in
case of node failure. It al-
so sits behind HAProxy,
which detects when the
software fails and routes
requests around the failing
instance.

The Image Service is run on
all controller nodes, so scal-
ability can be achieved with
additional controller nodes.
HAProxy allows scalabili-
ty for the Image Service as
more nodes are added.

Com-
pute
(nova)

Con-
troller,
Com-
pute

Configured
to use Qpid,
qpid_heartbeat
= 10, configured to
use Memcached for
caching, configured to
use libvirt, config-
ured to use neutron.

Configured no-
va-consoleauth to
use Memcached for
session management
(so that it can have
multiple copies and
run in a load balancer).

The nova API, scheduler,
objectstore, cert, con-
soleauth, conductor, and
vncproxy services are run
on all controller nodes, en-
suring at least one instance
will be available in case
of node failure. Compute
is also behind HAProxy,
which detects when the
software fails and routes
requests around the failing
instance.

Compute's compute and
conductor services, which
run on the compute nodes,
are only needed to run
services on that node, so
availability of those ser-
vices is coupled tightly to
the nodes that are avail-
able. As long as a compute
node is up, it will have the
needed services running
on top of it.

The nova API, scheduler,
objectstore, cert, con-
soleauth, conductor, and
vncproxy services are run
on all controller nodes, so
scalability can be achieved
with additional controller
nodes. HAProxy allows scal-
ability for Compute as more
nodes are added. The scala-
bility of services running on
the compute nodes (com-
pute, conductor) is achieved
linearly by adding in more
compute nodes.

Block
Stor-
age
(cin-
der)

Con-
troller

Configured
to use Qpid,
qpid_heartbeat =
10, configured to use
a Gluster volume from
the storage layer as
the backend for Block
Storage, using the
Gluster native client.

Block Storage API, sched-
uler, and volume services
are run on all controller
nodes, ensuring at least
one instance will be avail-
able in case of node fail-
ure. Block Storage al-
so sits behind HAProxy,
which detects if the soft-
ware fails and routes re-
quests around the failing
instance.

Block Storage API, sched-
uler and volume services
are run on all controller
nodes, so scalability can be
achieved with additional
controller nodes. HAProxy
allows scalability for Block
Storage as more nodes are
added.

Open-
Stack

Con-
troller,

Configured
to use QPID,

The OpenStack Network-
ing service is run on all con-

The OpenStack Networking
server service is run on all

OpenStack Ops Guide September 12, 2014

25

Com-
po-
nent

Node
type

Tuning Availability Scalability

Net-
work-
ing
(neu-
tron)

Com-
pute,
Net-
work

qpid_heartbeat
= 10, kernel names-
pace support enabled,
tenant_network_type
= vlan,
allow_overlapping_ips
= true,
tenant_network_type
= vlan,
bridge_uplinks
= br-ex:em2,
bridge_mappings
= physnet1:br-ex

troller nodes, ensuring at
least one instance will be
available in case of node
failure. It also sits behind
HAProxy, which detects
if the software fails and
routes requests around the
failing instance.

OpenStack Networking's
ovs-agent, l3-agent,
dhcp-agent, and meta-
data-agent services run
on the network nodes, as
lsb resources inside of
Pacemaker. This means
that in the case of network
node failure, services are
kept running on another
node. Finally, the ovs-
agent service is also run
on all compute nodes, and
in case of compute node
failure, the other nodes
will continue to function
using the copy of the ser-
vice running on them.

controller nodes, so scala-
bility can be achieved with
additional controller nodes.
HAProxy allows scalability
for OpenStack Networking
as more nodes are added.
Scalability of services run-
ning on the network nodes
is not currently supported
by OpenStack Networking,
so they are not be consid-
ered. One copy of the ser-
vices should be sufficient to
handle the workload. Scal-
ability of the ovs-agent
running on compute nodes
is achieved by adding in
more compute nodes as
necessary.

Parting Thoughts on Architectures
With so many considerations and options available, our hope is to pro-
vide a few clearly-marked and tested paths for your OpenStack explo-
ration. If you're looking for additional ideas, check out Appendix A, Use
Cases [269], the OpenStack Installation Guides, or the OpenStack User
Stories page.

http://docs.openstack.org/
http://www.openstack.org/user-stories/
http://www.openstack.org/user-stories/

OpenStack Ops Guide September 12, 2014

27

2. Provisioning and Deployment
Automated Deployment .. 27
Automated Configuration .. 30
Remote Management .. 31
Parting Thoughts for Provisioning and Deploying OpenStack 31
Conclusion ... 32

A critical part of a cloud's scalability is the amount of effort that it takes to
run your cloud. To minimize the operational cost of running your cloud,
set up and use an automated deployment and configuration infrastructure
with a configuration management system, such as Puppet or Chef. Com-
bined, these systems greatly reduce manual effort and the chance for op-
erator error.

This infrastructure includes systems to automatically install the operating
system's initial configuration and later coordinate the configuration of all
services automatically and centrally, which reduces both manual effort and
the chance for error. Examples include Ansible, Chef, Puppet, and Salt. You
can even use OpenStack to deploy OpenStack, fondly named TripleO, for
OpenStack On OpenStack.

Automated Deployment
An automated deployment system installs and configures operating sys-
tems on new servers, without intervention, after the absolute minimum
amount of manual work, including physical racking, MAC-to-IP assignment,
and power configuration. Typically, solutions rely on wrappers around PXE
boot and TFTP servers for the basic operating system install and then hand
off to an automated configuration management system.

Both Ubuntu and Red Hat Enterprise Linux include mechanisms for config-
uring the operating system, including preseed and kickstart, that you can
use after a network boot. Typically, these are used to bootstrap an auto-
mated configuration system. Alternatively, you can use an image-based ap-
proach for deploying the operating system, such as systemimager. You can
use both approaches with a virtualized infrastructure, such as when you
run VMs to separate your control services and physical infrastructure.

When you create a deployment plan, focus on a few vital areas because
they are very hard to modify post deployment. The next two sections talk
about configurations for:

OpenStack Ops Guide September 12, 2014

28

• Disk partioning and disk array setup for scalability

• Networking configuration just for PXE booting

Disk Partitioning and RAID
At the very base of any operating system are the hard drives on which the
operating system (OS) is installed.

You must complete the following configurations on the server's hard
drives:

• Partitioning, which provides greater flexibility for layout of operating
system and swap space, as described below.

• Adding to a RAID array (RAID stands for redundant array of indepen-
dent disks), based on the number of disks you have available, so that
you can add capacity as your cloud grows. Some options are described in
more detail below.

The simplest option to get started is to use one hard drive with two parti-
tions:

• File system to store files and directories, where all the data lives, includ-
ing the root partition that starts and runs the system

• Swap space to free up memory for processes, as an independent area of
the physical disk used only for swapping and nothing else

RAID is not used in this simplistic one-drive setup because generally for pro-
duction clouds, you want to ensure that if one disk fails, another can take
its place. Instead, for production, use more than one disk. The number of
disks determine what types of RAID arrays to build.

We recommend that you choose one of the following multiple disk op-
tions:

Option 1 Partition all drives in the same way in a horizontal fashion, as
shown in Figure 2.1, “Partition setup of drives” [29].

With this option, you can assign different partitions to differ-
ent RAID arrays. You can allocate partition 1 of disk one and
two to the /boot partition mirror. You can make partition 2
of all disks the root partition mirror. You can use partition 3
of all disks for a cinder-volumes LVM partition running on
a RAID 10 array.

OpenStack Ops Guide September 12, 2014

29

Figure 2.1. Partition setup of drives

While you might end up with unused partitions, such as par-
tition 1 in disk three and four of this example, this option al-
lows for maximum utilization of disk space. I/O performance
might be an issue as a result of all disks being used for all
tasks.

Option 2 Add all raw disks to one large RAID array, either hardware or
software based. You can partition this large array with the
boot, root, swap, and LVM areas. This option is simple to im-
plement and uses all partitions. However, disk I/O might suf-
fer.

Option 3 Dedicate entire disks to certain partitions. For example, you
could allocate disk one and two entirely to the boot, root,
and swap partitions under a RAID 1 mirror. Then, allocate
disk three and four entirely to the LVM partition, also un-
der a RAID 1 mirror. Disk I/O should be better because I/O
is focused on dedicated tasks. However, the LVM partition is
much smaller.

Tip

You may find that you can automate the partitioning itself. For
example, MIT uses Fully Automatic Installation (FAI) to do the
initial PXE-based partition and then install using a combination
of min/max and percentage-based partitioning.

As with most architecture choices, the right answer depends on your en-
vironment. If you are using existing hardware, you know the disk densi-
ty of your servers and can determine some decisions based on the options
above. If you are going through a procurement process, your user's re-
quirements also help you determine hardware purchases. Here are some
examples from a private cloud providing web developers custom environ-

http://fai-project.org/

OpenStack Ops Guide September 12, 2014

30

ments at AT&T. This example is from a specific deployment, so your exist-
ing hardware or procurement opportunity may vary from this. AT&T uses
three types of hardware in its deployment:

• Hardware for controller nodes, used for all stateless OpenStack API ser-
vices. About 32–64 GB memory, small attached disk, one processor, var-
ied number of cores, such as 6–12.

• Hardware for compute nodes. Typically 256 or 144 GB memory, two pro-
cessors, 24 cores. 4–6 TB direct attached storage, typically in a RAID 5
configuration.

• Hardware for storage nodes. Typically for these, the disk space is op-
timized for the lowest cost per GB of storage while maintaining rack-
space efficiency.

Again, the right answer depends on your environment. You have to make
your decision based on the trade-offs between space utilization, simplicity,
and I/O performance.

Network Configuration

Network configuration is a very large topic that spans multiple areas of
this book. For now, make sure that your servers can PXE boot and success-
fully communicate with the deployment server.

For example, you usually cannot configure NICs for VLANs when PXE boot-
ing. Additionally, you usually cannot PXE boot with bonded NICs. If you
run into this scenario, consider using a simple 1 GB switch in a private net-
work on which only your cloud communicates.

Automated Configuration
The purpose of automatic configuration management is to establish and
maintain the consistency of a system without using human intervention.
You want to maintain consistency in your deployments so that you can
have the same cloud every time, repeatably. Proper use of automatic con-
figuration-management tools ensures that components of the cloud sys-
tems are in particular states, in addition to simplifying deployment, and
configuration change propagation.

These tools also make it possible to test and roll back changes, as they are
fully repeatable. Conveniently, a large body of work has been done by the
OpenStack community in this space. Puppet, a configuration management

OpenStack Ops Guide September 12, 2014

31

tool, even provides official modules for OpenStack in an OpenStack infras-
tructure system known as Stackforge. Chef configuration management
is provided within https://github.com/stackforge/openstack-chef-repo.
Additional configuration management systems include Juju, Ansible, and
Salt. Also, PackStack is a command-line utility for Red Hat Enterprise Linux
and derivatives that uses Puppet modules to support rapid deployment of
OpenStack on existing servers over an SSH connection.

An integral part of a configuration-management system is the items that
it controls. You should carefully consider all of the items that you want,
or do not want, to be automatically managed. For example, you may not
want to automatically format hard drives with user data.

Remote Management
In our experience, most operators don't sit right next to the servers run-
ning the cloud, and many don't necessarily enjoy visiting the data center.
OpenStack should be entirely remotely configurable, but sometimes not
everything goes according to plan.

In this instance, having an out-of-band access into nodes running Open-
Stack components is a boon. The IPMI protocol is the de facto standard
here, and acquiring hardware that supports it is highly recommended to
achieve that lights-out data center aim.

In addition, consider remote power control as well. While IPMI usually con-
trols the server's power state, having remote access to the PDU that the
server is plugged into can really be useful for situations when everything
seems wedged.

Parting Thoughts for Provisioning and De-
ploying OpenStack

You can save time by understanding the use cases for the cloud you want
to create. Use cases for OpenStack are varied. Some include object storage
only; others require preconfigured compute resources to speed develop-
ment-environment set up; and others need fast provisioning of compute
resources that are already secured per tenant with private networks. Your
users may have need for highly redundant servers to make sure their lega-
cy applications continue to run. Perhaps a goal would be to architect these
legacy applications so that they run on multiple instances in a cloudy, fault-
tolerant way, but not make it a goal to add to those clusters over time.

https://github.com/stackforge/puppet-openstack
https://github.com/stackforge/openstack-chef-repo

OpenStack Ops Guide September 12, 2014

32

Your users may indicate that they need scaling considerations because of
heavy Windows server use.

You can save resources by looking at the best fit for the hardware you
have in place already. You might have some high-density storage hard-
ware available. You could format and repurpose those servers for Open-
Stack Object Storage. All of these considerations and input from users help
you build your use case and your deployment plan.

Tip

For further research about OpenStack deployment, investigate
the supported and documented preconfigured, prepackaged
installers for OpenStack from companies such as Canonical, Cis-
co, Cloudscaling, IBM, Metacloud, Mirantis, Piston, Rackspace,
Red Hat, SUSE, and SwiftStack.

Conclusion
The decisions you make with respect to provisioning and deployment will
affect your day-to-day, week-to-week, and month-to-month maintenance
of the cloud. Your configuration management will be able to evolve over
time. However, more thought and design need to be done for upfront
choices about deployment, disk partitioning, and network configuration.

http://www.ubuntu.com/cloud/ubuntu-openstack
http://www.cisco.com/web/solutions/openstack/index.html
http://www.cisco.com/web/solutions/openstack/index.html
http://www.cloudscaling.com/
http://www-03.ibm.com/software/products/en/smartcloud-orchestrator/
http://www.metacloud.com/
http://www.mirantis.com/
http://www.pistoncloud.com/
http://www.rackspace.com/cloud/private/
http://www.redhat.com/openstack/
https://www.suse.com/products/suse-cloud/
https://www.swiftstack.com/

OpenStack Ops Guide September 12, 2014

33

3. Designing for Cloud Controllers
and Cloud Management

Hardware Considerations ... 35
Separation of Services .. 35
Database ... 36
Message Queue ... 36
Conductor Services ... 37
Application Programming Interface (API) ... 38
Extensions .. 38
Scheduling ... 39
Images ... 39
Dashboard ... 40
Authentication and Authorization .. 40
Network Considerations ... 41

OpenStack is designed to be massively horizontally scalable, which allows
all services to be distributed widely. However, to simplify this guide, we
have decided to discuss services of a more central nature, using the con-
cept of a cloud controller. A cloud controller is just a conceptual simplifi-
cation. In the real world, you design an architecture for your cloud con-
troller that enables high availability so that if any node fails, another can
take over the required tasks. In reality, cloud controller tasks are spread
out across more than a single node.

The cloud controller provides the central management system for Open-
Stack deployments. Typically, the cloud controller manages authentication
and sends messaging to all the systems through a message queue.

For many deployments, the cloud controller is a single node. However, to
have high availability, you have to take a few considerations into account,
which we'll cover in this chapter.

The cloud controller manages the following services for the cloud:

Databases Tracks current information about
users and instances, for example, in a
database, typically one database in-
stance managed per service

Message queue services All AMQP—Advanced Message Queue
Protocol—messages for services are re-

OpenStack Ops Guide September 12, 2014

34

ceived and sent according to the queue
broker

Conductor services Proxy requests to a database

Authentication and authoriza-
tion for identity management

Indicates which users can do what ac-
tions on certain cloud resources; quota
management is spread out among ser-
vices, however

Image-management services Stores and serves images with metada-
ta on each, for launching in the cloud

Scheduling services Indicates which resources to use first;
for example, spreading out where in-
stances are launched based on an algo-
rithm

User dashboard Provides a web-based frontend for
users to consume OpenStack cloud ser-
vices

API endpoints Offers each service's REST API access,
where the API endpoint catalog is man-
aged by the Identity Service

For our example, the cloud controller has a collection of nova-* compo-
nents that represent the global state of the cloud; talks to services such as
authentication; maintains information about the cloud in a database; com-
municates to all compute nodes and storage workers through a queue;
and provides API access. Each service running on a designated cloud con-
troller may be broken out into separate nodes for scalability or availability.

As another example, you could use pairs of servers for a collective cloud
controller—one active, one standby—for redundant nodes providing a giv-
en set of related services, such as:

• Frontend web for API requests, the scheduler for choosing which com-
pute node to boot an instance on, Identity services, and the dashboard

• Database and message queue server (such as MySQL, RabbitMQ)

• Image Service for the image management

Now that you see the myriad designs for controlling your cloud, read more
about the further considerations to help with your design decisions.

OpenStack Ops Guide September 12, 2014

35

Hardware Considerations
A cloud controller's hardware can be the same as a compute node, though
you may want to further specify based on the size and type of cloud that
you run.

It's also possible to use virtual machines for all or some of the services that
the cloud controller manages, such as the message queuing. In this guide,
we assume that all services are running directly on the cloud controller.

Table 3.1, “Cloud controller hardware sizing considerations” [35] con-
tains common considerations to review when sizing hardware for the
cloud controller design.

Table 3.1. Cloud controller hardware sizing considerations

Consideration Ramification

How many instances
will run at once?

Size your database server accordingly, and scale out beyond one cloud
controller if many instances will report status at the same time and
scheduling where a new instance starts up needs computing power.

How many compute
nodes will run at once?

Ensure that your messaging queue handles requests successfully and size
accordingly.

How many users will
access the API?

If many users will make multiple requests, make sure that the CPU load
for the cloud controller can handle it.

How many users will
access the dashboard
versus the REST API di-
rectly?

The dashboard makes many requests, even more than the API access,
so add even more CPU if your dashboard is the main interface for your
users.

How many nova-api
services do you run at
once for your cloud?

You need to size the controller with a core per service.

How long does a single
instance run?

Starting instances and deleting instances is demanding on the compute
node but also demanding on the controller node because of all the API
queries and scheduling needs.

Does your authentica-
tion system also verify
externally?

External systems such as LDAP or Active Directory require network con-
nectivity between the cloud controller and an external authentication
system. Also ensure that the cloud controller has the CPU power to keep
up with requests.

Separation of Services
While our example contains all central services in a single location, it is
possible and indeed often a good idea to separate services onto different
physical servers. Table 3.2, “Deployment scenarios” [36] is a list of de-
ployment scenarios we've seen and their justifications.

OpenStack Ops Guide September 12, 2014

36

Table 3.2. Deployment scenarios

Scenario Justification

Run glance-* servers
on the swift-proxy
server.

This deployment felt that the spare I/O on the Object Storage proxy
server was sufficient and that the Image Delivery portion of glance ben-
efited from being on physical hardware and having good connectivity to
the Object Storage backend it was using.

Run a central dedicat-
ed database server.

This deployment used a central dedicated server to provide the databas-
es for all services. This approach simplified operations by isolating
database server updates and allowed for the simple creation of slave
database servers for failover.

Run one VM per ser-
vice.

This deployment ran central services on a set of servers running KVM. A
dedicated VM was created for each service (nova-scheduler, rabbit-
mq, database, etc). This assisted the deployment with scaling because
administrators could tune the resources given to each virtual machine
based on the load it received (something that was not well understood
during installation).

Use an external load
balancer.

This deployment had an expensive hardware load balancer in its organi-
zation. It ran multiple nova-api and swift-proxy servers on differ-
ent physical servers and used the load balancer to switch between them.

One choice that always comes up is whether to virtualize. Some services,
such as nova-compute, swift-proxy and swift-object servers,
should not be virtualized. However, control servers can often be happily
virtualized—the performance penalty can usually be offset by simply run-
ning more of the service.

Database
OpenStack Compute uses a SQL database to store and retrieve stateful in-
formation. MySQL is the popular database choice in the OpenStack com-
munity.

Loss of the database leads to errors. As a result, we recommend that you
cluster your database to make it failure tolerant. Configuring and main-
taining a database cluster is done outside OpenStack and is determined
by the database software you choose to use in your cloud environment.
MySQL/Galera is a popular option for MySQL-based databases.

Message Queue
Most OpenStack services communicate with each other using the message
queue. For example, Compute communicates to block storage services and
networking services through the message queue. Also, you can optional-
ly enable notifications for any service. RabbitMQ, Qpid, and 0mq are all

OpenStack Ops Guide September 12, 2014

37

popular choices for a message-queue service. In general, if the message
queue fails or becomes inaccessible, the cluster grinds to a halt and ends
up in a read-only state, with information stuck at the point where the last
message was sent. Accordingly, we recommend that you cluster the mes-
sage queue. Be aware that clustered message queues can be a pain point
for many OpenStack deployments. While RabbitMQ has native clustering
support, there have been reports of issues when running it at a large scale.
While other queuing solutions are available, such as 0mq and Qpid, 0mq
does not offer stateful queues. Qpid is the messaging system of choice for
Red Hat and its derivatives. Qpid does not have native clustering capabili-
ties and requires a supplemental service, such as Pacemaker or Corsync. For
your message queue, you need to determine what level of data loss you
are comfortable with and whether to use an OpenStack project's ability to
retry multiple MQ hosts in the event of a failure, such as using Compute's
ability to do so.

Conductor Services
In the previous version of OpenStack, all nova-compute services required
direct access to the database hosted on the cloud controller. This was
problematic for two reasons: security and performance. With regard to se-
curity, if a compute node is compromised, the attacker inherently has ac-
cess to the database. With regard to performance, nova-compute calls to
the database are single-threaded and blocking. This creates a performance
bottleneck because database requests are fulfilled serially rather than in
parallel.

The conductor service resolves both of these issues by acting as a proxy for
the nova-compute service. Now, instead of nova-compute directly ac-
cessing the database, it contacts the nova-conductor service, and no-
va-conductor accesses the database on nova-compute's behalf. Since
nova-compute no longer has direct access to the database, the security
issue is resolved. Additionally, nova-conductor is a nonblocking service,
so requests from all compute nodes are fulfilled in parallel.

Note

If you are using nova-network and multi-host networking in
your cloud environment, nova-compute still requires direct
access to the database.

The nova-conductor service is horizontally scalable. To make no-
va-conductor highly available and fault tolerant, just launch more in-

OpenStack Ops Guide September 12, 2014

38

stances of the nova-conductor process, either on the same server or
across multiple servers.

Application Programming Interface (API)
All public access, whether direct, through a command-line client, or
through the web-based dashboard, uses the API service. Find the API refer-
ence at http://api.openstack.org/.

You must choose whether you want to support the Amazon EC2 compat-
ibility APIs, or just the OpenStack APIs. One issue you might encounter
when running both APIs is an inconsistent experience when referring to
images and instances.

For example, the EC2 API refers to instances using IDs that contain hex-
adecimal, whereas the OpenStack API uses names and digits. Similarly, the
EC2 API tends to rely on DNS aliases for contacting virtual machines, as op-
posed to OpenStack, which typically lists IP addresses.

If OpenStack is not set up in the right way, it is simple to have scenarios in
which users are unable to contact their instances due to having only an in-
correct DNS alias. Despite this, EC2 compatibility can assist users migrating
to your cloud.

As with databases and message queues, having more than one API server
is a good thing. Traditional HTTP load-balancing techniques can be used to
achieve a highly available nova-api service.

Extensions
The API Specifications define the core actions, capabilities, and mediatypes
of the OpenStack API. A client can always depend on the availability of this
core API, and implementers are always required to support it in its entire-
ty. Requiring strict adherence to the core API allows clients to rely upon a
minimal level of functionality when interacting with multiple implementa-
tions of the same API.

The OpenStack Compute API is extensible. An extension adds capabilities
to an API beyond those defined in the core. The introduction of new fea-
tures, MIME types, actions, states, headers, parameters, and resources can
all be accomplished by means of extensions to the core API. This allows the
introduction of new features in the API without requiring a version change
and allows the introduction of vendor-specific niche functionality.

http://api.openstack.org/
http://docs.openstack.org/api/api-specs.html

OpenStack Ops Guide September 12, 2014

39

Scheduling
The scheduling services are responsible for determining the compute or
storage node where a virtual machine or block storage volume should
be created. The scheduling services receive creation requests for these re-
sources from the message queue and then begin the process of determin-
ing the appropriate node where the resource should reside. This process is
done by applying a series of user-configurable filters against the available
collection of nodes.

There are currently two schedulers: nova-scheduler for virtual ma-
chines and cinder-scheduler for block storage volumes. Both sched-
ulers are able to scale horizontally, so for high-availability purposes, or for
very large or high-schedule-frequency installations, you should consider
running multiple instances of each scheduler. The schedulers all listen to
the shared message queue, so no special load balancing is required.

Images
The OpenStack Image Service consists of two parts: glance-api and
glance-registry. The former is responsible for the delivery of images;
the compute node uses it to download images from the backend. The lat-
ter maintains the metadata information associated with virtual machine
images and requires a database.

The glance-api part is an abstraction layer that allows a choice of back-
end. Currently, it supports:

OpenStack Object Storage Allows you to store images as objects.

File system Uses any traditional file system to store
the images as files.

S3 Allows you to fetch images from Ama-
zon S3.

HTTP Allows you to fetch images from a web
server. You cannot write images by us-
ing this mode.

If you have an OpenStack Object Storage service, we recommend using
this as a scalable place to store your images. You can also use a file system
with sufficient performance or Amazon S3—unless you do not need the
ability to upload new images through OpenStack.

OpenStack Ops Guide September 12, 2014

40

Dashboard
The OpenStack dashboard (horizon) provides a web-based user interface
to the various OpenStack components. The dashboard includes an end-us-
er area for users to manage their virtual infrastructure and an admin area
for cloud operators to manage the OpenStack environment as a whole.

The dashboard is implemented as a Python web application that normally
runs in Apache httpd. Therefore, you may treat it the same as any other
web application, provided it can reach the API servers (including their ad-
min endpoints) over the network.

Authentication and Authorization
The concepts supporting OpenStack's authentication and authorization
are derived from well-understood and widely used systems of a similar na-
ture. Users have credentials they can use to authenticate, and they can
be a member of one or more groups (known as projects or tenants, inter-
changeably).

For example, a cloud administrator might be able to list all instances in the
cloud, whereas a user can see only those in his current group. Resources
quotas, such as the number of cores that can be used, disk space, and so
on, are associated with a project.

The OpenStack Identity Service (keystone) is the point that provides the
authentication decisions and user attribute information, which is then used
by the other OpenStack services to perform authorization. Policy is set in
the policy.json file. For information on how to configure these, see
Chapter 9, “Managing Projects and Users” [91].

The Identity Service supports different plug-ins for authentication decisions
and identity storage. Examples of these plug-ins include:

• In-memory key-value Store (a simplified internal storage structure)

• SQL database (such as MySQL or PostgreSQL)

• PAM (Pluggable Authentication Module)

• LDAP (such as OpenLDAP or Microsoft's Active Directory)

Many deployments use the SQL database; however, LDAP is also a popular
choice for those with existing authentication infrastructure that needs to
be integrated.

OpenStack Ops Guide September 12, 2014

41

Network Considerations
Because the cloud controller handles so many different services, it must be
able to handle the amount of traffic that hits it. For example, if you choose
to host the OpenStack Imaging Service on the cloud controller, the cloud
controller should be able to support the transferring of the images at an
acceptable speed.

As another example, if you choose to use single-host networking where
the cloud controller is the network gateway for all instances, then the
cloud controller must support the total amount of traffic that travels be-
tween your cloud and the public Internet.

We recommend that you use a fast NIC, such as 10 GB. You can also
choose to use two 10 GB NICs and bond them together. While you might
not be able to get a full bonded 20 GB speed, different transmission
streams use different NICs. For example, if the cloud controller transfers
two images, each image uses a different NIC and gets a full 10 GB of band-
width.

OpenStack Ops Guide September 12, 2014

43

4. Compute Nodes
Choosing a CPU ... 43
Choosing a Hypervisor ... 44
Instance Storage Solutions ... 45
Overcommitting ... 49
Logging ... 50
Networking .. 50
Conclusion ... 50

In this chapter, we discuss some of the choices you need to consider when
building out your compute nodes. Compute nodes form the resource core
of the OpenStack Compute cloud, providing the processing, memory, net-
work and storage resources to run instances.

Choosing a CPU
The type of CPU in your compute node is a very important choice. First, en-
sure that the CPU supports virtualization by way of VT-x for Intel chips and
AMD-v for AMD chips.

Tip

Consult the vendor documentation to check for virtualization
support. For Intel, read “Does my processor support Intel® Vir-
tualization Technology?”. For AMD, read AMD Virtualization.
Note that your CPU may support virtualization but it may be
disabled. Consult your BIOS documentation for how to enable
CPU features.

The number of cores that the CPU has also affects the decision. It's com-
mon for current CPUs to have up to 12 cores. Additionally, if an Intel CPU
supports hyperthreading, those 12 cores are doubled to 24 cores. If you
purchase a server that supports multiple CPUs, the number of cores is fur-
ther multiplied.

http://www.intel.com/support/processors/sb/cs-030729.htm
http://www.intel.com/support/processors/sb/cs-030729.htm
http://sites.amd.com/us/business/it-solutions/virtualization/Pages/client-side-virtualization.aspx

OpenStack Ops Guide September 12, 2014

44

Multithread Considerations

Hyper-Threading is Intel's proprietary simultaneous multithreading
implementation used to improve parallelization on their CPUs. You
might consider enabling Hyper-Threading to improve the perfor-
mance of multithreaded applications.

Whether you should enable Hyper-Threading on your CPUs depends
upon your use case. For example, disabling Hyper-Threading can be
beneficial in intense computing environments. We recommend that
you do performance testing with your local workload with both Hy-
per-Threading on and off to determine what is more appropriate in
your case.

Choosing a Hypervisor
A hypervisor provides software to manage virtual machine access to the
underlying hardware. The hypervisor creates, manages, and monitors virtu-
al machines. OpenStack Compute supports many hypervisors to various de-
grees, including:

• KVM

• LXC

• QEMU

• VMware ESX/ESXi

• Xen

• Hyper-V

• Docker

Probably the most important factor in your choice of hypervisor is your cur-
rent usage or experience. Aside from that, there are practical concerns to
do with feature parity, documentation, and the level of community experi-
ence.

For example, KVM is the most widely adopted hypervisor in the OpenStack
community. Besides KVM, more deployments run Xen, LXC, VMware, and
Hyper-V than the others listed. However, each of these are lacking some

http://www.linux-kvm.org/page/Main_Page
https://linuxcontainers.org/
http://wiki.qemu.org/Main_Page
https://www.vmware.com/support/vsphere-hypervisor
http://www.xenproject.org/
http://technet.microsoft.com/en-us/library/hh831531.aspx
https://www.docker.com/

OpenStack Ops Guide September 12, 2014

45

feature support or the documentation on how to use them with Open-
Stack is out of date.

The best information available to support your choice is found on the Hy-
pervisor Support Matrix and in the configuration reference.

Note

It is also possible to run multiple hypervisors in a single deploy-
ment using host aggregates or cells. However, an individual
compute node can run only a single hypervisor at a time.

Instance Storage Solutions
As part of the procurement for a compute cluster, you must specify some
storage for the disk on which the instantiated instance runs. There are
three main approaches to providing this temporary-style storage, and it is
important to understand the implications of the choice.

They are:

• Off compute node storage—shared file system

• On compute node storage—shared file system

• On compute node storage—nonshared file system

In general, the questions you should ask when selecting storage are as fol-
lows:

• What is the platter count you can achieve?

• Do more spindles result in better I/O despite network access?

• Which one results in the best cost-performance scenario you're aiming
for?

• How do you manage the storage operationally?

Many operators use separate compute and storage hosts. Compute ser-
vices and storage services have different requirements, and compute hosts
typically require more CPU and RAM than storage hosts. Therefore, for a
fixed budget, it makes sense to have different configurations for your com-
pute nodes and your storage nodes. Compute nodes will be invested in
CPU and RAM, and storage nodes will be invested in block storage.

https://wiki.openstack.org/wiki/HypervisorSupportMatrix
https://wiki.openstack.org/wiki/HypervisorSupportMatrix
http://docs.openstack.org/trunk/config-reference/content/section_compute-hypervisors.html

OpenStack Ops Guide September 12, 2014

46

However, if you are more restricted in the number of physical hosts you
have available for creating your cloud and you want to be able to dedicate
as many of your hosts as possible to running instances, it makes sense to
run compute and storage on the same machines.

We'll discuss the three main approaches to instance storage in the next
few sections.

OpenStack Ops Guide September 12, 2014

47

Off Compute Node Storage—Shared File System

In this option, the disks storing the running instances are hosted in servers
outside of the compute nodes.

If you use separate compute and storage hosts, you can treat your com-
pute hosts as "stateless." As long as you don't have any instances current-
ly running on a compute host, you can take it offline or wipe it completely
without having any effect on the rest of your cloud. This simplifies mainte-
nance for the compute hosts.

There are several advantages to this approach:

• If a compute node fails, instances are usually easily recoverable.

• Running a dedicated storage system can be operationally simpler.

• You can scale to any number of spindles.

• It may be possible to share the external storage for other purposes.

The main downsides to this approach are:

• Depending on design, heavy I/O usage from some instances can affect
unrelated instances.

• Use of the network can decrease performance.

On Compute Node Storage—Shared File System

In this option, each compute node is specified with a significant amount of
disk space, but a distributed file system ties the disks from each compute
node into a single mount.

The main advantage of this option is that it scales to external storage
when you require additional storage.

However, this option has several downsides:

• Running a distributed file system can make you lose your data locality
compared with nonshared storage.

• Recovery of instances is complicated by depending on multiple hosts.

• The chassis size of the compute node can limit the number of spindles
able to be used in a compute node.

OpenStack Ops Guide September 12, 2014

48

• Use of the network can decrease performance.

On Compute Node Storage—Nonshared File Sys-
tem

In this option, each compute node is specified with enough disks to store
the instances it hosts.

There are two main reasons why this is a good idea:

• Heavy I/O usage on one compute node does not affect instances on oth-
er compute nodes.

• Direct I/O access can increase performance.

This has several downsides:

• If a compute node fails, the instances running on that node are lost.

• The chassis size of the compute node can limit the number of spindles
able to be used in a compute node.

• Migrations of instances from one node to another are more complicated
and rely on features that may not continue to be developed.

• If additional storage is required, this option does not scale.

Running a shared file system on a storage system apart from the computes
nodes is ideal for clouds where reliability and scalability are the most im-
portant factors. Running a shared file system on the compute nodes them-
selves may be best in a scenario where you have to deploy to preexisting
servers for which you have little to no control over their specifications.
Running a nonshared file system on the compute nodes themselves is a
good option for clouds with high I/O requirements and low concern for re-
liability.

Issues with Live Migration
We consider live migration an integral part of the operations of the cloud.
This feature provides the ability to seamlessly move instances from one
physical host to another, a necessity for performing upgrades that require
reboots of the compute hosts, but only works well with shared storage.

Live migration can also be done with nonshared storage, using a feature
known as KVM live block migration. While an earlier implementation of

OpenStack Ops Guide September 12, 2014

49

block-based migration in KVM and QEMU was considered unreliable, there
is a newer, more reliable implementation of block-based live migration as
of QEMU 1.4 and libvirt 1.0.2 that is also compatible with OpenStack. How-
ever, none of the authors of this guide have first-hand experience using
live block migration.

Choice of File System

If you want to support shared-storage live migration, you need to config-
ure a distributed file system.

Possible options include:

• NFS (default for Linux)

• GlusterFS

• MooseFS

• Lustre

We've seen deployments with all, and recommend that you choose the
one you are most familiar with operating. If you are not familiar with any
of these, choose NFS, as it is the easiest to set up and there is extensive
community knowledge about it.

Overcommitting
OpenStack allows you to overcommit CPU and RAM on compute nodes.
This allows you to increase the number of instances you can have running
on your cloud, at the cost of reducing the performance of the instances.
OpenStack Compute uses the following ratios by default:

• CPU allocation ratio: 16:1

• RAM allocation ratio: 1.5:1

The default CPU allocation ratio of 16:1 means that the scheduler allocates
up to 16 virtual cores per physical core. For example, if a physical node has
12 cores, the scheduler sees 192 available virtual cores. With typical flavor
definitions of 4 virtual cores per instance, this ratio would provide 48 in-
stances on a physical node.

The formula for the number of virtual instances on a compute node is
(OR*PC)/VC, where:

OpenStack Ops Guide September 12, 2014

50

OR CPU overcommit ratio (virtual cores per physical core)

PC Number of physical cores

VC Number of virtual cores per instance

Similarly, the default RAM allocation ratio of 1.5:1 means that the sched-
uler allocates instances to a physical node as long as the total amount of
RAM associated with the instances is less than 1.5 times the amount of
RAM available on the physical node.

For example, if a physical node has 48 GB of RAM, the scheduler allocates
instances to that node until the sum of the RAM associated with the in-
stances reaches 72 GB (such as nine instances, in the case where each in-
stance has 8 GB of RAM).

You must select the appropriate CPU and RAM allocation ratio for your
particular use case.

Logging
Logging is detailed more fully in Chapter 13, “Logging and Monitor-
ing” [173]. However, it is an important design consideration to take into
account before commencing operations of your cloud.

OpenStack produces a great deal of useful logging information, however;
but for the information to be useful for operations purposes, you should
consider having a central logging server to send logs to, and a log pars-
ing/analysis system (such as logstash).

Networking
Networking in OpenStack is a complex, multifaceted challenge. See Chap-
ter 7, “Network Design” [71].

Conclusion
Compute nodes are the workhorse of your cloud and the place where your
users' applications will run. They are likely to be affected by your decisions
on what to deploy and how you deploy it. Their requirements should be
reflected in the choices you make.

OpenStack Ops Guide September 12, 2014

51

5. Scaling
The Starting Point .. 51
Adding Cloud Controller Nodes .. 53
Segregating Your Cloud ... 54
Scalable Hardware ... 58

Whereas traditional applications required larger hardware to scale ("verti-
cal scaling"), cloud-based applications typically request more, discrete hard-
ware ("horizontal scaling"). If your cloud is successful, eventually you must
add resources to meet the increasing demand.

To suit the cloud paradigm, OpenStack itself is designed to be horizontally
scalable. Rather than switching to larger servers, you procure more servers
and simply install identically configured services. Ideally, you scale out and
load balance among groups of functionally identical services (for example,
compute nodes or nova-api nodes), that communicate on a message
bus.

The Starting Point
Determining the scalability of your cloud and how to improve it is an ex-
ercise with many variables to balance. No one solution meets everyone's
scalability goals. However, it is helpful to track a number of metrics. Since
you can define virtual hardware templates, called "flavors" in OpenStack,
you can start to make scaling decisions based on the flavors you'll provide.
These templates define sizes for memory in RAM, root disk size, amount of
ephemeral data disk space available, and number of cores for starters.

The default OpenStack flavors are shown in Table 5.1, “OpenStack default
flavors” [52].

OpenStack Ops Guide September 12, 2014

52

Table 5.1. OpenStack default flavors

Name Virtual cores Memory Disk Ephemeral

m1.tiny 1 512 MB 1 GB 0 GB

m1.small 1 2 GB 10 GB 20 GB

m1.medium 2 4 GB 10 GB 40 GB

m1.large 4 8 GB 10 GB 80 GB

m1.xlarge 8 16 GB 10 GB 160 GB

The starting point for most is the core count of your cloud. By applying
some ratios, you can gather information about:

• The number of virtual machines (VMs) you expect to run, ((overcom-
mit fraction × cores) / virtual cores per instance)

• How much storage is required (flavor disk size × number of
instances)

You can use these ratios to determine how much additional infrastructure
you need to support your cloud.

Here is an example using the ratios for gathering scalability information for
the number of VMs expected as well as the storage needed. The following
numbers support (200 / 2) × 16 = 1600 VM instances and require 80 TB of
storage for /var/lib/nova/instances:

• 200 physical cores.

• Most instances are size m1.medium (two virtual cores, 50 GB of stor-
age).

• Default CPU overcommit ratio (cpu_allocation_ratio in nova.conf)
of 16:1.

However, you need more than the core count alone to estimate the load
that the API services, database servers, and queue servers are likely to en-
counter. You must also consider the usage patterns of your cloud.

As a specific example, compare a cloud that supports a managed web-
hosting platform with one running integration tests for a development
project that creates one VM per code commit. In the former, the heavy
work of creating a VM happens only every few months, whereas the latter
puts constant heavy load on the cloud controller. You must consider your
average VM lifetime, as a larger number generally means less load on the
cloud controller.

OpenStack Ops Guide September 12, 2014

53

Aside from the creation and termination of VMs, you must consider the im-
pact of users accessing the service—particularly on nova-api and its as-
sociated database. Listing instances garners a great deal of information
and, given the frequency with which users run this operation, a cloud with
a large number of users can increase the load significantly. This can oc-
cur even without their knowledge—leaving the OpenStack dashboard in-
stances tab open in the browser refreshes the list of VMs every 30 seconds.

After you consider these factors, you can determine how many cloud con-
troller cores you require. A typical eight core, 8 GB of RAM server is suffi-
cient for up to a rack of compute nodes — given the above caveats.

You must also consider key hardware specifications for the performance of
user VMs, as well as budget and performance needs, including storage per-
formance (spindles/core), memory availability (RAM/core), network band-
width (Gbps/core), and overall CPU performance (CPU/core).

Tip

For a discussion of metric tracking, including how to extract
metrics from your cloud, see Chapter 13, “Logging and Moni-
toring” [173].

Adding Cloud Controller Nodes
You can facilitate the horizontal expansion of your cloud by adding nodes.
Adding compute nodes is straightforward—they are easily picked up by the
existing installation. However, you must consider some important points
when you design your cluster to be highly available.

Recall that a cloud controller node runs several different services. You can
install services that communicate only using the message queue internal-
ly—nova-scheduler and nova-console—on a new server for expan-
sion. However, other integral parts require more care.

You should load balance user-facing services such as dashboard, no-
va-api, or the Object Storage proxy. Use any standard HTTP load-balanc-
ing method (DNS round robin, hardware load balancer, or software such
as Pound or HAProxy). One caveat with dashboard is the VNC proxy, which
uses the WebSocket protocol—something that an L7 load balancer might
struggle with. See also Horizon session storage.

You can configure some services, such as nova-api and glance-api, to
use multiple processes by changing a flag in their configuration file—allow-
ing them to share work between multiple cores on the one machine.

http://docs.openstack.org/developer/horizon/topics/deployment.html#session-storage

OpenStack Ops Guide September 12, 2014

54

Tip

Several options are available for MySQL load balancing, and
the supported AMQP brokers have built-in clustering support.
Information on how to configure these and many of the other
services can be found in Part II, “Operations” [77].

Segregating Your Cloud
When you want to offer users different regions to provide legal consid-
erations for data storage, redundancy across earthquake fault lines, or
for low-latency API calls, you segregate your cloud. Use one of the follow-
ing OpenStack methods to segregate your cloud: cells, regions, availability
zones, or host aggregates.

Each method provides different functionality and can be best divided into
two groups:

• Cells and regions, which segregate an entire cloud and result in running
separate Compute deployments.

• Availability zones and host aggregates, which merely divide a single
Compute deployment.

Table 5.2, “OpenStack segregation methods” [54] provides a compar-
ison view of each segregation method currently provided by OpenStack
Compute.

Table 5.2. OpenStack segregation methods

Cells Regions Availability zones Host aggregates

Use when you
need

A single API end-
point for com-
pute, or you re-
quire a second
level of schedul-
ing.

Discrete regions
with separate API
endpoints and no
coordination be-
tween regions.

Logical separation
within your nova
deployment for
physical isolation
or redundancy.

To schedule a
group of hosts
with common fea-
tures.

Example A cloud with mul-
tiple sites where
you can schedule
VMs "anywhere"
or on a particular
site.

A cloud with mul-
tiple sites, where
you schedule VMs
to a particular site
and you want a
shared infrastruc-
ture.

A single-site cloud
with equipment
fed by separate
power supplies.

Scheduling to
hosts with trust-
ed hardware sup-
port.

Overhead Considered exper-
imental.

A different API
endpoint for ev-
ery region.

Configuration
changes to
nova.conf.

Configuration
changes to
nova.conf.

OpenStack Ops Guide September 12, 2014

55

Cells Regions Availability zones Host aggregates

A new service, no-
va-cells.

Each cell has a full
nova installation
except nova-api.

Each region has a
full nova installa-
tion.

Shared services Keystone

nova-api

Keystone Keystone

All nova services

Keystone

All nova services

Cells and Regions

OpenStack Compute cells are designed to allow running the cloud in a
distributed fashion without having to use more complicated technolo-
gies, or be invasive to existing nova installations. Hosts in a cloud are par-
titioned into groups called cells. Cells are configured in a tree. The top-lev-
el cell ("API cell") has a host that runs the nova-api service, but no no-
va-compute services. Each child cell runs all of the other typical nova-*
services found in a regular installation, except for the nova-api service.
Each cell has its own message queue and database service and also runs
nova-cells, which manages the communication between the API cell
and child cells.

This allows for a single API server being used to control access to multiple
cloud installations. Introducing a second level of scheduling (the cell selec-
tion), in addition to the regular nova-scheduler selection of hosts, pro-
vides greater flexibility to control where virtual machines are run.

Contrast this with regions. Regions have a separate API endpoint per in-
stallation, allowing for a more discrete separation. Users wanting to run
instances across sites have to explicitly select a region. However, the addi-
tional complexity of a running a new service is not required.

The OpenStack dashboard (horizon) currently uses only a single region, so
one dashboard service should be run per region. Regions are a robust way
to share some infrastructure between OpenStack Compute installations,
while allowing for a high degree of failure tolerance.

Availability Zones and Host Aggregates

You can use availability zones, host aggregates, or both to partition a nova
deployment.

Availability zones are implemented through and configured in a similar
way to host aggregates.

OpenStack Ops Guide September 12, 2014

56

However, you use them for different reasons.

Availability zone

This enables you to arrange OpenStack compute hosts into logical groups
and provides a form of physical isolation and redundancy from other avail-
ability zones, such as by using a separate power supply or network equip-
ment.

You define the availability zone in which a specified compute host resides
locally on each server. An availability zone is commonly used to identify a
set of servers that have a common attribute. For instance, if some of the
racks in your data center are on a separate power source, you can put
servers in those racks in their own availability zone. Availability zones can
also help separate different classes of hardware.

When users provision resources, they can specify from which availability
zone they want their instance to be built. This allows cloud consumers to
ensure that their application resources are spread across disparate ma-
chines to achieve high availability in the event of hardware failure.

Host aggregates zone

This enables you to partition OpenStack Compute deployments into logical
groups for load balancing and instance distribution. You can use host ag-
gregates to further partition an availability zone. For example, you might
use host aggregates to partition an availability zone into groups of hosts
that either share common resources, such as storage and network, or have
a special property, such as trusted computing hardware.

A common use of host aggregates is to provide information for use with
the nova-scheduler. For example, you might use a host aggregate to
group a set of hosts that share specific flavors or images.

The general case for this is setting key-value pairs in the aggregate meta-
data and matching key-value pairs in flavor's extra_specs metadata.
The AggregateInstanceExtraSpecsFilter in the filter scheduler
will enforce that instances be scheduled only on hosts in aggregates that
define the same key to the same value.

An advanced use of this general concept allows different flavor types to
run with different CPU and RAM allocation ratios so that high-intensity
computing loads and low-intensity development and testing systems can
share the same cloud without either starving the high-use systems or wast-

OpenStack Ops Guide September 12, 2014

57

ing resources on low-utilization systems. This works by setting metadata
in your host aggregates and matching extra_specs in your flavor types.

The first step is setting the aggregate metadata keys
cpu_allocation_ratio and ram_allocation_ratio to a float-
ing-point value. The filter schedulers AggregateCoreFilter and Ag-
gregateRamFilter will use those values rather than the global defaults
in nova.conf when scheduling to hosts in the aggregate. It is important
to be cautious when using this feature, since each host can be in multiple
aggregates but should have only one allocation ratio for each resources. It
is up to you to avoid putting a host in multiple aggregates that define dif-
ferent values for the same resource.

This is the first half of the equation. To get flavor types that are guaran-
teed a particular ratio, you must set the extra_specs in the flavor type
to the key-value pair you want to match in the aggregate. For example,
if you define extra_specs cpu_allocation_ratio to "1.0", then in-
stances of that type will run in aggregates only where the metadata key
cpu_allocation_ratio is also defined as "1.0." In practice, it is bet-
ter to define an additional key-value pair in the aggregate metadata to
match on rather than match directly on cpu_allocation_ratio or
core_allocation_ratio. This allows better abstraction. For example,
by defining a key overcommit and setting a value of "high," "medium," or
"low," you could then tune the numeric allocation ratios in the aggregates
without also needing to change all flavor types relating to them.

Note

Previously, all services had an availability zone. Currently, only
the nova-compute service has its own availability zone. Ser-
vices such as nova-scheduler, nova-network, and no-
va-conductor have always spanned all availability zones.

When you run any of the following operations, the
services appear in their own internal availability zone
(CONF.internal_service_availability_zone):

• nova host-list (os-hosts)

• euca-describe-availability-zones verbose

• nova-manage service list

The internal availability zone is hidden in euca-de-
scribe-availability_zones (nonverbose).

OpenStack Ops Guide September 12, 2014

58

CONF.node_availability_zone has been renamed to
CONF.default_availability_zone and is used only by the no-
va-api and nova-scheduler services.

CONF.node_availability_zone still works but is deprecated.

Scalable Hardware
While several resources already exist to help with deploying and installing
OpenStack, it's very important to make sure that you have your deploy-
ment planned out ahead of time. This guide presumes that you have at
least set aside a rack for the OpenStack cloud but also offers suggestions
for when and what to scale.

Hardware Procurement
“The Cloud” has been described as a volatile environment where servers
can be created and terminated at will. While this may be true, it does not
mean that your servers must be volatile. Ensuring that your cloud’s hard-
ware is stable and configured correctly means that your cloud environment
remains up and running. Basically, put effort into creating a stable hard-
ware environment so that you can host a cloud that users may treat as un-
stable and volatile.

OpenStack can be deployed on any hardware supported by an Open-
Stack-compatible Linux distribution.

Hardware does not have to be consistent, but it should at least have the
same type of CPU to support instance migration.

The typical hardware recommended for use with OpenStack is the stan-
dard value-for-money offerings that most hardware vendors stock. It
should be straightforward to divide your procurement into building blocks
such as "compute," "object storage," and "cloud controller," and request as
many of these as you need. Alternatively, should you be unable to spend
more, if you have existing servers—provided they meet your performance
requirements and virtualization technology—they are quite likely to be
able to support OpenStack.

Capacity Planning
OpenStack is designed to increase in size in a straightforward manner. Tak-
ing into account the considerations that we've mentioned in this chap-

OpenStack Ops Guide September 12, 2014

59

ter—particularly on the sizing of the cloud controller—it should be possible
to procure additional compute or object storage nodes as needed. New
nodes do not need to be the same specification, or even vendor, as exist-
ing nodes.

For compute nodes, nova-scheduler will take care of differences in siz-
ing having to do with core count and RAM amounts; however, you should
consider that the user experience changes with differing CPU speeds.
When adding object storage nodes, a weight should be specified that re-
flects the capability of the node.

Monitoring the resource usage and user growth will enable you to know
when to procure. Chapter 13, “Logging and Monitoring” [173] details
some useful metrics.

Burn-in Testing

Server hardware's chance of failure is high at the start and the end of its
life. As a result, much effort in dealing with hardware failures while in pro-
duction can be avoided by appropriate burn-in testing to attempt to trig-
ger the early-stage failures. The general principle is to stress the hardware
to its limits. Examples of burn-in tests include running a CPU or disk bench-
mark for several days.

OpenStack Ops Guide September 12, 2014

61

6. Storage Decisions
Ephemeral Storage .. 61
Persistent Storage .. 61
OpenStack Storage Concepts ... 64
Choosing Storage Backends ... 64
Conclusion ... 70

Storage is found in many parts of the OpenStack stack, and the differing
types can cause confusion to even experienced cloud engineers. This sec-
tion focuses on persistent storage options you can configure with your
cloud. It's important to understand the distinction between ephemeral
storage and persistent storage.

Ephemeral Storage
If you deploy only the OpenStack Compute Service (nova), your users do
not have access to any form of persistent storage by default. The disks as-
sociated with VMs are "ephemeral," meaning that (from the user's point of
view) they effectively disappear when a virtual machine is terminated.

Persistent Storage
Persistent storage means that the storage resource outlives any other
resource and is always available, regardless of the state of a running in-
stance.

Today, OpenStack clouds explicitly support two types of persistent storage:
object storage and block storage.

Object Storage

With object storage, users access binary objects through a REST API. You
may be familiar with Amazon S3, which is a well-known example of an ob-
ject storage system. Object storage is implemented in OpenStack by the
OpenStack Object Storage (swift) project. If your intended users need to
archive or manage large datasets, you want to provide them with object
storage. In addition, OpenStack can store your virtual machine (VM) im-
ages inside of an object storage system, as an alternative to storing the im-
ages on a file system.

OpenStack Ops Guide September 12, 2014

62

OpenStack Object Storage provides a highly scalable, highly available stor-
age solution by relaxing some of the constraints of traditional file systems.
In designing and procuring for such a cluster, it is important to understand
some key concepts about its operation. Essentially, this type of storage
is built on the idea that all storage hardware fails, at every level, at some
point. Infrequently encountered failures that would hamstring other stor-
age systems, such as issues taking down RAID cards or entire servers, are
handled gracefully with OpenStack Object Storage.

A good document describing the Object Storage architecture is found
within the developer documentation—read this first. Once you under-
stand the architecture, you should know what a proxy server does and
how zones work. However, some important points are often missed at first
glance.

When designing your cluster, you must consider durability and availability.
Understand that the predominant source of these is the spread and place-
ment of your data, rather than the reliability of the hardware. Consider
the default value of the number of replicas, which is three. This means that
before an object is marked as having been written, at least two copies ex-
ist—in case a single server fails to write, the third copy may or may not yet
exist when the write operation initially returns. Altering this number in-
creases the robustness of your data, but reduces the amount of storage
you have available. Next, look at the placement of your servers. Consider
spreading them widely throughout your data center's network and pow-
er-failure zones. Is a zone a rack, a server, or a disk?

Object Storage's network patterns might seem unfamiliar at first. Consider
these main traffic flows:

• Among object, container, and account servers

• Between those servers and the proxies

• Between the proxies and your users

Object Storage is very "chatty" among servers hosting data—even a small
cluster does megabytes/second of traffic, which is predominantly, “Do you
have the object?”/“Yes I have the object!” Of course, if the answer to the
aforementioned question is negative or the request times out, replication
of the object begins.

Consider the scenario where an entire server fails and 24 TB of data needs
to be transferred "immediately" to remain at three copies—this can put sig-
nificant load on the network.

http://docs.openstack.org/developer/swift/overview_architecture.html

OpenStack Ops Guide September 12, 2014

63

Another fact that's often forgotten is that when a new file is being upload-
ed, the proxy server must write out as many streams as there are replicas—
giving a multiple of network traffic. For a three-replica cluster, 10 Gbps in
means 30 Gbps out. Combining this with the previous high bandwidth de-
mands of replication is what results in the recommendation that your pri-
vate network be of significantly higher bandwidth than your public need
be. Oh, and OpenStack Object Storage communicates internally with unen-
crypted, unauthenticated rsync for performance—you do want the private
network to be private.

The remaining point on bandwidth is the public-facing portion. The
swift-proxy service is stateless, which means that you can easily add
more and use HTTP load-balancing methods to share bandwidth and avail-
ability between them.

More proxies means more bandwidth, if your storage can keep up.

Block Storage

Block storage (sometimes referred to as volume storage) provides users
with access to block-storage devices. Users interact with block storage by
attaching volumes to their running VM instances.

These volumes are persistent: they can be detached from one instance and
re-attached to another, and the data remains intact. Block storage is im-
plemented in OpenStack by the OpenStack Block Storage (cinder) project,
which supports multiple backends in the form of drivers. Your choice of a
storage backend must be supported by a Block Storage driver.

Most block storage drivers allow the instance to have direct access to the
underlying storage hardware's block device. This helps increase the overall
read/write IO.

Experimental support for utilizing files as volumes began in the Folsom re-
lease. This initially started as a reference driver for using NFS with cinder.
By Grizzly's release, this has expanded into a full NFS driver as well as a
GlusterFS driver.

These drivers work a little differently than a traditional "block" storage
driver. On an NFS or GlusterFS file system, a single file is created and then
mapped as a "virtual" volume into the instance. This mapping/translation
is similar to how OpenStack utilizes QEMU's file-based virtual machines
stored in /var/lib/nova/instances.

OpenStack Ops Guide September 12, 2014

64

OpenStack Storage Concepts
Table 6.1, “OpenStack storage” [64] explains the different storage con-
cepts provided by OpenStack.

Table 6.1. OpenStack storage

Ephemeral storage Block storage Object storage

Used to… Run operating system
and scratch space

Add additional persis-
tent storage to a virtu-
al machine (VM)

Store data, including
VM images

Accessed through… A file system A block device that
can be partitioned, for-
matted, and mounted
(such as, /dev/vdc)

The REST API

Accessible from… Within a VM Within a VM Anywhere

Managed by… OpenStack Compute
(nova)

OpenStack Block Stor-
age (cinder)

OpenStack Object Stor-
age (swift)

Persists until… VM is terminated Deleted by user Deleted by user

Sizing determined by… Administrator configu-
ration of size settings,
known as flavors

User specification in
initial request

Amount of available
physical storage

Example of typical us-
age…

10 GB first disk, 30 GB
second disk

1 TB disk 10s of TBs of dataset
storage

File-level Storage (for Live Migration)

With file-level storage, users access stored data using the operating
system's file system interface. Most users, if they have used a net-
work storage solution before, have encountered this form of net-
worked storage. In the Unix world, the most common form of this
is NFS. In the Windows world, the most common form is called CIFS
(previously, SMB).

OpenStack clouds do not present file-level storage to end users. How-
ever, it is important to consider file-level storage for storing instances
under /var/lib/nova/instances when designing your cloud,
since you must have a shared file system if you want to support live
migration.

Choosing Storage Backends
Users will indicate different needs for their cloud use cases. Some may
need fast access to many objects that do not change often, or want to set

OpenStack Ops Guide September 12, 2014

65

a time-to-live (TTL) value on a file. Others may access only storage that is
mounted with the file system itself, but want it to be replicated instant-
ly when starting a new instance. For other systems, ephemeral storage—
storage that is released when a VM attached to it is shut down— is the pre-
ferred way. When you select storage backends, ask the following questions
on behalf of your users:

• Do my users need block storage?

• Do my users need object storage?

• Do I need to support live migration?

• Should my persistent storage drives be contained in my compute nodes,
or should I use external storage?

• What is the platter count I can achieve? Do more spindles result in bet-
ter I/O despite network access?

• Which one results in the best cost-performance scenario I'm aiming for?

• How do I manage the storage operationally?

• How redundant and distributed is the storage? What happens if a stor-
age node fails? To what extent can it mitigate my data-loss disaster sce-
narios?

To deploy your storage by using only commodity hardware, you can use a
number of open-source packages, as shown in Table 6.2, “Persistent file-
based storage support” [65].

Table 6.2. Persistent file-based storage support

 Object Block File-levela

Swift

LVM

Ceph Experimental

Gluster

NFS

ZFS

Sheepdog
aThis list of open source file-level shared storage solutions is not exhaustive; other open source solutions
exist (MooseFS). Your organization may already have deployed a file-level shared storage solution that
you can use.

OpenStack Ops Guide September 12, 2014

66

Storage Driver Support

In addition to the open source technologies, there are a number
of proprietary solutions that are officially supported by OpenStack
Block Storage. They are offered by the following vendors:

• IBM (Storwize family/SVC, XIV)

• NetApp

• Nexenta

• SolidFire

You can find a matrix of the functionality provided by all of the sup-
ported Block Storage drivers on the OpenStack wiki.

Also, you need to decide whether you want to support object storage in
your cloud. The two common use cases for providing object storage in a
compute cloud are:

• To provide users with a persistent storage mechanism

• As a scalable, reliable data store for virtual machine images

Commodity Storage Backend Technologies

This section provides a high-level overview of the differences among the
different commodity storage backend technologies. Depending on your
cloud user's needs, you can implement one or many of these technologies
in different combinations:

OpenStack Object Storage
(swift)

The official OpenStack Object Store
implementation. It is a mature tech-
nology that has been used for several
years in production by Rackspace as the
technology behind Rackspace Cloud
Files. As it is highly scalable, it is well-
suited to managing petabytes of stor-
age. OpenStack Object Storage's ad-
vantages are better integration with
OpenStack (integrates with OpenStack
Identity, works with the OpenStack

https://wiki.openstack.org/wiki/CinderSupportMatrix

OpenStack Ops Guide September 12, 2014

67

dashboard interface) and better sup-
port for multiple data center deploy-
ment through support of asynchronous
eventual consistency replication.

Therefore, if you eventually plan on dis-
tributing your storage cluster across
multiple data centers, if you need uni-
fied accounts for your users for both
compute and object storage, or if you
want to control your object storage
with the OpenStack dashboard, you
should consider OpenStack Object Stor-
age. More detail can be found about
OpenStack Object Storage in the sec-
tion below.

Ceph A scalable storage solution that repli-
cates data across commodity storage
nodes. Ceph was originally developed
by one of the founders of DreamHost
and is currently used in production
there.

Ceph was designed to expose different
types of storage interfaces to the end
user: it supports object storage, block
storage, and file-system interfaces, al-
though the file-system interface is not
yet considered production-ready. Ceph
supports the same API as swift for ob-
ject storage and can be used as a back-
end for cinder block storage as well as
backend storage for glance images.
Ceph supports "thin provisioning," im-
plemented using copy-on-write.

This can be useful when booting from
volume because a new volume can be
provisioned very quickly. Ceph also sup-
ports keystone-based authentication
(as of version 0.56), so it can be a seam-
less swap in for the default OpenStack
swift implementation.

OpenStack Ops Guide September 12, 2014

68

Ceph's advantages are that it gives the
administrator more fine-grained con-
trol over data distribution and replica-
tion strategies, enables you to consol-
idate your object and block storage,
enables very fast provisioning of boot-
from-volume instances using thin pro-
visioning, and supports a distributed
file-system interface, though this inter-
face is not yet recommended for use
in production deployment by the Ceph
project.

If you want to manage your object and
block storage within a single system, or
if you want to support fast boot-from-
volume, you should consider Ceph.

Gluster A distributed, shared file system. As of
Gluster version 3.3, you can use Gluster
to consolidate your object storage and
file storage into one unified file and
object storage solution, which is called
Gluster For OpenStack (GFO). GFO uses
a customized version of swift that en-
ables Gluster to be used as the backend
storage.

The main reason to use GFO rather
than regular swift is if you also want
to support a distributed file system, ei-
ther to support shared storage live mi-
gration or to provide it as a separate
service to your end users. If you want
to manage your object and file storage
within a single system, you should con-
sider GFO.

LVM The Logical Volume Manager is a Lin-
ux-based system that provides an ab-
straction layer on top of physical disks
to expose logical volumes to the oper-
ating system. The LVM backend imple-

http://ceph.com/docs/master/cephfs/

OpenStack Ops Guide September 12, 2014

69

ments block storage as LVM logical par-
titions.

On each host that will house block stor-
age, an administrator must initially cre-
ate a volume group dedicated to Block
Storage volumes. Blocks are created
from LVM logical volumes.

Note

LVM does not provide any
replication. Typically, ad-
ministrators configure RAID
on nodes that use LVM as
block storage to protect
against failures of individ-
ual hard drives. Howev-
er, RAID does not protect
against a failure of the en-
tire host.

ZFS The Solaris iSCSI driver for OpenStack
Block Storage implements blocks as ZFS
entities. ZFS is a file system that also
has the functionality of a volume man-
ager. This is unlike on a Linux system,
where there is a separation of volume
manager (LVM) and file system (such
as, ext3, ext4, xfs, and btrfs). ZFS has
a number of advantages over ext4, in-
cluding improved data-integrity check-
ing.

The ZFS backend for OpenStack Block
Storage supports only Solaris-based sys-
tems, such as Illumos. While there is
a Linux port of ZFS, it is not included
in any of the standard Linux distribu-
tions, and it has not been tested with
OpenStack Block Storage. As with LVM,
ZFS does not provide replication across
hosts on its own; you need to add a
replication solution on top of ZFS if

OpenStack Ops Guide September 12, 2014

70

your cloud needs to be able to handle
storage-node failures.

We don't recommend ZFS unless you
have previous experience with deploy-
ing it, since the ZFS backend for Block
Storage requires a Solaris-based oper-
ating system, and we assume that your
experience is primarily with Linux-based
systems.

Conclusion
We hope that you now have some considerations in mind and questions to
ask your future cloud users about their storage use cases. As you can see,
your storage decisions will also influence your network design for perfor-
mance and security needs. Continue with us to make more informed deci-
sions about your OpenStack cloud design.

OpenStack Ops Guide September 12, 2014

71

7. Network Design
Management Network ... 71
Public Addressing Options .. 72
IP Address Planning ... 72
Network Topology ... 74
Services for Networking ... 76
Conclusion ... 76

OpenStack provides a rich networking environment, and this chapter de-
tails the requirements and options to deliberate when designing your
cloud.

Warning

If this is the first time you are deploying a cloud infrastructure
in your organization, after reading this section, your first con-
versations should be with your networking team. Network us-
age in a running cloud is vastly different from traditional net-
work deployments and has the potential to be disruptive at
both a connectivity and a policy level.

For example, you must plan the number of IP addresses that you need for
both your guest instances as well as management infrastructure. Addition-
ally, you must research and discuss cloud network connectivity through
proxy servers and firewalls.

In this chapter, we'll give some examples of network implementations to
consider and provide information about some of the network layouts that
OpenStack uses. Finally, we have some brief notes on the networking ser-
vices that are essential for stable operation.

Management Network
A management network (a separate network for use by your cloud oper-
ators) typically consists of a separate switch and separate NICs (network
interface cards), and is a recommended option. This segregation prevents
system administration and the monitoring of system access from being dis-
rupted by traffic generated by guests.

Consider creating other private networks for communication between in-
ternal components of OpenStack, such as the message queue and Open-

OpenStack Ops Guide September 12, 2014

72

Stack Compute. Using a virtual local area network (VLAN) works well for
these scenarios because it provides a method for creating multiple virtual
networks on a physical network.

Public Addressing Options
There are two main types of IP addresses for guest virtual machines: fixed
IPs and floating IPs. Fixed IPs are assigned to instances on boot, whereas
floating IP addresses can change their association between instances by ac-
tion of the user. Both types of IP addresses can be either public or private,
depending on your use case.

Fixed IP addresses are required, whereas it is possible to run OpenStack
without floating IPs. One of the most common use cases for floating IPs is
to provide public IP addresses to a private cloud, where there are a limited
number of IP addresses available. Another is for a public cloud user to have
a "static" IP address that can be reassigned when an instance is upgraded
or moved.

Fixed IP addresses can be private for private clouds, or public for public
clouds. When an instance terminates, its fixed IP is lost. It is worth noting
that newer users of cloud computing may find their ephemeral nature frus-
trating.

IP Address Planning
An OpenStack installation can potentially have many subnets (ranges of IP
addresses) and different types of services in each. An IP address plan can
assist with a shared understanding of network partition purposes and scal-
ability. Control services can have public and private IP addresses, and as
noted above, there are a couple of options for an instance's public address-
es.

An IP address plan might be broken down into the following sections:

Subnet router Packets leaving the subnet go via this
address, which could be a dedicated
router or a nova-network service.

Control services public inter-
faces

Public access to swift-proxy, no-
va-api, glance-api, and horizon
come to these addresses, which could

OpenStack Ops Guide September 12, 2014

73

be on one side of a load balancer or
pointing at individual machines.

Object Storage cluster internal
communications

Traffic among object/account/contain-
er servers and between these and the
proxy server's internal interface uses
this private network.

Compute and storage communi-
cations

If ephemeral or block storage is exter-
nal to the compute node, this network
is used.

Out-of-band remote manage-
ment

If a dedicated remote access controller
chip is included in servers, often these
are on a separate network.

In-band remote management Often, an extra (such as 1 GB) interface
on compute or storage nodes is used
for system administrators or monitor-
ing tools to access the host instead of
going through the public interface.

Spare space for future growth Adding more public-facing control ser-
vices or guest instance IPs should al-
ways be part of your plan.

For example, take a deployment that has both OpenStack Compute and
Object Storage, with private ranges 172.22.42.0/24 and 172.22.87.0/26
available. One way to segregate the space might be as follows:
172.22.42.0/24:
172.22.42.1 - 172.22.42.3 - subnet routers
172.22.42.4 - 172.22.42.20 - spare for networks
172.22.42.21 - 172.22.42.104 - Compute node remote access controllers
 (inc spare)
172.22.42.105 - 172.22.42.188 - Compute node management interfaces (inc spare)
172.22.42.189 - 172.22.42.208 - Swift proxy remote access controllers
 (inc spare)
172.22.42.209 - 172.22.42.228 - Swift proxy management interfaces (inc spare)
172.22.42.229 - 172.22.42.252 - Swift storage servers remote access controllers
 (inc spare)
172.22.42.253 - 172.22.42.254 - spare
172.22.87.0/26:
172.22.87.1 - 172.22.87.3 - subnet routers
172.22.87.4 - 172.22.87.24 - Swift proxy server internal interfaces
 (inc spare)
172.22.87.25 - 172.22.87.63 - Swift object server internal interfaces
 (inc spare)

A similar approach can be taken with public IP addresses, taking note that
large, flat ranges are preferred for use with guest instance IPs. Take into
account that for some OpenStack networking options, a public IP address
in the range of a guest instance public IP address is assigned to the no-
va-compute host.

OpenStack Ops Guide September 12, 2014

74

Network Topology
OpenStack Compute with nova-network provides predefined network
deployment models, each with its own strengths and weaknesses. The
selection of a network manager changes your network topology, so the
choice should be made carefully. You also have a choice between the tried-
and-true legacy nova-network settings or the neutron project for Open-
Stack Networking. Both offer networking for launched instances with dif-
ferent implementations and requirements.

For OpenStack Networking with the neutron project, typical configura-
tions are documented with the idea that any setup you can configure with
real hardware you can re-create with a software-defined equivalent. Each
tenant can contain typical network elements such as routers, and services
such as DHCP.

Table 7.1, “Networking deployment options” [74] discusses the net-
working deployment options for both legacy nova-network options and
an equivalent neutron configuration.

Table 7.1. Networking deployment options

Network deployment
model

Strengths Weaknesses Neutron equivalent

Flat Extremely simple topology.

No DHCP overhead.

Requires file injection into the in-
stance to configure network inter-
faces.

Configure a single bridge as the integration bridge (br-int) and
connect it to a physical network interface with the Modular Lay-
er 2 (ML2) plug-in, which uses Open vSwitch by default.

FlatDHCP Relatively simple to deploy.

Standard networking.

Works with all guest operating sys-
tems.

Requires its own DHCP broadcast do-
main.

Configure DHCP agents and routing agents. Network Address
Translation (NAT) performed outside of compute nodes, typical-
ly on one or more network nodes.

VlanManager Each tenant is isolated to its own
VLANs.

More complex to set up.

Requires its own DHCP broadcast do-
main.

Requires many VLANs to be trunked
onto a single port.

Standard VLAN number limitation.

Switches must support 802.1q VLAN
tagging.

Isolated tenant networks implement some form of isolation of
layer 2 traffic between distinct networks. VLAN tagging is key
concept, where traffic is “tagged” with an ordinal identifier for
the VLAN. Isolated network implementations may or may not
include additional services like DHCP, NAT, and routing.

FlatDHCP Multi-host with
high availability (HA)

Networking failure is isolated to
the VMs running on the affected
hypervisor.

More complex to set up.

Compute nodes typically need IP ad-
dresses accessible by external net-
works.

Configure neutron with multiple DHCP and layer-3 agents.
Network nodes are not able to failover to each other, so the
controller runs networking services, such as DHCP. Compute

OpenStack Ops Guide September 12, 2014

75

Network deployment
model

Strengths Weaknesses Neutron equivalent

DHCP traffic can be isolated within
an individual host.

Network traffic is distributed to the
compute nodes.

Options must be carefully configured
for live migration to work with net-
working services.

nodes run the ML2 plug-in with support for agents such as Open
vSwitch or Linux Bridge.

Both nova-network and neutron services provide similar capabilities,
such as VLAN between VMs. You also can provide multiple NICs on VMs
with either service. Further discussion follows.

VLAN Configuration Within OpenStack VMs

VLAN configuration can be as simple or as complicated as desired. The
use of VLANs has the benefit of allowing each project its own subnet and
broadcast segregation from other projects. To allow OpenStack to effi-
ciently use VLANs, you must allocate a VLAN range (one for each project)
and turn each compute node switch port into a trunk port.

For example, if you estimate that your cloud must support a maximum of
100 projects, pick a free VLAN range that your network infrastructure is
currently not using (such as VLAN 200–299). You must configure Open-
Stack with this range and also configure your switch ports to allow VLAN
traffic from that range.

Multi-NIC Provisioning

OpenStack Compute has the ability to assign multiple NICs to instances on
a per-project basis. This is generally an advanced feature and not an every-
day request. This can easily be done on a per-request basis, though. How-
ever, be aware that a second NIC uses up an entire subnet or VLAN. This
decrements your total number of supported projects by one.

Multi-Host and Single-Host Networking

The nova-network service has the ability to operate in a multi-host or
single-host mode. Multi-host is when each compute node runs a copy of
nova-network and the instances on that compute node use the com-
pute node as a gateway to the Internet. The compute nodes also host the
floating IPs and security groups for instances on that node. Single-host is
when a central server—for example, the cloud controller—runs the no-
va-network service. All compute nodes forward traffic from the in-
stances to the cloud controller. The cloud controller then forwards traf-

OpenStack Ops Guide September 12, 2014

76

fic to the Internet. The cloud controller hosts the floating IPs and security
groups for all instances on all compute nodes in the cloud.

There are benefits to both modes. Single-node has the downside of a sin-
gle point of failure. If the cloud controller is not available, instances can-
not communicate on the network. This is not true with multi-host, but mul-
ti-host requires that each compute node has a public IP address to commu-
nicate on the Internet. If you are not able to obtain a significant block of
public IP addresses, multi-host might not be an option.

Services for Networking
OpenStack, like any network application, has a number of standard consid-
erations to apply, such as NTP and DNS.

NTP

Time synchronization is a critical element to ensure continued operation
of OpenStack components. Correct time is necessary to avoid errors in
instance scheduling, replication of objects in the object store, and even
matching log timestamps for debugging.

All servers running OpenStack components should be able to access an ap-
propriate NTP server. You may decide to set up one locally or use the pub-
lic pools available from the Network Time Protocol project.

DNS

OpenStack does not currently provide DNS services, aside from the dns-
masq daemon, which resides on nova-network hosts. You could con-
sider providing a dynamic DNS service to allow instances to update a
DNS entry with new IP addresses. You can also consider making a gener-
ic forward and reverse DNS mapping for instances' IP addresses, such as
vm-203-0-113-123.example.com.

Conclusion
Armed with your IP address layout and numbers and knowledge about
the topologies and services you can use, it's now time to prepare the net-
work for your installation. Be sure to also check out the OpenStack Securi-
ty Guide for tips on securing your network. We wish you a good relation-
ship with your networking team!

http://www.pool.ntp.org/en/
http://docs.openstack.org/sec/
http://docs.openstack.org/sec/

Part II. Operations
Congratulations! By now, you should have a solid design for your cloud. We
now recommend that you turn to the OpenStack Installation Guide (http://
docs.openstack.org/havana/install-guide/install/apt/ for Ubuntu, for example),
which contains a step-by-step guide on how to manually install the OpenStack pack-
ages and dependencies on your cloud.

While it is important for an operator to be familiar with the steps involved in deploy-
ing OpenStack, we also strongly encourage you to evaluate configuration-manage-
ment tools, such as Puppet or Chef, which can help automate this deployment pro-
cess.

In the remainder of this guide, we assume that you have successfully deployed an
OpenStack cloud and are able to perform basic operations such as adding images,
booting instances, and attaching volumes.

As your focus turns to stable operations, we recommend that you do skim the re-
mainder of this book to get a sense of the content. Some of this content is useful
to read in advance so that you can put best practices into effect to simplify your life
in the long run. Other content is more useful as a reference that you might turn to
when an unexpected event occurs (such as a power failure), or to troubleshoot a par-
ticular problem.

http://docs.openstack.org/havana/install-guide/install/apt/
http://docs.openstack.org/havana/install-guide/install/apt/

OpenStack Ops Guide September 12, 2014

79

8. Lay of the Land
Using the OpenStack Dashboard for Administration 79
Command-Line Tools .. 79
Network Inspection .. 87
Users and Projects .. 88
Running Instances .. 88
Summary ... 89

This chapter helps you set up your working environment and use it to take
a look around your cloud.

Using the OpenStack Dashboard for Ad-
ministration

As a cloud administrative user, you can use the OpenStack dashboard to
create and manage projects, users, images, and flavors. Users are allowed
to create and manage images within specified projects and to share im-
ages, depending on the Image Service configuration. Typically, the policy
configuration allows admin users only to set quotas and create and man-
age services. The dashboard provides an Admin tab with a System Panel
and Identity Panel. These interfaces give you access to system information
and usage as well as to settings for configuring what end users can do. Re-
fer to the OpenStack Admin User Guide for detailed how-to information
about using the dashboard as an admin user.

Command-Line Tools
We recommend using a combination of the OpenStack command-line in-
terface (CLI) tools and the OpenStack dashboard for administration. Some
users with a background in other cloud technologies may be using the EC2
Compatibility API, which uses naming conventions somewhat different
from the native API. We highlight those differences.

We strongly suggest that you install the command-line clients from the
Python Package Index (PyPI) instead of from the distribution packages.
The clients are under heavy development, and it is very likely at any given
time that the version of the packages distributed by your operating-system
vendor are out of date.

The pip utility is used to manage package installation from the PyPI archive
and is available in the python-pip package in most Linux distributions. Each

http://docs.openstack.org/user-guide-admin/content/ch_dashboard.html
https://pypi.python.org/pypi

OpenStack Ops Guide September 12, 2014

80

OpenStack project has its own client, so depending on which services your
site runs, install some or all of the following packages:

• python-novaclient (nova CLI)

• python-glanceclient (glance CLI)

• python-keystoneclient (keystone CLI)

• python-cinderclient (cinder CLI)

• python-swiftclient (swift CLI)

• python-neutronclient (neutron CLI)

Installing the Tools

To install (or upgrade) a package from the PyPI archive with pip, as root:

pip install [--upgrade] <package-name>

To remove the package:

pip uninstall <package-name>

If you need even newer versions of the clients, pip can install directly from
the upstream git repository using the -e flag. You must specify a name for
the Python egg that is installed. For example:

pip install -e git+https://github.com/openstack/
 python-novaclient.git#egg=python-novaclient

If you support the EC2 API on your cloud, you should also install the
euca2ools package or some other EC2 API tool so that you can get the
same view your users have. Using EC2 API-based tools is mostly out of the
scope of this guide, though we discuss getting credentials for use with it.

Administrative Command-Line Tools

There are also several *-manage command-line tools. These are installed
with the project's services on the cloud controller and do not need to be in-
stalled separately:

• nova-manage

• glance-manage

• keystone-manage

OpenStack Ops Guide September 12, 2014

81

• cinder-manage

Unlike the CLI tools mentioned above, the *-manage tools must be run
from the cloud controller, as root, because they need read access to the
config files such as /etc/nova/nova.conf and to make queries directly
against the database rather than against the OpenStack API endpoints.

Warning

The existence of the *-manage tools is a legacy issue. It is a
goal of the OpenStack project to eventually migrate all of the
remaining functionality in the *-manage tools into the API-
based tools. Until that day, you need to SSH into the cloud con-
troller node to perform some maintenance operations that re-
quire one of the *-manage tools.

Getting Credentials

You must have the appropriate credentials if you want to use the com-
mand-line tools to make queries against your OpenStack cloud. By far, the
easiest way to obtain authentication credentials to use with command-line
clients is to use the OpenStack dashboard. From the top-right navigation
row, select Project, then Access & Security, then API Access to access the
user settings page where you can set your language and timezone pref-
erences for the dashboard view. This action displays two buttons, Down-
load OpenStack RC File and Download EC2 Credentials, which let you
generate files that you can source in your shell to populate the environ-
ment variables the command-line tools require to know where your ser-
vice endpoints and your authentication information are. The user you
logged in to the dashboard dictates the filename for the openrc file, such
as demo-openrc.sh. When logged in as admin, the file is named ad-
min-openrc.sh.

The generated file looks something like this:
#!/bin/bash

With the addition of Keystone, to use an openstack cloud you should
authenticate against keystone, which returns a **Token** and **Service
Catalog**. The catalog contains the endpoint for all services the
user/tenant has access to--including nova, glance, keystone, swift.
#
NOTE: Using the 2.0 *auth api* does not mean that compute api is 2.0.
We use the 1.1 *compute api*
export OS_AUTH_URL=http://203.0.113.10:5000/v2.0

With the addition of Keystone we have standardized on the term **tenant**
as the entity that owns the resources.
export OS_TENANT_ID=98333aba48e756fa8f629c83a818ad57
export OS_TENANT_NAME="test-project"

OpenStack Ops Guide September 12, 2014

82

In addition to the owning entity (tenant), openstack stores the entity
performing the action as the **user**.
export OS_USERNAME=demo

With Keystone you pass the keystone password.
echo "Please enter your OpenStack Password: "
read -s OS_PASSWORD_INPUT
export OS_PASSWORD=$OS_PASSWORD_INPUT

Warning

This does not save your password in plain text, which is a good
thing. But when you source or run the script, it prompts you
for your password and then stores your response in the envi-
ronment variable OS_PASSWORD. It is important to note that
this does require interactivity. It is possible to store a value di-
rectly in the script if you require a noninteractive operation,
but you then need to be extremely cautious with the security
and permissions of this file.

EC2 compatibility credentials can be downloaded by selecting Project, then
Access & Security, then API Access to display the Download EC2 Creden-
tials button. Click the button to generate a ZIP file with server x509 cer-
tificates and a shell script fragment. Create a new directory in a secure
location because these are live credentials containing all the authentica-
tion information required to access your cloud identity, unlike the default
user-openrc. Extract the ZIP file here. You should have cacert.pem,
cert.pem, ec2rc.sh, and pk.pem. The ec2rc.sh is similar to this:
#!/bin/bash

NOVARC=$(readlink -f "${BASH_SOURCE:-${0}}" 2>/dev/null) ||\
NOVARC=$(python -c 'import os,sys; \
print os.path.abspath(os.path.realpath(sys.argv[1]))' "${BASH_SOURCE:-${0}}")
NOVA_KEY_DIR=${NOVARC%/*}
export EC2_ACCESS_KEY=df7f93ec47e84ef8a347bbb3d598449a
export EC2_SECRET_KEY=ead2fff9f8a344e489956deacd47e818
export EC2_URL=http://203.0.113.10:8773/services/Cloud
export EC2_USER_ID=42 # nova does not use user id, but bundling requires it
export EC2_PRIVATE_KEY=${NOVA_KEY_DIR}/pk.pem
export EC2_CERT=${NOVA_KEY_DIR}/cert.pem
export NOVA_CERT=${NOVA_KEY_DIR}/cacert.pem
export EUCALYPTUS_CERT=${NOVA_CERT} # euca-bundle-image seems to require this

alias ec2-bundle-image="ec2-bundle-image --cert $EC2_CERT --privatekey \
$EC2_PRIVATE_KEY --user 42 --ec2cert $NOVA_CERT"
alias ec2-upload-bundle="ec2-upload-bundle -a $EC2_ACCESS_KEY -s \
$EC2_SECRET_KEY --url $S3_URL --ec2cert $NOVA_CERT"

To put the EC2 credentials into your environment, source the ec2rc.sh
file.

Inspecting API Calls

The command-line tools can be made to show the OpenStack API calls they
make by passing the --debug flag to them. For example:

nova --debug list

OpenStack Ops Guide September 12, 2014

83

This example shows the HTTP requests from the client and the responses
from the endpoints, which can be helpful in creating custom tools written
to the OpenStack API.

Tip

Keyring Support enables you to securely save your OpenStack
password in an encrypted file.

This feature is disabled by default. To enable it, add the --os-
cache flag or set the environment variable OS_CACHE=1.

Configuring OS_CACHE causes the command-line tool to au-
thenticate on each and every interaction with the cloud. This
can assist with working around this scenario. However, it in-
creases the time taken to run commands and also the load on
the server.

Using cURL for further inspection

Underlying the use of the command-line tools is the OpenStack API, which
is a RESTful API that runs over HTTP. There may be cases where you want
to interact with the API directly or need to use it because of a suspected
bug in one of the CLI tools. The best way to do this is to use a combination
of cURL and another tool, such as jq, to parse the JSON from the respons-
es.

The first thing you must do is authenticate with the cloud using your cre-
dentials to get an authentication token.

Your credentials are a combination of username, password, and tenant
(project). You can extract these values from the openrc.sh discussed
above. The token allows you to interact with your other service endpoints
without needing to reauthenticate for every request. Tokens are typically
good for 24 hours, and when the token expires, you are alerted with a 401
(Unauthorized) response and you can request another token.

1. Look at your OpenStack service catalog:

$ curl -s -X POST http://203.0.113.10:35357/v2.0/tokens \
-d '{"auth": {"passwordCredentials": {"username":"test-user", \
 "password":"test-password"}, \
 "tenantName":"test-project"}}' \
-H "Content-type: application/json" | jq .

2. Read through the JSON response to get a feel for how the catalog is
laid out.

https://wiki.openstack.org/wiki/KeyringSupport
http://curl.haxx.se/
http://stedolan.github.io/jq/

OpenStack Ops Guide September 12, 2014

84

To make working with subsequent requests easier, store the token in an
environment variable:

$ TOKEN=`curl -s -X POST http://203.0.113.10:35357/v2.0/tokens \
-d '{"auth": {"passwordCredentials": {"username":"test-user", \
 "password":"test-password"}, \
 "tenantName":"test-project"}}' \
-H "Content-type: application/json" | jq -r .access.token.id`

Now you can refer to your token on the command line as $TOKEN.

3. Pick a service endpoint from your service catalog, such as compute. Try
a request, for example, listing instances (servers):

$ curl -s \
-H "X-Auth-Token: $TOKEN" \
http://203.0.113.10:8774/v2/98333aba48e756fa8f629c83a818ad57/servers | jq .

To discover how API requests should be structured, read the OpenStack
API Reference. To chew through the responses using jq, see the jq Manual.

The -s flag used in the cURL commands above are used to prevent the-
 progress meter from being shown. If you are having trouble running cURL
commands, you'll want to remove it. Likewise, to help you troubleshoot
cURL commands, you can include the -v flag to show you the verbose out-
put. There are many more extremely useful features in cURL; refer to the
man page for all the options.

Servers and Services

As an administrator, you have a few ways to discover what your Open-
Stack cloud looks like simply by using the OpenStack tools available. This
section gives you an idea of how to get an overview of your cloud, its
shape, size, and current state.

First, you can discover what servers belong to your OpenStack cloud by
running:
nova-manage service list | sort

The output looks like the following:
Binary Host Zone Status State Updated_At
nova-cert cloud.example.com nova enabled :-) 2013-02-25 19:32:38
nova-compute c01.example.com nova enabled :-) 2013-02-25 19:32:35
nova-compute c02.example.com nova enabled :-) 2013-02-25 19:32:32
nova-compute c03.example.com nova enabled :-) 2013-02-25 19:32:36
nova-compute c04.example.com nova enabled :-) 2013-02-25 19:32:32
nova-compute c05.example.com nova enabled :-) 2013-02-25 19:32:41
nova-conductor cloud.example.com nova enabled :-) 2013-02-25 19:32:40
nova-consoleauth cloud.example.com nova enabled :-) 2013-02-25 19:32:36
nova-network cloud.example.com nova enabled :-) 2013-02-25 19:32:32
nova-scheduler cloud.example.com nova enabled :-) 2013-02-25 19:32:33

http://developer.openstack.org/api-ref.html
http://developer.openstack.org/api-ref.html
http://stedolan.github.io/jq/manual/

OpenStack Ops Guide September 12, 2014

85

The output shows that there are five compute nodes and one cloud con-
troller. You see a smiley face, such as :-), which indicates that the ser-
vices are up and running. If a service is no longer available, the :-) symbol
changes to XXX. This is an indication that you should troubleshoot why the
service is down.

If you are using cinder, run the following command to see a similar listing:

cinder-manage host list | sort

host zone
c01.example.com nova
c02.example.com nova
c03.example.com nova
c04.example.com nova
c05.example.com nova
cloud.example.com nova

With these two tables, you now have a good overview of what servers and
services make up your cloud.

You can also use the Identity Service (keystone) to see what services are
available in your cloud as well as what endpoints have been configured for
the services.

The following command requires you to have your shell environment con-
figured with the proper administrative variables:

$ keystone catalog

Service: image
+-------------+--+
| Property | Value |
+-------------+--+
adminURL	http://cloud.internal.example.com:9292
internalURL	http://cloud.example.com:9292
publicURL	http://cloud.example.com:9292
region	RegionOne
+-------------+--+

Service: identity
+-------------+--+
| Property | Value |
+-------------+--+
adminURL	http://cloud.internal.example.com:35357/v2.0
internalURL	http://cloud.example.com:5000/v2.0
publicURL	http://cloud.example.com:5000/v2.0
region	RegionOne
+-------------+--+

OpenStack Ops Guide September 12, 2014

86

The preceding output has been truncated to show only two services. You
will see one service block for each service that your cloud provides. Note
how the endpoint domain can be different depending on the endpoint
type. Different endpoint domains per type are not required, but this can
be done for different reasons, such as endpoint privacy or network traffic
segregation.

You can find the version of the Compute installation by using the no-
va-manage command:

nova-manage version

Diagnose Your Compute Nodes

You can obtain extra information about virtual machines that are run-
ning—their CPU usage, the memory, the disk I/O or network I/O—per in-
stance, by running the nova diagnostics command with a server ID:

$ nova diagnostics <serverID>

The output of this command varies depending on the hypervisor because
hypervisors support different attributes. The following demonstrates the
difference between the two most popular hypervisors. Here is example
output when the hypervisor is Xen:

+----------------+-----------------+
| Property | Value |
+----------------+-----------------+
cpu0	4.3627
memory	1171088064.0000
memory_target	1171088064.0000
vbd_xvda_read	0.0
vbd_xvda_write	0.0
vif_0_rx	3223.6870
vif_0_tx	0.0
vif_1_rx	104.4955
vif_1_tx	0.0
+----------------+-----------------+

While the command should work with any hypervisor that is controlled
through libvirt (e.g., KVM, QEMU, or LXC), it has been tested only with
KVM. Here is example output when the hypervisor is KVM:

OpenStack Ops Guide September 12, 2014

87

+------------------+------------+
| Property | Value |
+------------------+------------+
cpu0_time	2870000000
memory	524288
vda_errors	-1
vda_read	262144
vda_read_req	112
vda_write	5606400
vda_write_req	376
vnet0_rx	63343
vnet0_rx_drop	0
vnet0_rx_errors	0
vnet0_rx_packets	431
vnet0_tx	4905
vnet0_tx_drop	0
vnet0_tx_errors	0
vnet0_tx_packets	45
+------------------+------------+

Network Inspection
To see which fixed IP networks are configured in your cloud, you can use
the nova command-line client to get the IP ranges:

$ nova network-list
+--------------------------------------+--------+--------------+
| ID | Label | Cidr |
+--------------------------------------+--------+--------------+
| 3df67919-9600-4ea8-952e-2a7be6f70774 | test01 | 10.1.0.0/24 |
| 8283efb2-e53d-46e1-a6bd-bb2bdef9cb9a | test02 | 10.1.1.0/24 |
+--------------------------------------+--------+--------------+

The nova-manage tool can provide some additional details:

nova-manage network list
id IPv4 IPv6 start address DNS1 DNS2 VlanID project
 uuid
1 10.1.0.0/24 None 10.1.0.3 None None 300 2725bbd
 beacb3f2
2 10.1.1.0/24 None 10.1.1.3 None None 301 none
 d0b1a796

This output shows that two networks are configured, each network con-
taining 255 IPs (a /24 subnet). The first network has been assigned to a
certain project, while the second network is still open for assignment. You
can assign this network manually; otherwise, it is automatically assigned
when a project launches its first instance.

To find out whether any floating IPs are available in your cloud, run:

OpenStack Ops Guide September 12, 2014

88

nova-manage floating list

2725bb...59f43f 1.2.3.4 None nova vlan20
None 1.2.3.5 48a415...b010ff nova vlan20

Here, two floating IPs are available. The first has been allocated to a
project, while the other is unallocated.

Users and Projects
To see a list of projects that have been added to the cloud, run:
$ keystone tenant-list

+-----+----------+---------+
| id | name | enabled |
+-----+----------+---------+
...	jtopjian	True
...	alvaro	True
...	everett	True
...	admin	True
...	services	True
...	jonathan	True
...	lorin	True
...	anne	True
...	rhulsker	True
...	tom	True
...	adam	True
+-----+----------+---------+

To see a list of users, run:
$ keystone user-list

+-----+----------+---------+------------------------------+
| id | name | enabled | email |
+-----+----------+---------+------------------------------+
...	everett	True	everett.towne@backspace.com
...	jonathan	True	jon@sfcu.edu
...	nova	True	nova@localhost
...	rhulsker	True	ryan.hulkster@cyberalbert.ca
...	lorin	True	lorinhoch@nsservices.com
...	alvaro	True	Alvaro.Perry@cyberalbert.ca
...	anne	True	anne.green@backspace.com
...	admin	True	root@localhost
...	cinder	True	cinder@localhost
...	glance	True	glance@localhost
...	jtopjian	True	joe.topjian@cyberalbert.com
...	adam	True	adam@ossmanuals.net
...	tom	True	fafield@univm.edu.au
+-----+----------+---------+------------------------------+

Note

Sometimes a user and a group have a one-to-one mapping.
This happens for standard system accounts, such as cinder,
glance, nova, and swift, or when only one user is part of a
group.

Running Instances
To see a list of running instances, run:

OpenStack Ops Guide September 12, 2014

89

$ nova list --all-tenants

+-----+------------------+--------+---+
| ID | Name | Status | Networks |
+-----+------------------+--------+---+
...	Windows	ACTIVE	novanetwork_1=10.1.1.3, 199.116.232.39
...	cloud controller	ACTIVE	novanetwork_0=10.1.0.6; jtopjian=10.1.2.3
...	compute node 1	ACTIVE	novanetwork_0=10.1.0.4; jtopjian=10.1.2.4
...	devbox	ACTIVE	novanetwork_0=10.1.0.3
...	devstack	ACTIVE	novanetwork_0=10.1.0.5
...	initial	ACTIVE	nova_network=10.1.7.4, 10.1.8.4
...	lorin-head	ACTIVE	nova_network=10.1.7.3, 10.1.8.3
+-----+------------------+--------+---+

Unfortunately, this command does not tell you various details about the
running instances, such as what compute node the instance is running on,
what flavor the instance is, and so on. You can use the following command
to view details about individual instances:

$ nova show <uuid>

For example:

nova show 81db556b-8aa5-427d-a95c-2a9a6972f630

+-------------------------------------+-----------------------------------+
| Property | Value |
+-------------------------------------+-----------------------------------+
OS-DCF:diskConfig	MANUAL
OS-EXT-SRV-ATTR:host	c02.example.com
OS-EXT-SRV-ATTR:hypervisor_hostname	c02.example.com
OS-EXT-SRV-ATTR:instance_name	instance-00000029
OS-EXT-STS:power_state	1
OS-EXT-STS:task_state	None
OS-EXT-STS:vm_state	active
accessIPv4	
accessIPv6	
config_drive	
created	2013-02-13T20:08:36Z
flavor	m1.small (6)
hostId	...
id	...
image	Ubuntu 12.04 cloudimg amd64 (...)
key_name	jtopjian-sandbox
metadata	{}
name	devstack
novanetwork_0 network	10.1.0.5
progress	0
security_groups	[{u'name': u'default'}]
status	ACTIVE
tenant_id	...
updated	2013-02-13T20:08:59Z
user_id	...
+-------------------------------------+-----------------------------------+

This output shows that an instance named devstack was created from
an Ubuntu 12.04 image using a flavor of m1.small and is hosted on the
compute node c02.example.com.

Summary
We hope you have enjoyed this quick tour of your working environment,
including how to interact with your cloud and extract useful information.

OpenStack Ops Guide September 12, 2014

90

From here, you can use the Admin User Guide as your reference for all of
the command-line functionality in your cloud.

http://docs.openstack.org/user-guide-admin/content/

OpenStack Ops Guide September 12, 2014

91

9. Managing Projects and Users
Projects or Tenants? .. 91
Managing Projects ... 91
Quotas ... 93
User Management ... 102
Creating New Users ... 102
Associating Users with Projects ... 104
Summary .. 108

An OpenStack cloud does not have much value without users. This chap-
ter covers topics that relate to managing users, projects, and quotas. This
chapter describes users and projects as described by version 2 of the Open-
Stack Identity API.

Warning

While version 3 of the Identity API is available, the client tools
do not yet implement those calls, and most OpenStack clouds
are still implementing Identity API v2.0.

Projects or Tenants?
In OpenStack user interfaces and documentation, a group of users is re-
ferred to as a project or tenant. These terms are interchangeable.

The initial implementation of the OpenStack Compute Service (nova) had
its own authentication system and used the term project. When authen-
tication moved into the OpenStack Identity Service (keystone) project, it
used the term tenant to refer to a group of users. Because of this legacy,
some of the OpenStack tools refer to projects and some refer to tenants.

Tip

This guide uses the term project, unless an example shows
interaction with a tool that uses the term tenant.

Managing Projects
Users must be associated with at least one project, though they may
belong to many. Therefore, you should add at least one project before
adding users.

OpenStack Ops Guide September 12, 2014

92

Adding Projects

To create a project through the OpenStack dashboard:

1. Log in as an administrative user.

2. Select the Admin tab in the left navigation bar.

3. Under Identity Panel, click Projects.

4. Click the Create Project button.

You are prompted for a project name and an optional, but recommended,
description. Select the checkbox at the bottom of the form to enable this
project. By default, it is enabled, as shown in Figure 9.1, “Dashboard's Cre-
ate Project form” [92].

Figure 9.1. Dashboard's Create Project form

It is also possible to add project members and adjust the project quotas.
We'll discuss those actions later, but in practice, it can be quite convenient
to deal with all these operations at one time.

OpenStack Ops Guide September 12, 2014

93

To add a project through the command line, you must use the keystone
utility, which uses tenant in place of project:

keystone tenant-create --name=demo

This command creates a project named "demo." Optionally, you can add
a description string by appending --description tenant-descrip-
tion, which can be very useful. You can also create a group in a disabled
state by appending --enabled false to the command. By default,
projects are created in an enabled state.

Quotas
To prevent system capacities from being exhausted without notification,
you can set up quotas. Quotas are operational limits. For example, the
number of gigabytes allowed per tenant can be controlled to ensure that
a single tenant cannot consume all of the disk space. Quotas are currently
enforced at the tenant (or project) level, rather than the user level.

Warning

Because without sensible quotas a single tenant could use up
all the available resources, default quotas are shipped with
OpenStack. You should pay attention to which quota settings
make sense for your hardware capabilities.

Using the command-line interface, you can manage quotas for the Open-
Stack Compute Service and the Block Storage Service.

Typically, default values are changed because a tenant requires more than
the OpenStack default of 10 volumes per tenant, or more than the Open-
Stack default of 1 TB of disk space on a compute node.

Note

To view all tenants, run:

$ keystone tenant-list

+---------------------------------+----------
+---------+
| id | name | enabled
 |
+---------------------------------+----------
+---------+
| a981642d22c94e159a4a6540f70f9f8 | admin | True
 |

OpenStack Ops Guide September 12, 2014

94

| 934b662357674c7b9f5e4ec6ded4d0e | tenant01 | True
 |
| 7bc1dbfd7d284ec4a856ea1eb82dca8 | tenant02 | True
 |
| 9c554aaef7804ba49e1b21cbd97d218 | services | True
 |
+---------------------------------+----------
+---------+

Set Image Quotas
OpenStack Havana introduced a basic quota feature for the Image service,
so you can now restrict a project's image storage by total number of bytes.
Currently, this quota is applied cloud-wide, so if you were to set an Image
quota limit of 5 GB, then all projects in your cloud will be able to store only
5 GB of images and snapshots.

To enable this feature, edit the /etc/glance/glance-api.conf file,
and under the [DEFAULT] section, add:

user_storage_quota = <bytes>

For example, to restrict a project's image storage to 5 GB, do this:

user_storage_quota = 5368709120

Note

In the Icehouse release, there is a configuration option in
glance-api.conf that limits the number of members al-
lowed per image, called image_member_quota, set to 128 by
default. That setting is a different quota from the storage quo-
ta.

Set Compute Service Quotas
As an administrative user, you can update the Compute Service quotas for
an existing tenant, as well as update the quota defaults for a new tenant.
See Table 9.1, “Compute quota descriptions” [94].

Table 9.1. Compute quota descriptions

Quota Description Property name

Fixed IPs Number of fixed IP addresses allowed per
tenant. This number must be equal to or
greater than the number of allowed in-
stances.

fixed-ips

OpenStack Ops Guide September 12, 2014

95

Quota Description Property name

Floating IPs Number of floating IP addresses allowed
per tenant.

floating-ips

Injected file con-
tent bytes

Number of content bytes allowed per in-
jected file.

injected-file-con-
tent-bytes

Injected file path
bytes

Number of bytes allowed per injected file
path.

injected-file-path-bytes

Injected files Number of injected files allowed per ten-
ant.

injected-files

Instances Number of instances allowed per tenant. instances

Key pairs Number of key pairs allowed per user. key-pairs

Metadata items Number of metadata items allowed per in-
stance.

metadata-items

RAM Megabytes of instance RAM allowed per
tenant.

ram

Security group
rules

Number of rules per security group. security-group-rules

Security groups Number of security groups per tenant. security-groups

VCPUs Number of instance cores allowed per ten-
ant.

cores

View and update compute quotas for a tenant (project)

As an administrative user, you can use the nova quota-* commands,
which are provided by the python-novaclient package, to view and
update tenant quotas.

To view and update default quota values

1. List all default quotas for all tenants, as follows:

$ nova quota-defaults

For example:

$ nova quota-defaults
+-----------------------------+-------+
| Property | Value |
+-----------------------------+-------+
metadata_items	128
injected_file_content_bytes	10240
ram	51200
floating_ips	10
key_pairs	100
instances	10
security_group_rules	20
injected_files	5

OpenStack Ops Guide September 12, 2014

96

cores	20
fixed_ips	-1
injected_file_path_bytes	255
security_groups	10
+-----------------------------+-------+

2. Update a default value for a new tenant, as follows:

$ nova quota-class-update default key value

For example:

$ nova quota-class-update default instances 15

OpenStack Ops Guide September 12, 2014

97

To view quota values for a tenant (project)

1. Place the tenant ID in a useable variable, as follows:

$ tenant=$(keystone tenant-list | awk '/tenantName/ {print
 $2}')

2. List the currently set quota values for a tenant, as follows:

$ nova quota-show --tenant $tenant

For example:

$ nova quota-show --tenant $tenant
+-----------------------------+-------+
| Property | Value |
+-----------------------------+-------+
metadata_items	128
injected_file_content_bytes	10240
ram	51200
floating_ips	12
key_pairs	100
instances	10
security_group_rules	20
injected_files	5
cores	20
fixed_ips	-1
injected_file_path_bytes	255
security_groups	10
+-----------------------------+-------+

To update quota values for a tenant (project)

1. Obtain the tenant ID, as follows:

$ tenant=$(keystone tenant-list | awk '/tenantName/ {print
 $2}')

2. Update a particular quota value, as follows:

nova quota-update --quotaName quotaValue tenantID

For example:

nova quota-update --floating-ips 20 $tenant
nova quota-show --tenant $tenant
+-----------------------------+-------+
| Property | Value |
+-----------------------------+-------+
| metadata_items | 128 |
| injected_file_content_bytes | 10240 |

OpenStack Ops Guide September 12, 2014

98

ram	51200
floating_ips	20
key_pairs	100
instances	10
security_group_rules	20
injected_files	5
cores	20
fixed_ips	-1
injected_file_path_bytes	255
security_groups	10
+-----------------------------+-------+

Note

To view a list of options for the quota-update com-
mand, run:

$ nova help quota-update

Set Object Storage Quotas
Object Storage quotas were introduced in Swift 1.8 (OpenStack Grizzly).
There are currently two categories of quotas for Object Storage:

Container quotas Limit the total size (in bytes) or number of objects
that can be stored in a single container.

Account quotas Limit the total size (in bytes) that a user has avail-
able in the Object Storage service.

To take advantage of either container quotas or account quotas,
your Object Storage proxy server must have container_quotas
or account_quotas (or both) added to the [pipeline:main]
pipeline. Each quota type also requires its own section in the proxy-
server.conf file:

[pipeline:main]
pipeline = healthcheck [...] container_quotas account_quotas
 proxy-server

[filter:account_quotas]
use = egg:swift#account_quotas

[filter:container_quotas]
use = egg:swift#container_quotas

To view and update Object Storage quotas, use the swift command pro-
vided by the python-swiftclient package. Any user included in the

OpenStack Ops Guide September 12, 2014

99

project can view the quotas placed on their project. To update Object Stor-
age quotas on a project, you must have the role of ResellerAdmin in the
project that the quota is being applied to.

OpenStack Ops Guide September 12, 2014

100

To view account quotas placed on a project:

$ swift stat

 Account: AUTH_b36ed2d326034beba0a9dd1fb19b70f9
Containers: 0
 Objects: 0
 Bytes: 0
Meta Quota-Bytes: 214748364800
X-Timestamp: 1351050521.29419
Content-Type: text/plain; charset=utf-8
Accept-Ranges: bytes

To apply or update account quotas on a project:

$ swift post -m quota-bytes:
 <bytes>

For example, to place a 5 GB quota on an account:

$ swift post -m quota-bytes:
 5368709120

To verify the quota, run the swift stat command again:

$ swift stat

 Account: AUTH_b36ed2d326034beba0a9dd1fb19b70f9
Containers: 0
 Objects: 0
 Bytes: 0
Meta Quota-Bytes: 5368709120
X-Timestamp: 1351541410.38328
Content-Type: text/plain; charset=utf-8
Accept-Ranges: bytes

Set Block Storage Quotas

As an administrative user, you can update the Block Storage Service quotas
for a tenant, as well as update the quota defaults for a new tenant. See
Table 9.2, “Block Storage quota descriptions” [100].

Table 9.2. Block Storage quota descriptions

Property name Description

gigabytes Number of volume gigabytes allowed per tenant

snapshots Number of Block Storage snapshots allowed per tenant.

volumes Number of Block Storage volumes allowed per tenant

OpenStack Ops Guide September 12, 2014

101

View and update Block Storage quotas for a tenant (project)

As an administrative user, you can use the cinder quota-* commands,
which are provided by the python-cinderclient package, to view and
update tenant quotas.

To view and update default Block Storage quota values

1. List all default quotas for all tenants, as follows:

$ cinder quota-defaults

For example:

$ cinder quota-defaults
+-----------+-------+
| Property | Value |
+-----------+-------+
gigabytes	1000
snapshots	10
volumes	10
+-----------+-------+

2. To update a default value for a new tenant, update the property in
the /etc/cinder/cinder.conf file.

To view Block Storage quotas for a tenant (project)

• View quotas for the tenant, as follows:

cinder quota-show tenantName

For example:

cinder quota-show tenant01
+-----------+-------+
| Property | Value |
+-----------+-------+
gigabytes	1000
snapshots	10
volumes	10
+-----------+-------+

To update Block Storage quotas for a tenant (project)

1. Place the tenant ID in a useable variable, as follows:

$ tenant=$(keystone tenant-list | awk '/tenantName/ {print
 $2}')

OpenStack Ops Guide September 12, 2014

102

2. Update a particular quota value, as follows:

cinder quota-update --quotaName NewValue tenantID

For example:

cinder quota-update --volumes 15 $tenant
cinder quota-show tenant01
+-----------+-------+
| Property | Value |
+-----------+-------+
gigabytes	1000
snapshots	10
volumes	15
+-----------+-------+

User Management
The command-line tools for managing users are inconvenient to use direct-
ly. They require issuing multiple commands to complete a single task, and
they use UUIDs rather than symbolic names for many items. In practice,
humans typically do not use these tools directly. Fortunately, the Open-
Stack dashboard provides a reasonable interface to this. In addition, many
sites write custom tools for local needs to enforce local policies and pro-
vide levels of self-service to users that aren't currently available with pack-
aged tools.

Creating New Users
To create a user, you need the following information:

• Username

• Email address

• Password

• Primary project

• Role

Username and email address are self-explanatory, though your site may
have local conventions you should observe. Setting and changing pass-
words in the Identity service requires administrative privileges. As of the
Folsom release, users cannot change their own passwords. This is a large
driver for creating local custom tools, and must be kept in mind when as-

OpenStack Ops Guide September 12, 2014

103

signing and distributing passwords. The primary project is simply the first
project the user is associated with and must exist prior to creating the us-
er. Role is almost always going to be "member." Out of the box, OpenStack
comes with two roles defined:

OpenStack Ops Guide September 12, 2014

104

mem-
ber

A typical user

admin An administrative super user, which has full permissions across
all projects and should be used with great care

It is possible to define other roles, but doing so is uncommon.

Once you've gathered this information, creating the user in the dashboard
is just another web form similar to what we've seen before and can be
found by clicking the Users link in the Admin navigation bar and then click-
ing the Create User button at the top right.

Modifying users is also done from this Users page. If you have a large num-
ber of users, this page can get quite crowded. The Filter search box at the
top of the page can be used to limit the users listing. A form very similar to
the user creation dialog can be pulled up by selecting Edit from the actions
dropdown menu at the end of the line for the user you are modifying.

Associating Users with Projects
Many sites run with users being associated with only one project. This is
a more conservative and simpler choice both for administration and for
users. Administratively, if a user reports a problem with an instance or quo-
ta, it is obvious which project this relates to. Users needn't worry about
what project they are acting in if they are only in one project. However,
note that, by default, any user can affect the resources of any other us-
er within their project. It is also possible to associate users with multiple
projects if that makes sense for your organization.

Associating existing users with an additional project or removing them
from an older project is done from the Projects page of the dashboard by
selecting Modify Users from the Actions column, as shown in Figure 9.2,
“Edit Project Members tab” [105].

From this view, you can do a number of useful things, as well as a few dan-
gerous ones.

The first column of this form, named All Users, includes a list of all the
users in your cloud who are not already associated with this project. The
second column shows all the users who are. These lists can be quite long,
but they can be limited by typing a substring of the username you are
looking for in the filter field at the top of the column.

From here, click the + icon to add users to the project. Click the - to remove
them.

OpenStack Ops Guide September 12, 2014

105

Figure 9.2. Edit Project Members tab

The dangerous possibility comes with the ability to change member roles.
This is the dropdown list below the username in the Project Members list.
In virtually all cases, this value should be set to Member. This example pur-
posefully shows an administrative user where this value is admin.

Warning

The admin is global, not per project, so granting a user the
admin role in any project gives the user administrative rights
across the whole cloud.

Typical use is to only create administrative users in a single project, by con-
vention the admin project, which is created by default during cloud setup.
If your administrative users also use the cloud to launch and manage in-
stances, it is strongly recommended that you use separate user accounts
for administrative access and normal operations and that they be in dis-
tinct projects.

Customizing Authorization

The default authorization settings allow administrative users only to create
resources on behalf of a different project. OpenStack handles two kinds of
authorization policies:

OpenStack Ops Guide September 12, 2014

106

Operation based Policies specify access criteria for specific operations,
possibly with fine-grained control over specific at-
tributes.

Resource based Whether access to a specific resource might be
granted or not according to the permissions config-
ured for the resource (currently available only for
the network resource). The actual authorization
policies enforced in an OpenStack service vary from
deployment to deployment.

The policy engine reads entries from the policy.json file. The actual lo-
cation of this file might vary from distribution to distribution: for nova, it is
typically in /etc/nova/policy.json. You can update entries while the
system is running, and you do not have to restart services. Currently, the
only way to update such policies is to edit the policy file.

The OpenStack service's policy engine matches a policy directly. A rule
indicates evaluation of the elements of such policies. For instance, in a
compute:create: [["rule:admin_or_owner"]] statement, the
policy is compute:create, and the rule is admin_or_owner.

Policies are triggered by an OpenStack policy engine whenever one
of them matches an OpenStack API operation or a specific attribute
being used in a given operation. For instance, the engine tests the
create:compute policy every time a user sends a POST /v2/
{tenant_id}/servers request to the OpenStack Compute API server.
Policies can be also related to specific API extensions. For instance, if a us-
er needs an extension like compute_extension:rescue, the attributes
defined by the provider extensions trigger the rule test for that operation.

An authorization policy can be composed by one or more rules. If more
rules are specified, evaluation policy is successful if any of the rules evalu-
ates successfully; if an API operation matches multiple policies, then all the
policies must evaluate successfully. Also, authorization rules are recursive.
Once a rule is matched, the rule(s) can be resolved to another rule, until a
terminal rule is reached. These are the rules defined:

Role-based rules Evaluate successfully if the user submitting the
request has the specified role. For instance,
"role:admin" is successful if the user submit-
ting the request is an administrator.

Field-based rules Evaluate successfully if a field of the re-
source specified in the current request

OpenStack Ops Guide September 12, 2014

107

matches a specific value. For instance,
"field:networks:shared=True" is suc-
cessful if the attribute shared of the network re-
source is set to true.

Generic rules Compare an attribute in the resource with an
attribute extracted from the user's security cre-
dentials and evaluates successfully if the compar-
ison is successful. For instance, "tenant_id:
%(tenant_id)s" is successful if the tenant
identifier in the resource is equal to the tenant
identifier of the user submitting the request.

Here are snippets of the default nova policy.json file:

{
 "context_is_admin": [["role:admin"]],
 "admin_or_owner": [["is_admin:True"], \

 ["project_id:%(project_id)s"]],

 "default": [["rule:admin_or_owner"]],
 "compute:create": [],
 "compute:create:attach_network": [],
 "compute:create:attach_volume": [],
 "compute:get_all": [],
 "admin_api": [["is_admin:True"]],
 "compute_extension:accounts": [["rule:admin_api"]],
 "compute_extension:admin_actions": [["rule:admin_api"]],
 "compute_extension:admin_actions:pause": [["rule:admin_or_owner"]],
 "compute_extension:admin_actions:unpause": [["rule:admin_or_owner"]],
 ...
 "compute_extension:admin_actions:migrate": [["rule:admin_api"]],
 "compute_extension:aggregates": [["rule:admin_api"]],
 "compute_extension:certificates": [],
 ...
 "compute_extension:flavorextraspecs": [],

 "compute_extension:flavormanage": [["rule:admin_api"]],
 }

Shows a rule that evaluates successfully if the current user is an ad-
ministrator or the owner of the resource specified in the request (ten-
ant identifier is equal).
Shows the default policy, which is always evaluated if an API opera-
tion does not match any of the policies in policy.json.
Shows a policy restricting the ability to manipulate flavors to adminis-
trators using the Admin API only.

In some cases, some operations should be restricted to administrators only.
Therefore, as a further example, let us consider how this sample policy file
could be modified in a scenario where we enable users to create their own
flavors:

"compute_extension:flavormanage": [],

OpenStack Ops Guide September 12, 2014

108

Users Who Disrupt Other Users

Users on your cloud can disrupt other users, sometimes intentionally and
maliciously and other times by accident. Understanding the situation al-
lows you to make a better decision on how to handle the disruption.

For example, a group of users have instances that are utilizing a large
amount of compute resources for very compute-intensive tasks. This is driv-
ing the load up on compute nodes and affecting other users. In this situa-
tion, review your user use cases. You may find that high compute scenarios
are common, and should then plan for proper segregation in your cloud,
such as host aggregation or regions.

Another example is a user consuming a very large amount of bandwidth.
Again, the key is to understand what the user is doing. If she naturally
needs a high amount of bandwidth, you might have to limit her transmis-
sion rate as to not affect other users or move her to an area with more
bandwidth available. On the other hand, maybe her instance has been
hacked and is part of a botnet launching DDOS attacks. Resolution of this
issue is the same as though any other server on your network has been
hacked. Contact the user and give her time to respond. If she doesn't re-
spond, shut down the instance.

A final example is if a user is hammering cloud resources repeatedly. Con-
tact the user and learn what he is trying to do. Maybe he doesn't un-
derstand that what he’s doing is inappropriate, or maybe there is an is-
sue with the resource he is trying to access that is causing his requests to
queue or lag.

Summary
One key element of systems administration that is often overlooked is that
end users are the reason systems administrators exist. Don't go the BOFH
route and terminate every user who causes an alert to go off. Work with
users to understand what they're trying to accomplish and see how your
environment can better assist them in achieving their goals. Meet your
users needs by organizing your users into projects, applying policies, man-
aging quotas, and working with them.

OpenStack Ops Guide September 12, 2014

109

10. User-Facing Operations
Images ... 109
Flavors ... 112
Security Groups .. 114
Block Storage ... 118
Instances .. 120
Associating Security Groups .. 124
Floating IPs .. 125
Attaching Block Storage ... 125
Taking Snapshots ... 127
Instances in the Database .. 130
Good Luck! .. 131

This guide is for OpenStack operators and does not seek to be an exhaus-
tive reference for users, but as an operator, you should have a basic under-
standing of how to use the cloud facilities. This chapter looks at OpenStack
from a basic user perspective, which helps you understand your users'
needs and determine, when you get a trouble ticket, whether it is a user is-
sue or a service issue. The main concepts covered are images, flavors, secu-
rity groups, block storage, and instances.

Images
OpenStack images can often be thought of as "virtual machine templates."
Images can also be standard installation media such as ISO images. Essen-
tially, they contain bootable file systems that are used to launch instances.

Adding Images
Several premade images exist and can easily be imported into the Image
Service. A common image to add is the CirrOS image, which is very small
and used for testing purposes. To add this image, simply do:

$ wget http://download.cirros-cloud.net/0.3.1/cirros-0.3.1-
x86_64-disk.img
$ glance image-create --name='cirros image' --is-public=true \
 --container-format=bare --disk-format=qcow2 < cirros-0.3.1-
x86_64-disk.img

The glance image-create command provides a large set of options
for working with your image. For example, the min-disk option is useful
for images that require root disks of a certain size (for example, large Win-
dows images). To view these options, do:

OpenStack Ops Guide September 12, 2014

110

$ glance help image-create

The location option is important to note. It does not copy the entire im-
age into the Image Service, but references an original location where the
image can be found. Upon launching an instance of that image, the Image
Service accesses the image from the location specified.

The copy-from option copies the image from the location specified into
the /var/lib/glance/images directory. The same thing is done when
using the STDIN redirection with <, as shown in the example.

Run the following command to view the properties of existing images:

$ glance details

Sharing Images Between Projects

In a multitenant cloud environment, users sometimes want to share their
personal images or snapshots with other projects. This can be done on the
command line with the glance tool by the owner of the image.

To share an image or snapshot with another project, do the following:

1. Obtain the UUID of the image:

$ glance image-list

2. Obtain the UUID of the project with which you want to share your
image. Unfortunately, nonadmin users are unable to use the key-
stone command to do this. The easiest solution is to obtain the UUID
either from an administrator of the cloud or from a user located in the
project.

3. Once you have both pieces of information, run the glance com-
mand:

$ glance member-create <image-uuid> <project-uuid>

For example:

$ glance member-create 733d1c44-a2ea-414b-aca7-69decf20d810
 \
 771ed149ef7e4b2b88665cc1c98f77ca

Project 771ed149ef7e4b2b88665cc1c98f77ca will now have access to
image 733d1c44-a2ea-414b-aca7-69decf20d810.

OpenStack Ops Guide September 12, 2014

111

Deleting Images

To delete an image, just execute:

$ glance image-delete <image uuid>

Note

Deleting an image does not affect instances or snapshots that
were based on the image.

Other CLI Options

A full set of options can be found using:

$ glance help

or the Command-Line Interface Reference .

The Image Service and the Database

The only thing that the Image Service does not store in a database is the
image itself. The Image Service database has two main tables:

• images

• image_properties

Working directly with the database and SQL queries can provide you with
custom lists and reports of images. Technically, you can update properties
about images through the database, although this is not generally recom-
mended.

Example Image Service Database Queries

One interesting example is modifying the table of images and the owner
of that image. This can be easily done if you simply display the unique ID of
the owner. This example goes one step further and displays the readable
name of the owner:

mysql> select glance.images.id,
 glance.images.name, keystone.tenant.name,
 is_public from
 glance.images inner join keystone.tenant on

http://docs.openstack.org/cli-reference/content/glanceclient_commands.html

OpenStack Ops Guide September 12, 2014

112

 glance.images.owner=keystone.tenant.id;

Another example is displaying all properties for a certain image:

mysql> select name, value from
 image_properties where id = <image_id>

Flavors
Virtual hardware templates are called "flavors" in OpenStack, defining sizes
for RAM, disk, number of cores, and so on. The default install provides five
flavors.

These are configurable by admin users (the rights may also be
delegated to other users by redefining the access controls for
compute_extension:flavormanage in /etc/nova/policy.json
on the nova-api server). To get the list of available flavors on your sys-
tem, run:

$ nova flavor-list
+----+-----------+-----------+------+-----------+\+-------+-\
+-------------+
| ID | Name | Memory_MB | Disk | Ephemeral |/| VCPUs | /|
 extra_specs |
+----+-----------+-----------+------+-----------+\+-------+-\
+-------------+
| 1 | m1.tiny | 512 | 1 | 0 |/| 1 | /|
 {} |
| 2 | m1.small | 2048 | 10 | 20 |\| 1 | \|
 {} |
| 3 | m1.medium | 4096 | 10 | 40 |/| 2 | /|
 {} |
| 4 | m1.large | 8192 | 10 | 80 |\| 4 | \|
 {} |
| 5 | m1.xlarge | 16384 | 10 | 160 |/| 8 | /|
 {} |
+----+-----------+-----------+------+-----------+\+-------+-\
+-------------+

The nova flavor-create command allows authorized users to create
new flavors. Additional flavor manipulation commands can be shown with
the command:

$ nova help | grep flavor

Flavors define a number of parameters, resulting in the user having
a choice of what type of virtual machine to run—just like they would
have if they were purchasing a physical server. Table 10.1, “Flavor pa-

OpenStack Ops Guide September 12, 2014

113

rameters” [113] lists the elements that can be set. Note in particular
extra_specs, which can be used to define free-form characteristics, giv-
ing a lot of flexibility beyond just the size of RAM, CPU, and Disk.

Table 10.1. Flavor parameters

Column Description

ID A unique numeric ID.

Name A descriptive name, such as xx.size_name, is conventional but not re-
quired, though some third-party tools may rely on it.

Memory_MB Virtual machine memory in megabytes.

Disk Virtual root disk size in gigabytes. This is an ephemeral disk the base im-
age is copied into. You don't use it when you boot from a persistent vol-
ume. The "0" size is a special case that uses the native base image size as
the size of the ephemeral root volume.

Ephemeral Specifies the size of a secondary ephemeral data disk. This is an empty,
unformatted disk and exists only for the life of the instance.

Swap Optional swap space allocation for the instance.

VCPUs Number of virtual CPUs presented to the instance.

RXTX_Factor Optional property that allows created servers to have a different band-
width cap from that defined in the network they are attached to. This
factor is multiplied by the rxtx_base property of the network. Default
value is 1.0 (that is, the same as the attached network).

Is_Public Boolean value that indicates whether the flavor is available to all users
or private. Private flavors do not get the current tenant assigned to
them. Defaults to True.

extra_specs Additional optional restrictions on which compute nodes the flavor can
run on. This is implemented as key-value pairs that must match against
the corresponding key-value pairs on compute nodes. Can be used to
implement things like special resources (such as flavors that can run only
on compute nodes with GPU hardware).

Private Flavors

A user might need a custom flavor that is uniquely tuned for a project she
is working on. For example, the user might require 128 GB of memory. If
you create a new flavor as described above, the user would have access to
the custom flavor, but so would all other tenants in your cloud. Sometimes
this sharing isn't desirable. In this scenario, allowing all users to have access
to a flavor with 128 GB of memory might cause your cloud to reach full ca-
pacity very quickly. To prevent this, you can restrict access to the custom
flavor using the nova command:

$ nova flavor-access-add <flavor-id> <project-id>

To view a flavor's access list, do the following:

OpenStack Ops Guide September 12, 2014

114

$ nova flavor-access-list <flavor-id>

Best Practices

Once access to a flavor has been restricted, no other projects
besides the ones granted explicit access will be able to see the
flavor. This includes the admin project. Make sure to add the
admin project in addition to the original project.

It's also helpful to allocate a specific numeric range for custom
and private flavors. On UNIX-based systems, nonsystem ac-
counts usually have a UID starting at 500. A similar approach
can be taken with custom flavors. This helps you easily identi-
fy which flavors are custom, private, and public for the entire
cloud.

How Do I Modify an Existing Flavor?

The OpenStack dashboard simulates the ability to modify a flavor by delet-
ing an existing flavor and creating a new one with the same name.

Security Groups
A common new-user issue with OpenStack is failing to set an appropriate
security group when launching an instance. As a result, the user is unable
to contact the instance on the network.

Security groups are sets of IP filter rules that are applied to an instance's
networking. They are project specific, and project members can edit the
default rules for their group and add new rules sets. All projects have a
"default" security group, which is applied to instances that have no other
security group defined. Unless changed, this security group denies all in-
coming traffic.

General Security Groups Configuration

The nova.conf option allow_same_net_traffic (which defaults to
true) globally controls whether the rules apply to hosts that share a net-
work. When set to true, hosts on the same subnet are not filtered and
are allowed to pass all types of traffic between them. On a flat network,
this allows all instances from all projects unfiltered communication. With
VLAN networking, this allows access between instances within the same
project. If allow_same_net_traffic is set to false, security groups

OpenStack Ops Guide September 12, 2014

115

are enforced for all connections. In this case, it is possible for projects to
simulate allow_same_net_traffic by configuring their default securi-
ty group to allow all traffic from their subnet.

Tip

As noted in the previous chapter, the number
of rules per security group is controlled by the
quota_security_group_rules, and the number of
allowed security groups per project is controlled by the
quota_security_groups quota.

End-User Configuration of Security Groups

Security groups for the current project can be found on the OpenStack
dashboard under Access & Security. To see details of an existing group,
select the edit action for that security group. Obviously, modifying exist-
ing groups can be done from this edit interface. There is a Create Secu-
rity Group button on the main Access & Security page for creating new
groups. We discuss the terms used in these fields when we explain the
command-line equivalents.

From the command line, you can get a list of security groups for the
project you're acting in using the nova command:

OpenStack Ops Guide September 12, 2014

116

$ nova secgroup-list
+---------+-------------+
| Name | Description |
+---------+-------------+
| default | default |
| open | all ports |
+---------+-------------+

To view the details of the "open" security group:

$ nova secgroup-list-rules open
+-------------+-----------+---------+-----------+--------------+
| IP Protocol | From Port | To Port | IP Range | Source Group |
+-------------+-----------+---------+-----------+--------------+
icmp	-1	255	0.0.0.0/0	
tcp	1	65535	0.0.0.0/0	
udp	1	65535	0.0.0.0/0	
+-------------+-----------+---------+-----------+--------------+

These rules are all "allow" type rules, as the default is deny. The first col-
umn is the IP protocol (one of icmp, tcp, or udp), and the second and third
columns specify the affected port range. The fourth column specifies the IP
range in CIDR format. This example shows the full port range for all proto-
cols allowed from all IPs.

When adding a new security group, you should pick a descriptive but brief
name. This name shows up in brief descriptions of the instances that use
it where the longer description field often does not. Seeing that an in-
stance is using security group http is much easier to understand than
bobs_group or secgrp1.

As an example, let's create a security group that allows web traffic any-
where on the Internet. We'll call this group global_http, which is clear
and reasonably concise, encapsulating what is allowed and from where.
From the command line, do:

$ nova secgroup-create \
 global_http "allow web traffic from the Internet"
+-------------+-------------------------------------+
| Name | Description |
+-------------+-------------------------------------+
| global_http | allow web traffic from the Internet |
+-------------+-------------------------------------+

This creates the empty security group. To make it do what we want, we
need to add some rules:

$ nova secgroup-add-rule <secgroup> <ip-proto> <from-port> <to-
port> <cidr>

OpenStack Ops Guide September 12, 2014

117

$ nova secgroup-add-rule global_http tcp 80 80 0.0.0.0/0
+-------------+-----------+---------+-----------+--------------+
| IP Protocol | From Port | To Port | IP Range | Source Group |
+-------------+-----------+---------+-----------+--------------+
| tcp | 80 | 80 | 0.0.0.0/0 | |
+-------------+-----------+---------+-----------+--------------+

Note that the arguments are positional, and the from-port and to-
port arguments specify the allowed local port range connections. These
arguments are not indicating source and destination ports of the connec-
tion. More complex rule sets can be built up through multiple invocations
of nova secgroup-add-rule. For example, if you want to pass both
http and https traffic, do this:

$ nova secgroup-add-rule global_http tcp 443 443 0.0.0.0/0
+-------------+-----------+---------+-----------+--------------+
| IP Protocol | From Port | To Port | IP Range | Source Group |
+-------------+-----------+---------+-----------+--------------+
| tcp | 443 | 443 | 0.0.0.0/0 | |
+-------------+-----------+---------+-----------+--------------+

Despite only outputting the newly added rule, this operation is additive:

$ nova secgroup-list-rules global_http
+-------------+-----------+---------+-----------+--------------+
| IP Protocol | From Port | To Port | IP Range | Source Group |
+-------------+-----------+---------+-----------+--------------+
| tcp | 80 | 80 | 0.0.0.0/0 | |
| tcp | 443 | 443 | 0.0.0.0/0 | |
+-------------+-----------+---------+-----------+--------------+

The inverse operation is called secgroup-delete-rule, using the same
format. Whole security groups can be removed with secgroup-delete.

To create security group rules for a cluster of instances, you want to use
SourceGroups.

SourceGroups are a special dynamic way of defining the CIDR of allowed
sources. The user specifies a SourceGroup (security group name) and then
all the users' other instances using the specified SourceGroup are selected
dynamically. This dynamic selection alleviates the need for individual rules
to allow each new member of the cluster.

The code is structured like this: nova secgroup-add-group-rule
<secgroup> <source-group> <ip-proto> <from-port> <to-
port>. An example usage is shown here:

$ nova secgroup-add-group-rule cluster global-http tcp 22 22

OpenStack Ops Guide September 12, 2014

118

The "cluster" rule allows SSH access from any other instance that uses the
global-http group.

Block Storage
OpenStack volumes are persistent block-storage devices that may be at-
tached and detached from instances, but they can be attached to only one
instance at a time. Similar to an external hard drive, they do not provide
shared storage in the way a network file system or object store does. It
is left to the operating system in the instance to put a file system on the
block device and mount it, or not.

As with other removable disk technology, it is important that the operat-
ing system is not trying to make use of the disk before removing it. On Lin-
ux instances, this typically involves unmounting any file systems mounted
from the volume. The OpenStack volume service cannot tell whether it is
safe to remove volumes from an instance, so it does what it is told. If a us-
er tells the volume service to detach a volume from an instance while it is
being written to, you can expect some level of file system corruption as
well as faults from whatever process within the instance was using the de-
vice.

There is nothing OpenStack-specific in being aware of the steps needed to
access block devices from within the instance operating system, potential-
ly formatting them for first use and being cautious when removing them.
What is specific is how to create new volumes and attach and detach them
from instances. These operations can all be done from the Volumes page
of the dashboard or by using the cinder command-line client.

To add new volumes, you need only a name and a volume size in giga-
bytes. Either put these into the create volume web form or use the com-
mand line:

$ cinder create --display-name test-volume 10

This creates a 10 GB volume named test-volume. To list existing vol-
umes and the instances they are connected to, if any:

$ cinder list
+------------+---------+--------------------+------
+-------------+-------------+
| ID | Status | Display Name | Size | Volume Type
 | Attached to |
+------------+---------+--------------------+------
+-------------+-------------+

OpenStack Ops Guide September 12, 2014

119

| 0821...19f | active | test-volume | 10 | None
 | |
+------------+---------+--------------------+------
+-------------+-------------+

OpenStack Block Storage also allows for creating snapshots of volumes.
Remember that this is a block-level snapshot that is crash consistent, so it
is best if the volume is not connected to an instance when the snapshot
is taken and second best if the volume is not in use on the instance it is
attached to. If the volume is under heavy use, the snapshot may have an
inconsistent file system. In fact, by default, the volume service does not
take a snapshot of a volume that is attached to an image, though it can be
forced to. To take a volume snapshot, either select Create Snapshot from
the actions column next to the volume name on the dashboard volume
page, or run this from the command line:

usage: cinder snapshot-create [--force <True|False>]
[--display-name <display-name>]
[--display-description <display-description>]
<volume-id>
Add a new snapshot.
Positional arguments: <volume-id> ID of the volume to
 snapshot
Optional arguments: --force <True|False> Optional flag to
 indicate whether to
 snapshot a volume
 even if its
 attached to an
 instance.
 (Default=False)
--display-name <display-name> Optional snapshot
 name.
 (Default=None)
--display-description <display-description>
Optional snapshot description. (Default=None)

Note

For more information about updating Block Storage volumes
(for example, resizing or transferring), see the OpenStack End
User Guide.

Block Storage Creation Failures
If a user tries to create a volume and the volume immediately goes into an
error state, the best way to troubleshoot is to grep the cinder log files for
the volume's UUID. First try the log files on the cloud controller, and then
try the storage node where the volume was attempted to be created:

http://docs.openstack.org/user-guide/content/
http://docs.openstack.org/user-guide/content/

OpenStack Ops Guide September 12, 2014

120

grep 903b85d0-bacc-4855-a261-10843fc2d65b /var/log/cinder/*.
log

Instances
Instances are the running virtual machines within an OpenStack cloud. This
section deals with how to work with them and their underlying images,
their network properties, and how they are represented in the database.

Starting Instances

To launch an instance, you need to select an image, a flavor, and a name.
The name needn't be unique, but your life will be simpler if it is because
many tools will use the name in place of the UUID so long as the name is
unique. You can start an instance from the dashboard from the Launch
Instance button on the Instances page or by selecting the Launch action
next to an image or snapshot on the Images & Snapshots page.

On the command line, do this:

$ nova boot --flavor <flavor> --image <image> <name>

There are a number of optional items that can be specified. You should
read the rest of this section before trying to start an instance, but this is
the base command that later details are layered upon.

To delete instances from the dashboard, select the Terminate instance ac-
tion next to the instance on the Instances page. From the command line,
do this:

$ nova delete <instance-uuid>

It is important to note that powering off an instance does not terminate it
in the OpenStack sense.

Instance Boot Failures

If an instance fails to start and immediately moves to an error state, there
are a few different ways to track down what has gone wrong. Some of
these can be done with normal user access, while others require access to
your log server or compute nodes.

The simplest reasons for nodes to fail to launch are quota violations or the
scheduler being unable to find a suitable compute node on which to run

OpenStack Ops Guide September 12, 2014

121

the instance. In these cases, the error is apparent when you run a nova
show on the faulted instance:

$ nova show test-instance

+------------------------+---\
| Property | Value /
+------------------------+---\
| OS-DCF:diskConfig | MANUAL /
| OS-EXT-STS:power_state | 0 \
| OS-EXT-STS:task_state | None /
| OS-EXT-STS:vm_state | error \
| accessIPv4 | /
| accessIPv6 | \
| config_drive | /
| created | 2013-03-01T19:28:24Z \
| fault | {u'message': u'NoValidHost', u'code': 500, u'created/
| flavor | xxl.super (11) \
| hostId | /
| id | 940f3b2f-bd74-45ad-bee7-eb0a7318aa84 \
| image | quantal-test (65b4f432-7375-42b6-a9b8-7f654a1e676e) /
| key_name | None \
| metadata | {} /
| name | test-instance \
| security_groups | [{u'name': u'default'}] /
| status | ERROR \
| tenant_id | 98333a1a28e746fa8c629c83a818ad57 /
| updated | 2013-03-01T19:28:26Z \
| user_id | a1ef823458d24a68955fec6f3d390019 /
+------------------------+---\

In this case, looking at the fault message shows NoValidHost, indicat-
ing that the scheduler was unable to match the instance requirements.

If nova show does not sufficiently explain the failure, searching for the
instance UUID in the nova-compute.log on the compute node it was
scheduled on or the nova-scheduler.log on your scheduler hosts is a
good place to start looking for lower-level problems.

Using nova show as an admin user will show the compute node the in-
stance was scheduled on as hostId. If the instance failed during schedul-
ing, this field is blank.

Using Instance-Specific Data

There are two main types of instance-specific data: metadata and user da-
ta.

Instance metadata

For Compute, instance metadata is a collection of key-value pairs associ-
ated with an instance. Compute reads and writes to these key-value pairs
any time during the instance lifetime, from inside and outside the instance,
when the end user uses the Compute API to do so. However, you cannot

OpenStack Ops Guide September 12, 2014

122

query the instance-associated key-value pairs with the metadata service
that is compatible with the Amazon EC2 metadata service.

For an example of instance metadata, users can generate and register SSH
keys using the nova command:

$ nova keypair-add mykey > mykey.pem

This creates a key named mykey, which you can associate with instances.
The file mykey.pem is the private key, which should be saved to a secure
location because it allows root access to instances the mykey key is associ-
ated with.

Use this command to register an existing key with OpenStack:

$ nova keypair-add --pub-key mykey.pub mykey

Note

You must have the matching private key to access instances as-
sociated with this key.

To associate a key with an instance on boot, add --key_name mykey to
your command line. For example:

$ nova boot --image ubuntu-cloudimage --flavor 2 --key_name
 mykey myimage

When booting a server, you can also add arbitrary metadata so that you
can more easily identify it among other running instances. Use the --meta
option with a key-value pair, where you can make up the string for both
the key and the value. For example, you could add a description and also
the creator of the server:

$ nova boot --image=test-image --flavor=1 \
 --meta description='Small test image' smallimage

When viewing the server information, you can see the metadata included
on the metadata line:

OpenStack Ops Guide September 12, 2014

123

$ nova show smallimage
+------------------------
+---+
| Property | Value
 |
+------------------------
+---+
| OS-DCF:diskConfig | MANUAL
 |
| OS-EXT-STS:power_state | 1
 |
| OS-EXT-STS:task_state | None
 |
| OS-EXT-STS:vm_state | active
 |
| accessIPv4 |
 |
| accessIPv6 |
 |
| config_drive |
 |
| created | 2012-05-16T20:48:23Z
 |
| flavor | m1.small
 |
| hostId | de0...487
 |
| id | 8ec...f915
 |
| image | natty-image
 |
| key_name |
 |
| metadata | {u'description': u'Small test image'}
 |
| name | smallimage
 |
| private network | 172.16.101.11
 |
| progress | 0
 |
| public network | 10.4.113.11
 |
| status | ACTIVE
 |
| tenant_id | e83...482
 |
| updated | 2012-05-16T20:48:35Z
 |
| user_id | de3...0a9
 |

OpenStack Ops Guide September 12, 2014

124

+------------------------
+---+

Instance user data

The user-data key is a special key in the metadata service that holds a
file that cloud-aware applications within the guest instance can access. For
example, cloudinit is an open source package from Ubuntu, but available
in most distributions, that handles early initialization of a cloud instance
that makes use of this user data.

This user data can be put in a file on your local system and then passed in
at instance creation with the flag --user-data <user-data-file>.
For example:

$ nova boot --image ubuntu-cloudimage --flavor 1 --user-data
 mydata.file

To understand the difference between user data and metadata, realize
that user data is created before an instance is started. User data is accessi-
ble from within the instance when it is running. User data can be used to
store configuration, a script, or anything the tenant wants.

File injection

Arbitrary local files can also be placed into the instance file system at cre-
ation time by using the --file <dst-path=src-path> option. You
may store up to five files.

For example, let's say you have a special authorized_keys file named
special_authorized_keysfile that for some reason you want to put on the
instance instead of using the regular SSH key injection. In this case, you can
use the following command:

$ nova boot --image ubuntu-cloudimage --flavor 1 \
 --file /root/.ssh/authorized_keys=special_authorized_keysfile

Associating Security Groups
Security groups, as discussed earlier, are typically required to allow net-
work traffic to an instance, unless the default security group for a project
has been modified to be more permissive.

Adding security groups is typically done on instance boot. When launch-
ing from the dashboard, you do this on the Access & Security tab of the

https://help.ubuntu.com/community/CloudInit

OpenStack Ops Guide September 12, 2014

125

Launch Instance dialog. When launching from the command line, append
--security-groups with a comma-separated list of security groups.

It is also possible to add and remove security groups when an instance is
running. Currently this is only available through the command-line tools.
Here is an example:

$ nova add-secgroup <server> <securitygroup>

$ nova remove-secgroup <server> <securitygroup>

Floating IPs
Where floating IPs are configured in a deployment, each project will have
a limited number of floating IPs controlled by a quota. However, these
need to be allocated to the project from the central pool prior to their use
—usually by the administrator of the project. To allocate a floating IP to
a project, use the Allocate IP to Project button on the Access & Security
page of the dashboard. The command line can also be used:

$ nova floating-ip-create

Once allocated, a floating IP can be assigned to running instances from the
dashboard either by selecting Associate Floating IP from the actions drop-
down next to the IP on the Access & Security page or by making this se-
lection next to the instance you want to associate it with on the Instances
page. The inverse action, Dissociate Floating IP, is available only from the
Access & Security page and not from the Instances page.

To associate or disassociate a floating IP with a server from the command
line, use the following commands:

$ nova add-floating-ip <server> <address>

$ nova remove-floating-ip <server> <address>

Attaching Block Storage
You can attach block storage to instances from the dashboard on the Vol-
umes page. Click the Edit Attachments action next to the volume you
want to attach.

To perform this action from command line, run the following command:

$ nova volume-attach <server> <volume> <device>

OpenStack Ops Guide September 12, 2014

126

You can also specify block device mapping at instance boot time through
the nova command-line client with this option set:

--block-device-mapping <dev-name=mapping>

The block device mapping format is <dev-
name>=<id>:<type>:<size(GB)>:<delete-on-terminate>,
where:

dev-name A device name where the volume is attached
in the system at /dev/dev_name

id The ID of the volume to boot from, as shown
in the output of nova volume-list

type Either snap, which means that the volume
was created from a snapshot, or anything oth-
er than snap (a blank string is valid). In the
preceding example, the volume was not cre-
ated from a snapshot, so we leave this field
blank in our following example.

size (GB) The size of the volume in gigabytes. It is safe
to leave this blank and have the Compute Ser-
vice infer the size.

delete-on-terminate A boolean to indicate whether the volume
should be deleted when the instance is ter-
minated. True can be specified as True or 1.
False can be specified as False or 0.

The following command will boot a new instance and attach a volume at
the same time. The volume of ID 13 will be attached as /dev/vdc. It is not
a snapshot, does not specify a size, and will not be deleted when the in-
stance is terminated:

$ nova boot --image 4042220e-4f5e-4398-9054-39fbd75a5dd7 \
 --flavor 2 --key-name mykey --block-device-mapping
 vdc=13:::0 \
 boot-with-vol-test

If you have previously prepared block storage with a bootable file system
image, it is even possible to boot from persistent block storage. The follow-
ing command boots an image from the specified volume. It is similar to the
previous command, but the image is omitted and the volume is now at-
tached as /dev/vda:

OpenStack Ops Guide September 12, 2014

127

$ nova boot --flavor 2 --key-name mykey \
 --block-device-mapping vda=13:::0 boot-from-vol-test

Read more detailed instructions for launching an instance from a bootable
volume in the OpenStack End User Guide.

To boot normally from an image and attach block storage, map to a de-
vice other than vda. You can find instructions for launching an instance
and attaching a volume to the instance and for copying the image to the
attached volume in the OpenStack End User Guide.

Taking Snapshots
The OpenStack snapshot mechanism allows you to create new images
from running instances. This is very convenient for upgrading base images
or for taking a published image and customizing it for local use. To snap-
shot a running instance to an image using the CLI, do this:

$ nova image-create <instance name or uuid> <name of new image>

The dashboard interface for snapshots can be confusing because the Im-
ages & Snapshots page splits content up into several areas:

• Images

• Instance snapshots

• Volume snapshots

However, an instance snapshot is an image. The only difference between
an image that you upload directly to the Image Service and an image that
you create by snapshot is that an image created by snapshot has addition-
al properties in the glance database. These properties are found in the
image_properties table and include:

Name Value

image_type snapshot

instance_uuid <uuid of instance that was snapshotted>

base_image_ref <uuid of original image of instance that was
snapshotted>

image_location snapshot

Live Snapshots
Live snapshots is a feature that allows users to snapshot the running virtu-
al machines without pausing them. These snapshots are simply disk-only

http://docs.openstack.org/user-guide/content/boot_from_volume.html
http://docs.openstack.org/user-guide/content/dashboard_launch_instances_from_image.html

OpenStack Ops Guide September 12, 2014

128

snapshots. Snapshotting an instance can now be performed with no down-
time (assuming QEMU 1.3+ and libvirt 1.0+ are used).

Ensuring Snapshots Are Consistent

The following section is from Sébastien Han's “OpenStack: Perform
Consistent Snapshots” blog entry.

A snapshot captures the state of the file system, but not the state of
the memory. Therefore, to ensure your snapshot contains the data
that you want, before your snapshot you need to ensure that:

• Running programs have written their contents to disk

• The file system does not have any "dirty" buffers: where programs
have issued the command to write to disk, but the operating sys-
tem has not yet done the write

To ensure that important services have written their contents to disk
(such as databases), we recommend that you read the documenta-
tion for those applications to determine what commands to issue to
have them sync their contents to disk. If you are unsure how to do
this, the safest approach is to simply stop these running services nor-
mally.

To deal with the "dirty" buffer issue, we recommend using the sync
command before snapshotting:

sync

Running sync writes dirty buffers (buffered blocks that have been
modified but not written yet to the disk block) to disk.

Just running sync is not enough to ensure that the file system is con-
sistent. We recommend that you use the fsfreeze tool, which halts
new access to the file system, and create a stable image on disk that
is suitable for snapshotting. The fsfreeze tool supports several
file systems, including ext3, ext4, and XFS. If your virtual machine in-
stance is running on Ubuntu, install the util-linux package to get fs-
freeze:

apt-get install util-linux

If your operating system doesn't have a version of fsfreeze avail-
able, you can use xfs_freeze instead, which is available on Ubun-
tu in the xfsprogs package. Despite the "xfs" in the name, xfs_freeze
also works on ext3 and ext4 if you are using a Linux kernel version

http://www.sebastien-han.fr/blog/2012/12/10/openstack-perform-consistent-snapshots/
http://www.sebastien-han.fr/blog/2012/12/10/openstack-perform-consistent-snapshots/

OpenStack Ops Guide September 12, 2014

129

2.6.29 or greater, since it works at the virtual file system (VFS) lev-
el starting at 2.6.29. The xfs_freeze version supports the same com-
mand-line arguments as fsfreeze.

Consider the example where you want to take a snapshot of a persis-
tent block storage volume, detected by the guest operating system
as /dev/vdb and mounted on /mnt. The fsfreeze command accepts
two arguments:

-f Freeze the system

-u Thaw (unfreeze) the system

To freeze the volume in preparation for snapshotting, you would do
the following, as root, inside the instance:

fsfreeze -f /mnt

You must mount the file system before you run the fsfreeze com-
mand.

When the fsfreeze -f command is issued, all ongoing transac-
tions in the file system are allowed to complete, new write system
calls are halted, and other calls that modify the file system are halted.
Most importantly, all dirty data, metadata, and log information are
written to disk.

Once the volume has been frozen, do not attempt to read from or
write to the volume, as these operations hang. The operating system
stops every I/O operation and any I/O attempts are delayed until the
file system has been unfrozen.

Once you have issued the fsfreeze command, it is safe to perform
the snapshot. For example, if your instance was named mon-in-
stance and you wanted to snapshot it to an image named mon-
snapshot, you could now run the following:

$ nova image-create mon-instance mon-snapshot

When the snapshot is done, you can thaw the file system with the
following command, as root, inside of the instance:

fsfreeze -u /mnt

If you want to back up the root file system, you can't simply run the
preceding command because it will freeze the prompt. Instead, run
the following one-liner, as root, inside the instance:

OpenStack Ops Guide September 12, 2014

130

fsfreeze -f / && sleep 30 && fsfreeze -u /

Instances in the Database
While instance information is stored in a number of database tables, the
table you most likely need to look at in relation to user instances is the in-
stances table.

The instances table carries most of the information related to both running
and deleted instances. It has a bewildering array of fields; for an exhaus-
tive list, look at the database. These are the most useful fields for opera-
tors looking to form queries:

• The deleted field is set to 1 if the instance has been deleted and NULL
if it has not been deleted. This field is important for excluding deleted in-
stances from your queries.

• The uuid field is the UUID of the instance and is used throughout oth-
er tables in the database as a foreign key. This ID is also reported in logs,
the dashboard, and command-line tools to uniquely identify an instance.

• A collection of foreign keys are available to find relations to the in-
stance. The most useful of these—user_id and project_id—are the
UUIDs of the user who launched the instance and the project it was
launched in.

• The host field tells which compute node is hosting the instance.

• The hostname field holds the name of the instance when it is launched.
The display-name is initially the same as hostname but can be reset using
the nova rename command.

A number of time-related fields are useful for tracking when state changes
happened on an instance:

• created_at

• updated_at

• deleted_at

• scheduled_at

• launched_at

OpenStack Ops Guide September 12, 2014

131

• terminated_at

Good Luck!
This section was intended as a brief introduction to some of the most use-
ful of many OpenStack commands. For an exhaustive list, please refer to
the Admin User Guide, and for additional hints and tips, see the Cloud Ad-
min Guide. We hope your users remain happy and recognize your hard
work! (For more hard work, turn the page to the next chapter, where we
discuss the system-facing operations: maintenance, failures and debug-
ging.)

http://docs.openstack.org/user-guide-admin/content/
http://docs.openstack.org/admin-guide-cloud/content/
http://docs.openstack.org/admin-guide-cloud/content/

OpenStack Ops Guide September 12, 2014

133

11. Maintenance, Failures, and
Debugging

Cloud Controller and Storage Proxy Failures and Maintenance 133
Compute Node Failures and Maintenance .. 135
Storage Node Failures and Maintenance .. 141
Handling a Complete Failure .. 143
Configuration Management ... 143
Working with Hardware ... 144
Databases .. 145
HDWMY .. 146
Determining Which Component Is Broken .. 147
Uninstalling .. 150

Downtime, whether planned or unscheduled, is a certainty when running
a cloud. This chapter aims to provide useful information for dealing proac-
tively, or reactively, with these occurrences.

Cloud Controller and Storage Proxy Fail-
ures and Maintenance

The cloud controller and storage proxy are very similar to each other when
it comes to expected and unexpected downtime. One of each server type
typically runs in the cloud, which makes them very noticeable when they
are not running.

For the cloud controller, the good news is if your cloud is using the FlatD-
HCP multi-host HA network mode, existing instances and volumes continue
to operate while the cloud controller is offline. For the storage proxy, how-
ever, no storage traffic is possible until it is back up and running.

Planned Maintenance

One way to plan for cloud controller or storage proxy maintenance is to
simply do it off-hours, such as at 1 a.m. or 2 a.m. This strategy affects few-
er users. If your cloud controller or storage proxy is too important to have
unavailable at any point in time, you must look into high-availability op-
tions.

OpenStack Ops Guide September 12, 2014

134

Rebooting a Cloud Controller or Storage Proxy

All in all, just issue the "reboot" command. The operating system cleanly
shuts down services and then automatically reboots. If you want to be very
thorough, run your backup jobs just before you reboot.

After a Cloud Controller or Storage Proxy Reboots

After a cloud controller reboots, ensure that all required services were suc-
cessfully started. The following commands use ps and grep to determine
if nova, glance, and keystone are currently running:

ps aux | grep nova-
ps aux | grep glance-
ps aux | grep keystone
ps aux | grep cinder

Also check that all services are functioning. The following set of commands
sources the openrc file, then runs some basic glance, nova, and keystone
commands. If the commands work as expected, you can be confident that
those services are in working condition:

source openrc
glance index
nova list
keystone tenant-list

For the storage proxy, ensure that the Object Storage service has resumed:

ps aux | grep swift

Also check that it is functioning:

swift stat

Total Cloud Controller Failure

The cloud controller could completely fail if, for example, its motherboard
goes bad. Users will immediately notice the loss of a cloud controller since
it provides core functionality to your cloud environment. If your infrastruc-
ture monitoring does not alert you that your cloud controller has failed,
your users definitely will. Unfortunately, this is a rough situation. The cloud
controller is an integral part of your cloud. If you have only one controller,
you will have many missing services if it goes down.

To avoid this situation, create a highly available cloud controller cluster.
This is outside the scope of this document, but you can read more in the
draft OpenStack High Availability Guide.

http://docs.openstack.org/high-availability-guide/content/ch-intro.html

OpenStack Ops Guide September 12, 2014

135

The next best approach is to use a configuration-management tool, such
as Puppet, to automatically build a cloud controller. This should not take
more than 15 minutes if you have a spare server available. After the con-
troller rebuilds, restore any backups taken (see Chapter 14, “Backup and
Recovery” [189]).

Also, in practice, the nova-compute services on the compute nodes do
not always reconnect cleanly to rabbitmq hosted on the controller when
it comes back up after a long reboot; a restart on the nova services on the
compute nodes is required.

Compute Node Failures and Maintenance
Sometimes a compute node either crashes unexpectedly or requires a re-
boot for maintenance reasons.

Planned Maintenance

If you need to reboot a compute node due to planned maintenance (such
as a software or hardware upgrade), first ensure that all hosted instances
have been moved off the node. If your cloud is utilizing shared storage,
use the nova live-migration command. First, get a list of instances
that need to be moved:

nova list --host c01.example.com --all-tenants

Next, migrate them one by one:

nova live-migration <uuid> c02.example.com

If you are not using shared storage, you can use the --block-migrate
option:

nova live-migration --block-migrate <uuid> c02.example.com

After you have migrated all instances, ensure that the nova-compute ser-
vice has stopped:

stop nova-compute

If you use a configuration-management system, such as Puppet, that en-
sures the nova-compute service is always running, you can temporarily
move the init files:

mkdir /root/tmp
mv /etc/init/nova-compute.conf /root/tmp
mv /etc/init.d/nova-compute /root/tmp

OpenStack Ops Guide September 12, 2014

136

Next, shut down your compute node, perform your maintenance, and turn
the node back on. You can reenable the nova-compute service by undo-
ing the previous commands:

mv /root/tmp/nova-compute.conf /etc/init
mv /root/tmp/nova-compute /etc/init.d/

Then start the nova-compute service:

start nova-compute

You can now optionally migrate the instances back to their original com-
pute node.

After a Compute Node Reboots
When you reboot a compute node, first verify that it booted successfully.
This includes ensuring that the nova-compute service is running:

ps aux | grep nova-compute
status nova-compute

Also ensure that it has successfully connected to the AMQP server:

grep AMQP /var/log/nova/nova-compute
2013-02-26 09:51:31 12427 INFO nova.openstack.common.rpc.common [-] Connected to
 AMQP server on 199.116.232.36:5672

After the compute node is successfully running, you must deal with the in-
stances that are hosted on that compute node because none of them are
running. Depending on your SLA with your users or customers, you might
have to start each instance and ensure that they start correctly.

Instances
You can create a list of instances that are hosted on the compute node by
performing the following command:

nova list --host c01.example.com --all-tenants

After you have the list, you can use the nova command to start each in-
stance:

nova reboot <uuid>

Note

Any time an instance shuts down unexpectedly, it might have
problems on boot. For example, the instance might require an
fsck on the root partition. If this happens, the user can use
the dashboard VNC console to fix this.

OpenStack Ops Guide September 12, 2014

137

If an instance does not boot, meaning virsh list never shows the
instance as even attempting to boot, do the following on the compute
node:

tail -f /var/log/nova/nova-compute.log

Try executing the nova reboot command again. You should see an error
message about why the instance was not able to boot

In most cases, the error is the result of something in libvirt's XML file (/
etc/libvirt/qemu/instance-xxxxxxxx.xml) that no longer ex-
ists. You can enforce re-creation of the XML file as well as rebooting the in-
stance by running the following command:

nova reboot --hard <uuid>

Inspecting and Recovering Data from Failed In-
stances

In some scenarios, instances are running but are inaccessible through SSH
and do not respond to any command. The VNC console could be display-
ing a boot failure or kernel panic error messages. This could be an indica-
tion of file system corruption on the VM itself. If you need to recover files
or inspect the content of the instance, qemu-nbd can be used to mount
the disk.

Warning

If you access or view the user's content and data, get approval
first!

To access the instance's disk (/var/lib/nova/instances/in-
stance-xxxxxx/disk), use the following steps:

1. Suspend the instance using the virsh command.

2. Connect the qemu-nbd device to the disk.

3. Mount the qemu-nbd device.

4. Unmount the device after inspecting.

5. Disconnect the qemu-nbd device.

6. Resume the instance.

OpenStack Ops Guide September 12, 2014

138

If you do not follow steps 4 through 6, OpenStack Compute cannot man-
age the instance any longer. It fails to respond to any command issued by
OpenStack Compute, and it is marked as shut down.

Once you mount the disk file, you should be able to access it and treat it
as a collection of normal directories with files and a directory structure.
However, we do not recommend that you edit or touch any files because
this could change the access control lists (ACLs) that are used to deter-
mine which accounts can perform what operations on files and directories.
Changing ACLs can make the instance unbootable if it is not already.

1. Suspend the instance using the virsh command, taking note of the in-
ternal ID:

virsh list
Id Name State

1 instance-00000981 running
2 instance-000009f5 running
30 instance-0000274a running

virsh suspend 30
Domain 30 suspended

2. Connect the qemu-nbd device to the disk:

cd /var/lib/nova/instances/instance-0000274a
ls -lh
total 33M
-rw-rw---- 1 libvirt-qemu kvm 6.3K Oct 15 11:31 console.log
-rw-r--r-- 1 libvirt-qemu kvm 33M Oct 15 22:06 disk
-rw-r--r-- 1 libvirt-qemu kvm 384K Oct 15 22:06 disk.local
-rw-rw-r-- 1 nova nova 1.7K Oct 15 11:30 libvirt.xml
qemu-nbd -c /dev/nbd0 `pwd`/disk

3. Mount the qemu-nbd device.

The qemu-nbd device tries to export the instance disk's different parti-
tions as separate devices. For example, if vda is the disk and vda1 is the
root partition, qemu-nbd exports the device as /dev/nbd0 and /dev/
nbd0p1, respectively:

mount /dev/nbd0p1 /mnt/

You can now access the contents of /mnt, which correspond to the first
partition of the instance's disk.

To examine the secondary or ephemeral disk, use an alternate mount
point if you want both primary and secondary drives mounted at the
same time:

umount /mnt
qemu-nbd -c /dev/nbd1 `pwd`/disk.local
mount /dev/nbd1 /mnt/

OpenStack Ops Guide September 12, 2014

139

ls -lh /mnt/
total 76K
lrwxrwxrwx. 1 root root 7 Oct 15 00:44 bin -> usr/bin
dr-xr-xr-x. 4 root root 4.0K Oct 15 01:07 boot
drwxr-xr-x. 2 root root 4.0K Oct 15 00:42 dev
drwxr-xr-x. 70 root root 4.0K Oct 15 11:31 etc
drwxr-xr-x. 3 root root 4.0K Oct 15 01:07 home
lrwxrwxrwx. 1 root root 7 Oct 15 00:44 lib -> usr/lib
lrwxrwxrwx. 1 root root 9 Oct 15 00:44 lib64 -> usr/lib64
drwx------. 2 root root 16K Oct 15 00:42 lost+found
drwxr-xr-x. 2 root root 4.0K Feb 3 2012 media
drwxr-xr-x. 2 root root 4.0K Feb 3 2012 mnt
drwxr-xr-x. 2 root root 4.0K Feb 3 2012 opt
drwxr-xr-x. 2 root root 4.0K Oct 15 00:42 proc
dr-xr-x---. 3 root root 4.0K Oct 15 21:56 root
drwxr-xr-x. 14 root root 4.0K Oct 15 01:07 run
lrwxrwxrwx. 1 root root 8 Oct 15 00:44 sbin -> usr/sbin
drwxr-xr-x. 2 root root 4.0K Feb 3 2012 srv
drwxr-xr-x. 2 root root 4.0K Oct 15 00:42 sys
drwxrwxrwt. 9 root root 4.0K Oct 15 16:29 tmp
drwxr-xr-x. 13 root root 4.0K Oct 15 00:44 usr
drwxr-xr-x. 17 root root 4.0K Oct 15 00:44 var

4. Once you have completed the inspection, unmount the mount point
and release the qemu-nbd device:

umount /mnt
qemu-nbd -d /dev/nbd0
/dev/nbd0 disconnected

5. Resume the instance using virsh:

virsh list
Id Name State

1 instance-00000981 running
2 instance-000009f5 running
30 instance-0000274a paused

virsh resume 30
Domain 30 resumed

Volumes
If the affected instances also had attached volumes, first generate a list of
instance and volume UUIDs:

mysql> select nova.instances.uuid as instance_uuid,
cinder.volumes.id as volume_uuid, cinder.volumes.status,
cinder.volumes.attach_status, cinder.volumes.mountpoint,
cinder.volumes.display_name from cinder.volumes
inner join nova.instances on cinder.volumes.instance_uuid=nova.instances.uuid
 where nova.instances.host = 'c01.example.com';

You should see a result similar to the following:

+--------------+------------+-------+--------------+-----------+--------------+
|instance_uuid |volume_uuid |status |attach_status |mountpoint | display_name |
+--------------+------------+-------+--------------+-----------+--------------+
|9b969a05 |1f0fbf36 |in-use |attached |/dev/vdc | test |
+--------------+------------+-------+--------------+-----------+--------------+
1 row in set (0.00 sec)

OpenStack Ops Guide September 12, 2014

140

Next, manually detach and reattach the volumes, where X is the proper
mount point:

nova volume-detach <instance_uuid> <volume_uuid>
nova volume-attach <instance_uuid> <volume_uuid> /dev/vdX

Be sure that the instance has successfully booted and is at a login screen
before doing the above.

Total Compute Node Failure

Compute nodes can fail the same way a cloud controller can fail. A moth-
erboard failure or some other type of hardware failure can cause an entire
compute node to go offline. When this happens, all instances running on
that compute node will not be available. Just like with a cloud controller
failure, if your infrastructure monitoring does not detect a failed compute
node, your users will notify you because of their lost instances.

If a compute node fails and won't be fixed for a few hours (or at all), you
can relaunch all instances that are hosted on the failed node if you use
shared storage for /var/lib/nova/instances.

To do this, generate a list of instance UUIDs that are hosted on the failed
node by running the following query on the nova database:

mysql> select uuid from instances where host = \
 'c01.example.com' and deleted = 0;

Next, update the nova database to indicate that all instances that used to
be hosted on c01.example.com are now hosted on c02.example.com:

mysql> update instances set host = 'c02.example.com' where host = \
 'c01.example.com' and deleted = 0;

After that, use the nova command to reboot all instances that were on
c01.example.com while regenerating their XML files at the same time:

nova reboot --hard <uuid>

Finally, reattach volumes using the same method described in the section
Volumes.

/var/lib/nova/instances

It's worth mentioning this directory in the context of failed compute
nodes. This directory contains the libvirt KVM file-based disk images for the
instances that are hosted on that compute node. If you are not running

OpenStack Ops Guide September 12, 2014

141

your cloud in a shared storage environment, this directory is unique across
all compute nodes.

/var/lib/nova/instances contains two types of directories.

The first is the _base directory. This contains all the cached base images
from glance for each unique image that has been launched on that com-
pute node. Files ending in _20 (or a different number) are the ephemeral
base images.

The other directories are titled instance-xxxxxxxx. These directories
correspond to instances running on that compute node. The files inside are
related to one of the files in the _base directory. They're essentially dif-
ferential-based files containing only the changes made from the original
_base directory.

All files and directories in /var/lib/nova/instances are uniquely
named. The files in _base are uniquely titled for the glance image that they
are based on, and the directory names instance-xxxxxxxx are unique-
ly titled for that particular instance. For example, if you copy all data from
/var/lib/nova/instances on one compute node to another, you do
not overwrite any files or cause any damage to images that have the same
unique name, because they are essentially the same file.

Although this method is not documented or supported, you can use it
when your compute node is permanently offline but you have instances lo-
cally stored on it.

Storage Node Failures and Maintenance
Because of the high redundancy of Object Storage, dealing with object
storage node issues is a lot easier than dealing with compute node issues.

Rebooting a Storage Node
If a storage node requires a reboot, simply reboot it. Requests for data
hosted on that node are redirected to other copies while the server is re-
booting.

Shutting Down a Storage Node
If you need to shut down a storage node for an extended period of time
(one or more days), consider removing the node from the storage ring. For
example:

OpenStack Ops Guide September 12, 2014

142

swift-ring-builder account.builder remove <ip address of storage node>
swift-ring-builder container.builder remove <ip address of storage node>
swift-ring-builder object.builder remove <ip address of storage node>
swift-ring-builder account.builder rebalance
swift-ring-builder container.builder rebalance
swift-ring-builder object.builder rebalance

Next, redistribute the ring files to the other nodes:

for i in s01.example.com s02.example.com s03.example.com
> do
> scp *.ring.gz $i:/etc/swift
> done

These actions effectively take the storage node out of the storage cluster.

When the node is able to rejoin the cluster, just add it back to the ring.
The exact syntax you use to add a node to your swift cluster with swift-
ring-builder heavily depends on the original options used when you
originally created your cluster. Please refer back to those commands.

Replacing a Swift Disk

If a hard drive fails in an Object Storage node, replacing it is relatively easy.
This assumes that your Object Storage environment is configured correctly,
where the data that is stored on the failed drive is also replicated to other
drives in the Object Storage environment.

This example assumes that /dev/sdb has failed.

First, unmount the disk:

umount /dev/sdb

Next, physically remove the disk from the server and replace it with a
working disk.

Ensure that the operating system has recognized the new disk:

dmesg | tail

You should see a message about /dev/sdb.

Because it is recommended to not use partitions on a swift disk, simply for-
mat the disk as a whole:

mkfs.xfs /dev/sdb

Finally, mount the disk:

mount -a

OpenStack Ops Guide September 12, 2014

143

Swift should notice the new disk and that no data exists. It then begins
replicating the data to the disk from the other existing replicas.

Handling a Complete Failure
A common way of dealing with the recovery from a full system failure,
such as a power outage of a data center, is to assign each service a prior-
ity, and restore in order. Table 11.1, “Example service restoration priority
list” [143] shows an example.

Table 11.1. Example service restoration priority list

Priority Services

1 Internal network connectivity

2 Backing storage services

3 Public network connectivity for user virtual ma-
chines

4 nova-compute, nova-network, cinder hosts

5 User virtual machines

10 Message queue and database services

15 Keystone services

20 cinder-scheduler

21 Image Catalog and Delivery services

22 nova-scheduler services

98 cinder-api

99 nova-api services

100 Dashboard node

Use this example priority list to ensure that user-affected services are re-
stored as soon as possible, but not before a stable environment is in place.
Of course, despite being listed as a single-line item, each step requires sig-
nificant work. For example, just after starting the database, you should
check its integrity, or, after starting the nova services, you should verify
that the hypervisor matches the database and fix any mismatches.

Configuration Management
Maintaining an OpenStack cloud requires that you manage multiple phys-
ical servers, and this number might grow over time. Because managing
nodes manually is error prone, we strongly recommend that you use a
configuration-management tool. These tools automate the process of en-

OpenStack Ops Guide September 12, 2014

144

suring that all your nodes are configured properly and encourage you to
maintain your configuration information (such as packages and configura-
tion options) in a version-controlled repository.

Tip

Several configuration-management tools are available, and
this guide does not recommend a specific one. The two most
popular ones in the OpenStack community are Puppet, with
available OpenStack Puppet modules; and Chef, with available
OpenStack Chef recipes. Other newer configuration tools in-
clude Juju, Ansible, and Salt; and more mature configuration
management tools include CFEngine and Bcfg2.

Working with Hardware
As for your initial deployment, you should ensure that all hardware is ap-
propriately burned in before adding it to production. Run software that
uses the hardware to its limits—maxing out RAM, CPU, disk, and network.
Many options are available, and normally double as benchmark software,
so you also get a good idea of the performance of your system.

Adding a Compute Node

If you find that you have reached or are reaching the capacity limit of your
computing resources, you should plan to add additional compute nodes.
Adding more nodes is quite easy. The process for adding compute nodes is
the same as when the initial compute nodes were deployed to your cloud:
use an automated deployment system to bootstrap the bare-metal serv-
er with the operating system and then have a configuration-management
system install and configure OpenStack Compute. Once the Compute Ser-
vice has been installed and configured in the same way as the other com-
pute nodes, it automatically attaches itself to the cloud. The cloud con-
troller notices the new node(s) and begins scheduling instances to launch
there.

If your OpenStack Block Storage nodes are separate from your compute
nodes, the same procedure still applies because the same queuing and
polling system is used in both services.

We recommend that you use the same hardware for new compute and
block storage nodes. At the very least, ensure that the CPUs are similar in
the compute nodes to not break live migration.

https://puppetlabs.com/
https://github.com/puppetlabs/puppetlabs-openstack
http://www.getchef.com/chef/
https://github.com/opscode/openstack-chef-repo
https://juju.ubuntu.com/
http://www.ansible.com/home
http://www.saltstack.com/
http://cfengine.com/
http://bcfg2.org/

OpenStack Ops Guide September 12, 2014

145

Adding an Object Storage Node

Adding a new object storage node is different from adding compute or
block storage nodes. You still want to initially configure the server by using
your automated deployment and configuration-management systems. Af-
ter that is done, you need to add the local disks of the object storage node
into the object storage ring. The exact command to do this is the same
command that was used to add the initial disks to the ring. Simply rerun
this command on the object storage proxy server for all disks on the new
object storage node. Once this has been done, rebalance the ring and copy
the resulting ring files to the other storage nodes.

Note

If your new object storage node has a different number of
disks than the original nodes have, the command to add the
new node is different from the original commands. These pa-
rameters vary from environment to environment.

Replacing Components

Failures of hardware are common in large-scale deployments such as an
infrastructure cloud. Consider your processes and balance time saving
against availability. For example, an Object Storage cluster can easily live
with dead disks in it for some period of time if it has sufficient capacity. Or,
if your compute installation is not full, you could consider live migrating in-
stances off a host with a RAM failure until you have time to deal with the
problem.

Databases
Almost all OpenStack components have an underlying database to store
persistent information. Usually this database is MySQL. Normal MySQL ad-
ministration is applicable to these databases. OpenStack does not config-
ure the databases out of the ordinary. Basic administration includes per-
formance tweaking, high availability, backup, recovery, and repairing. For
more information, see a standard MySQL administration guide.

You can perform a couple of tricks with the database to either more quick-
ly retrieve information or fix a data inconsistency error—for example, an in-
stance was terminated, but the status was not updated in the database.
These tricks are discussed throughout this book.

OpenStack Ops Guide September 12, 2014

146

Database Connectivity
Review the component's configuration file to see how each Open-
Stack component accesses its corresponding database. Look for either
sql_connection or simply connection. The following command us-
es grep to display the SQL connection string for nova, glance, cinder, and
keystone:
grep -hE "connection ?=" /etc/nova/nova.conf /etc/glance/glance-*.conf
/etc/cinder/cinder.conf /etc/keystone/keystone.conf
sql_connection = mysql://nova:nova@cloud.alberta.sandbox.cybera.ca/nova
sql_connection = mysql://glance:password@cloud.example.com/glance
sql_connection = mysql://glance:password@cloud.example.com/glance
sql_connection = mysql://cinder:password@cloud.example.com/cinder
 connection = mysql://keystone_admin:password@cloud.example.com/keystone

The connection strings take this format:
mysql:// <username> : <password> @ <hostname> / <database name>

Performance and Optimizing
As your cloud grows, MySQL is utilized more and more. If you suspect that
MySQL might be becoming a bottleneck, you should start researching
MySQL optimization. The MySQL manual has an entire section dedicated
to this topic: Optimization Overview.

HDWMY
Here's a quick list of various to-do items for each hour, day, week, month,
and year. Please note that these tasks are neither required nor definitive
but helpful ideas:

Hourly
• Check your monitoring system for alerts and act on them.

• Check your ticket queue for new tickets.

Daily
• Check for instances in a failed or weird state and investigate why.

• Check for security patches and apply them as needed.

Weekly
• Check cloud usage:

http://dev.mysql.com/doc/refman/5.5/en/optimize-overview.html

OpenStack Ops Guide September 12, 2014

147

• User quotas

• Disk space

• Image usage

• Large instances

• Network usage (bandwidth and IP usage)

• Verify your alert mechanisms are still working.

Monthly
• Check usage and trends over the past month.

• Check for user accounts that should be removed.

• Check for operator accounts that should be removed.

Quarterly
• Review usage and trends over the past quarter.

• Prepare any quarterly reports on usage and statistics.

• Review and plan any necessary cloud additions.

• Review and plan any major OpenStack upgrades.

Semiannually
• Upgrade OpenStack.

• Clean up after an OpenStack upgrade (any unused or new services to be
aware of?).

Determining Which Component Is Broken
OpenStack's collection of different components interact with each other
strongly. For example, uploading an image requires interaction from no-
va-api, glance-api, glance-registry, keystone, and potentially
swift-proxy. As a result, it is sometimes difficult to determine exactly
where problems lie. Assisting in this is the purpose of this section.

OpenStack Ops Guide September 12, 2014

148

Tailing Logs

The first place to look is the log file related to the command you are trying
to run. For example, if nova list is failing, try tailing a nova log file and
running the command again:

Terminal 1:

tail -f /var/log/nova/nova-api.log

Terminal 2:

nova list

Look for any errors or traces in the log file. For more information, see
Chapter 13, “Logging and Monitoring” [173].

If the error indicates that the problem is with another component, switch
to tailing that component's log file. For example, if nova cannot access
glance, look at the glance-api log:

Terminal 1:

tail -f /var/log/glance/api.log

Terminal 2:

nova list

Wash, rinse, and repeat until you find the core cause of the problem.

Running Daemons on the CLI

Unfortunately, sometimes the error is not apparent from the log files. In
this case, switch tactics and use a different command; maybe run the ser-
vice directly on the command line. For example, if the glance-api service
refuses to start and stay running, try launching the daemon from the com-
mand line:

sudo -u glance -H glance-api

This might print the error and cause of the problem.

Note

The -H flag is required when running the daemons with su-
do because some daemons will write files relative to the user's
home directory, and this write may fail if -H is left off.

OpenStack Ops Guide September 12, 2014

149

Example of Complexity

One morning, a compute node failed to run any instances. The log
files were a bit vague, claiming that a certain instance was unable to
be started. This ended up being a red herring because the instance
was simply the first instance in alphabetical order, so it was the first
instance that nova-compute would touch.

Further troubleshooting showed that libvirt was not running at all.
This made more sense. If libvirt wasn't running, then no instance
could be virtualized through KVM. Upon trying to start libvirt, it
would silently die immediately. The libvirt logs did not explain why.

Next, the libvirtd daemon was run on the command line. Finally a
helpful error message: it could not connect to d-bus. As ridiculous as
it sounds, libvirt, and thus nova-compute, relies on d-bus and some-
how d-bus crashed. Simply starting d-bus set the entire chain back on
track, and soon everything was back up and running.

OpenStack Ops Guide September 12, 2014

150

Uninstalling
While we'd always recommend using your automated deployment system
to reinstall systems from scratch, sometimes you do need to remove Open-
Stack from a system the hard way. Here's how:

• Remove all packages.

• Remove remaining files.

• Remove databases.

These steps depend on your underlying distribution, but in general you
should be looking for "purge" commands in your package manager, like
aptitude purge ~c $package. Following this, you can look for or-
phaned files in the directories referenced throughout this guide. To unin-
stall the database properly, refer to the manual appropriate for the prod-
uct in use.

OpenStack Ops Guide September 12, 2014

151

12. Network Troubleshooting
Using "ip a" to Check Interface States ... 151
Visualizing nova-network Traffic in the Cloud 152
Visualizing OpenStack Networking Service Traffic in the Cloud 153
Finding a Failure in the Path .. 160
tcpdump .. 160
iptables .. 162
Network Configuration in the Database for nova-network 162
Debugging DHCP Issues with nova-network .. 164
Debugging DNS Issues ... 168
Troubleshooting Open vSwitch ... 170
Dealing with Network Namespaces .. 171
Summary .. 172

Network troubleshooting can unfortunately be a very difficult and confus-
ing procedure. A network issue can cause a problem at several points in
the cloud. Using a logical troubleshooting procedure can help mitigate the
confusion and more quickly isolate where exactly the network issue is. This
chapter aims to give you the information you need to identify any issues
for either nova-network or OpenStack Networking (neutron) with Linux
Bridge or Open vSwitch.

Using "ip a" to Check Interface States
On compute nodes and nodes running nova-network, use the follow-
ing command to see information about interfaces, including information
about IPs, VLANs, and whether your interfaces are up:

ip a

If you're encountering any sort of networking difficulty, one good initial
sanity check is to make sure that your interfaces are up. For example:

$ ip a | grep state
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state
 UNKNOWN
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
 pfifo_fast state UP
 qlen 1000
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
 pfifo_fast
 master br100 state UP qlen 1000
4: virbr0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc
 noqueue state DOWN

OpenStack Ops Guide September 12, 2014

152

5: br100: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
 noqueue state UP

You can safely ignore the state of virbr0, which is a default bridge creat-
ed by libvirt and not used by OpenStack.

Visualizing nova-network Traffic in the
Cloud

If you are logged in to an instance and ping an external host—for exam-
ple, Google—the ping packet takes the route shown in Figure 12.1, “Traffic
route for ping packet” [152].

Figure 12.1. Traffic route for ping packet

1. The instance generates a packet and places it on the virtual Network In-
terface Card (NIC) inside the instance, such as eth0.

2. The packet transfers to the virtual NIC of the compute host, such as,
vnet1. You can find out what vnet NIC is being used by looking at the
/etc/libvirt/qemu/instance-xxxxxxxx.xml file.

3. From the vnet NIC, the packet transfers to a bridge on the compute
node, such as br100.

If you run FlatDHCPManager, one bridge is on the compute node. If you
run VlanManager, one bridge exists for each VLAN.

To see which bridge the packet will use, run the command:

$ brctl show

OpenStack Ops Guide September 12, 2014

153

Look for the vnet NIC. You can also reference nova.conf and look for
the flat_interface_bridge option.

4. The packet transfers to the main NIC of the compute node. You can al-
so see this NIC in the brctl output, or you can find it by referencing
the flat_interface option in nova.conf.

5. After the packet is on this NIC, it transfers to the compute node's de-
fault gateway. The packet is now most likely out of your control at this
point. The diagram depicts an external gateway. However, in the de-
fault configuration with multi-host, the compute host is the gateway.

Reverse the direction to see the path of a ping reply. From this path, you
can see that a single packet travels across four different NICs. If a problem
occurs with any of these NICs, a network issue occurs.

Visualizing OpenStack Networking Ser-
vice Traffic in the Cloud

The OpenStack Networking Service, neutron, has many more degrees of
freedom than nova-network does because of its pluggable backend. It
can be configured with open source or vendor proprietary plug-ins that
control software defined networking (SDN) hardware or plug-ins that use
Linux native facilities on your hosts, such as Open vSwitch or Linux Bridge.

The networking chapter of the OpenStack Cloud Administrator Guide
shows a variety of networking scenarios and their connection paths. The
purpose of this section is to give you the tools to troubleshoot the various
components involved however they are plumbed together in your environ-
ment.

For this example, we will use the Open vSwitch (OVS) backend. Other
backend plug-ins will have very different flow paths. OVS is the most pop-
ularly deployed network driver, according to the October 2013 OpenStack
User Survey, with 50 percent more sites using it than the second place Lin-
ux Bridge driver. We'll describe each step in turn, with Figure 12.2, “Neu-
tron network paths” [154] for reference.

1. The instance generates a packet and places it on the virtual NIC inside
the instance, such as eth0.

2. The packet transfers to a Test Access Point (TAP) device on the compute
host, such as tap690466bc-92. You can find out what TAP is being used

http://docs.openstack.org/admin-guide-cloud/content/ch_networking.html

OpenStack Ops Guide September 12, 2014

154

by looking at the /etc/libvirt/qemu/instance-xxxxxxxx.xml
file.

The TAP device name is constructed using the first 11 characters of the
port ID (10 hex digits plus an included '-'), so another means of finding
the device name is to use the neutron command. This returns a pipe-
delimited list, the first item of which is the port ID. For example, to get
the port ID associated with IP address 10.0.0.10, do this:

neutron port-list |grep 10.0.0.10|cut -d \
| -f 2 ff387e54-9e54-442b-94a3-aa4481764f1d

Taking the first 11 characters, we can construct a device name of
tapff387e54-9e from this output.

Figure 12.2. Neutron network paths

3. The TAP device is connected to the integration bridge, br-int. This
bridge connects all the instance TAP devices and any other bridges on

OpenStack Ops Guide September 12, 2014

155

the system. In this example, we have int-br-eth1 and patch-tun.
int-br-eth1 is one half of a veth pair connecting to the bridge br-
eth1, which handles VLAN networks trunked over the physical Ether-
net device eth1. patch-tun is an Open vSwitch internal port that con-
nects to the br-tun bridge for GRE networks.

The TAP devices and veth devices are normal Linux network devices and
may be inspected with the usual tools, such as ip and tcpdump. Open
vSwitch internal devices, such as patch-tun, are only visible within the
Open vSwitch environment. If you try to run tcpdump -i patch-
tun, it will raise an error, saying that the device does not exist.

It is possible to watch packets on internal interfaces, but it does take
a little bit of networking gymnastics. First you need to create a dum-
my network device that normal Linux tools can see. Then you need to
add it to the bridge containing the internal interface you want to snoop
on. Finally, you need to tell Open vSwitch to mirror all traffic to or from
the internal port onto this dummy port. After all this, you can then run
tcpdump on the dummy interface and see the traffic on the internal
port.

To capture packets from the patch-tun internal interface
on integration bridge, br-int:

1. Create and bring up a dummy interface, snooper0:

ip link add name snooper0 type dummy

ip link set dev snooper0 up

2. Add device snooper0 to bridge br-int:

ovs-vsctl add-port br-int snooper0

3. Create mirror of patch-tun to snooper0 (returns UUID of mirror
port):

ovs-vsctl -- set Bridge br-int mirrors=@m -- --id=
@snooper0 \
get Port snooper0 -- --id=@patch-tun get Port patch-tun
 \
-- --id=@m create Mirror name=mymirror select-dst-port=
@patch-tun \
select-src-port=@patch-tun output-port=@snooper0

4. Profit. You can now see traffic on patch-tun by running tcp-
dump -i snooper0.

OpenStack Ops Guide September 12, 2014

156

5. Clean up by clearing all mirrors on br-int and deleting the dum-
my interface:

ovs-vsctl clear Bridge br-int mirrors

ovs-vsctl del-port br-int snooper0

ip link delete dev snooper0

On the integration bridge, networks are distinguished using internal
VLANs regardless of how the networking service defines them. This al-
lows instances on the same host to communicate directly without tran-
siting the rest of the virtual, or physical, network. These internal VLAN
IDs are based on the order they are created on the node and may vary
between nodes. These IDs are in no way related to the segmentation
IDs used in the network definition and on the physical wire.

VLAN tags are translated between the external tag defined in the net-
work settings, and internal tags in several places. On the br-int, in-
coming packets from the int-br-eth1 are translated from exter-
nal tags to internal tags. Other translations also happen on the other
bridges and will be discussed in those sections.

4. The next step depends on whether the virtual network is configured to
use 802.1q VLAN tags or GRE:

a. VLAN-based networks exit the integration bridge via veth inter-
face int-br-eth1 and arrive on the bridge br-eth1 on the oth-
er member of the veth pair phy-br-eth1. Packets on this interface
arrive with internal VLAN tags and are translated to external tags in
the reverse of the process described above:

ovs-ofctl dump-flows br-eth1|grep 2113
cookie=0x0, duration=184168.225s, table=0, n_packets=0,
 n_bytes=0, \
idle_age=65534, hard_age=65534, priority=4,in_port=1,
dl_vlan=7 \
actions=mod_vlan_vid:2113,NORMAL

Packets, now tagged with the external VLAN tag, then exit onto the
physical network via eth1. The Layer2 switch this interface is con-
nected to must be configured to accept traffic with the VLAN ID
used. The next hop for this packet must also be on the same layer-2
network.

OpenStack Ops Guide September 12, 2014

157

b. GRE-based networks are passed with patch-tun to the tunnel
bridge br-tun on interface patch-int. This bridge also contains
one port for each GRE tunnel peer, so one for each compute node
and network node in your network. The ports are named sequential-
ly from gre-1 onward.

Matching gre-<n> interfaces to tunnel endpoints is possible by look-
ing at the Open vSwitch state:

ovs-vsctl show |grep -A 3 -e Port\ \"gre-
 Port "gre-1"
 Interface "gre-1"
 type: gre
 options: {in_key=flow, local_ip="10.10.128.
21", \
 out_key=flow, remote_ip="10.10.128.16"}

In this case, gre-1 is a tunnel from IP 10.10.128.21, which should
match a local interface on this node, to IP 10.10.128.16 on the re-
mote side.

These tunnels use the regular routing tables on the host to route the
resulting GRE packet, so there is no requirement that GRE endpoints
are all on the same layer-2 network, unlike VLAN encapsulation.

All interfaces on the br-tun are internal to Open vSwitch. To mon-
itor traffic on them, you need to set up a mirror port as described
above for patch-tun in the br-int bridge.

All translation of GRE tunnels to and from internal VLANs happens
on this bridge.

To discover which internal VLAN tag is in use for a GRE
tunnel by using the ovs-ofctl command:

1. Find the provider:segmentation_id of the network you're
interested in. This is the same field used for the VLAN ID in VLAN-
based networks:

neutron net-show --fields provider:segmentation_id
 <network name>
+--------------------------+-------+
| Field | Value |
+--------------------------+-------+
| provider:network_type | gre |
| provider:segmentation_id | 3 |

OpenStack Ops Guide September 12, 2014

158

+--------------------------+-------+

2. Grep for 0x<provider:segmentation_id>, 0x3 in this case, in
the output of ovs-ofctl dump-flows br-int:

ovs-ofctl dump-flows br-int|grep 0x3
cookie=0x0, duration=380575.724s, table=2, n_packets=
1800, \
n_bytes=286104, priority=1,tun_id=0x3 \
actions=mod_vlan_vid:1,resubmit(,10)
 cookie=0x0, duration=715.529s, table=20, n_packets=5, \
n_bytes=830, hard_timeout=300,priority=1, \
vlan_tci=0x0001/0x0fff,dl_dst=fa:16:3e:a6:48:24 \
actions=load:0->NXM_OF_VLAN_TCI[], \
load:0x3->NXM_NX_TUN_ID[],output:53
 cookie=0x0, duration=193729.242s, table=21, n_packets=
58761, \
n_bytes=2618498, dl_vlan=1 actions=strip_vlan,
set_tunnel:0x3, \
output:4,output:58,output:56,output:11,output:12,
output:47, \
output:13,output:48,output:49,output:44,output:43,
output:45, \
output:46,output:30,output:31,output:29,output:28,
output:26, \
output:27,output:24,output:25,output:32,output:19,
output:21, \
output:59,output:60,output:57,output:6,output:5,
output:20, \
output:18,output:17,output:16,output:15,output:14,
output:7, \
output:9,output:8,output:53,output:10,output:3,output:2,
 \
output:38,output:37,output:39,output:40,output:34,
output:23, \
output:36,output:35,output:22,output:42,output:41,
output:54, \
output:52,output:51,output:50,output:55,output:33

Here, you see three flows related to this GRE tunnel. The first is
the translation from inbound packets with this tunnel ID to inter-
nal VLAN ID 1. The second shows a unicast flow to output port 53
for packets destined for MAC address fa:16:3e:a6:48:24. The third
shows the translation from the internal VLAN representation to the
GRE tunnel ID flooded to all output ports. For further details of the
flow descriptions, see the man page for ovs-ofctl. As in the pre-
vious VLAN example, numeric port IDs can be matched with their
named representations by examining the output of ovs-ofctl
show br-tun.

OpenStack Ops Guide September 12, 2014

159

5. The packet is then received on the network node. Note that any traffic
to the l3-agent or dhcp-agent will be visible only within their network
namespace. Watching any interfaces outside those namespaces, even
those that carry the network traffic, will only show broadcast pack-
ets like Address Resolution Protocols (ARPs), but unicast traffic to the
router or DHCP address will not be seen. See Dealing with Network
Namespaces for detail on how to run commands within these names-
paces.

Alternatively, it is possible to configure VLAN-based networks to use ex-
ternal routers rather than the l3-agent shown here, so long as the exter-
nal router is on the same VLAN:

a. VLAN-based networks are received as tagged packets on a physi-
cal network interface, eth1 in this example. Just as on the compute
node, this interface is a member of the br-eth1 bridge.

b. GRE-based networks will be passed to the tunnel bridge br-tun,
which behaves just like the GRE interfaces on the compute node.

6. Next, the packets from either input go through the integration bridge,
again just as on the compute node.

7. The packet then makes it to the l3-agent. This is actually another TAP
device within the router's network namespace. Router namespaces are
named in the form qrouter-<router-uuid>. Running ip a within
the namespace will show the TAP device name, qr-e6256f7d-31 in this
example:

ip netns exec qrouter-e521f9d0-a1bd-4ff4-bc81-78a60dd88fe5
 ip a|grep state
10: qr-e6256f7d-31: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc
 noqueue \
 state UNKNOWN
11: qg-35916e1f-36: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu
 1500 \
 qdisc pfifo_fast state UNKNOWN qlen 500
28: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state
 UNKNOWN

8. The qg-<n> interface in the l3-agent router namespace sends the pack-
et on to its next hop through device eth0 on the external bridge br-
ex. This bridge is constructed similarly to br-eth1 and may be inspect-
ed in the same way.

http://docs.openstack.org/openstack-ops/content/network_troubleshooting.html#dealing_with_netns
http://docs.openstack.org/openstack-ops/content/network_troubleshooting.html#dealing_with_netns

OpenStack Ops Guide September 12, 2014

160

9. This external bridge also includes a physical network interface, eth0 in
this example, which finally lands the packet on the external network
destined for an external router or destination.

10.DHCP agents running on OpenStack networks run in namespaces simi-
lar to the l3-agents. DHCP namespaces are named qdhcp-<uuid> and
have a TAP device on the integration bridge. Debugging of DHCP issues
usually involves working inside this network namespace.

Finding a Failure in the Path
Use ping to quickly find where a failure exists in the network path. In
an instance, first see whether you can ping an external host, such as
google.com. If you can, then there shouldn't be a network problem at all.

If you can't, try pinging the IP address of the compute node where the in-
stance is hosted. If you can ping this IP, then the problem is somewhere be-
tween the compute node and that compute node's gateway.

If you can't ping the IP address of the compute node, the problem is be-
tween the instance and the compute node. This includes the bridge con-
necting the compute node's main NIC with the vnet NIC of the instance.

One last test is to launch a second instance and see whether the two in-
stances can ping each other. If they can, the issue might be related to the
firewall on the compute node.

tcpdump
One great, although very in-depth, way of troubleshooting network issues
is to use tcpdump. We recommended using tcpdump at several points
along the network path to correlate where a problem might be. If you pre-
fer working with a GUI, either live or by using a tcpdump capture, do also
check out Wireshark.

For example, run the following command:

tcpdump -i any -n -v \ 'icmp[icmptype] = icmp-echoreply or
 icmp[icmptype] =
icmp-echo'

Run this on the command line of the following areas:

1. An external server outside of the cloud

2. A compute node

http://www.wireshark.org/

OpenStack Ops Guide September 12, 2014

161

3. An instance running on that compute node

In this example, these locations have the following IP addresses:

Instance
 10.0.2.24
 203.0.113.30
 Compute Node
 10.0.0.42
 203.0.113.34
 External Server
 1.2.3.4

Next, open a new shell to the instance and then ping the external host
where tcpdump is running. If the network path to the external server and
back is fully functional, you see something like the following:

On the external server:

12:51:42.020227 IP (tos 0x0, ttl 61, id 0, offset 0, flags [DF],
 \
proto ICMP (1), length 84)
 203.0.113.30 > 1.2.3.4: ICMP echo request, id 24895, seq 1,
 length 64
12:51:42.020255 IP (tos 0x0, ttl 64, id 8137, offset 0, flags
 [none], \
proto ICMP (1), length 84)
 1.2.3.4 > 203.0.113.30: ICMP echo reply, id 24895, seq 1, \
 length 64

On the compute node:

12:51:42.019519 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF],
 \
proto ICMP (1), length 84)
 10.0.2.24 > 1.2.3.4: ICMP echo request, id 24895, seq 1,
 length 64
12:51:42.019519 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF],
 \
proto ICMP (1), length 84)
 10.0.2.24 > 1.2.3.4: ICMP echo request, id 24895, seq 1,
 length 64
12:51:42.019545 IP (tos 0x0, ttl 63, id 0, offset 0, flags [DF],
 \
proto ICMP (1), length 84)
 203.0.113.30 > 1.2.3.4: ICMP echo request, id 24895, seq 1,
 length 64
12:51:42.019780 IP (tos 0x0, ttl 62, id 8137, offset 0, flags
 [none], \
proto ICMP (1), length 84)
 1.2.3.4 > 203.0.113.30: ICMP echo reply, id 24895, seq 1,
 length 64

OpenStack Ops Guide September 12, 2014

162

12:51:42.019801 IP (tos 0x0, ttl 61, id 8137, offset 0, flags
 [none], \
proto ICMP (1), length 84)
 1.2.3.4 > 10.0.2.24: ICMP echo reply, id 24895, seq 1,
 length 64
12:51:42.019807 IP (tos 0x0, ttl 61, id 8137, offset 0, flags
 [none], \
proto ICMP (1), length 84)
 1.2.3.4 > 10.0.2.24: ICMP echo reply, id 24895, seq 1,
 length 64

On the instance:

12:51:42.020974 IP (tos 0x0, ttl 61, id 8137, offset 0, flags
 [none], \
proto ICMP (1), length 84)
 1.2.3.4 > 10.0.2.24: ICMP echo reply, id 24895, seq 1, length
 64

Here, the external server received the ping request and sent a ping reply.
On the compute node, you can see that both the ping and ping reply suc-
cessfully passed through. You might also see duplicate packets on the com-
pute node, as seen above, because tcpdump captured the packet on both
the bridge and outgoing interface.

iptables
Through nova-network, OpenStack Compute automatically manages ipt-
ables, including forwarding packets to and from instances on a compute
node, forwarding floating IP traffic, and managing security group rules.

Run the following command to view the current iptables configuration:

iptables-save

Note

If you modify the configuration, it reverts the next time you
restart nova-network. You must use OpenStack to manage
iptables.

Network Configuration in the Database
for nova-network

With nova-network, the nova database table contains a few tables with
networking information:

OpenStack Ops Guide September 12, 2014

163

fixed_ips Contains each possible IP address for the
subnet(s) added to Compute. This table is re-
lated to the instances table by way of the
fixed_ips.instance_uuid column.

floating_ips Contains each floating IP address that was added to
Compute. This table is related to the fixed_ips table
by way of the floating_ips.fixed_ip_id column.

instances Not entirely network specific, but it contains informa-
tion about the instance that is utilizing the fixed_ip
and optional floating_ip.

From these tables, you can see that a floating IP is technically never directly
related to an instance; it must always go through a fixed IP.

Manually Deassociating a Floating IP

Sometimes an instance is terminated but the floating IP was not correct-
ly de-associated from that instance. Because the database is in an inconsis-
tent state, the usual tools to deassociate the IP no longer work. To fix this,
you must manually update the database.

First, find the UUID of the instance in question:

mysql> select uuid from instances where hostname = 'hostname';

Next, find the fixed IP entry for that UUID:

mysql> select * from fixed_ips where instance_uuid = '<uuid>';

You can now get the related floating IP entry:

mysql> select * from floating_ips where fixed_ip_id =
 '<fixed_ip_id>';

And finally, you can deassociate the floating IP:

mysql> update floating_ips set fixed_ip_id = NULL, host = NULL
 where
 fixed_ip_id = '<fixed_ip_id>';

You can optionally also deallocate the IP from the user's pool:

mysql> update floating_ips set project_id = NULL where
 fixed_ip_id = '<fixed_ip_id>';

OpenStack Ops Guide September 12, 2014

164

Debugging DHCP Issues with nova-net-
work

One common networking problem is that an instance boots successful-
ly but is not reachable because it failed to obtain an IP address from dns-
masq, which is the DHCP server that is launched by the nova-network
service.

The simplest way to identify that this is the problem with your instance is
to look at the console output of your instance. If DHCP failed, you can re-
trieve the console log by doing:

$ nova console-log <instance name or uuid>

If your instance failed to obtain an IP through DHCP, some messages
should appear in the console. For example, for the Cirros image, you see
output that looks like the following:

udhcpc (v1.17.2) started
Sending discover...
Sending discover...
Sending discover...
No lease, forking to background
starting DHCP forEthernet interface eth0 [[1;32mOK[0;39m]
cloud-setup: checking http://169.254.169.254/2009-04-04/meta-
data/instance-id
wget: can't connect to remote host (169.254.169.254): Network is
unreachable

After you establish that the instance booted properly, the task is to figure
out where the failure is.

A DHCP problem might be caused by a misbehaving dnsmasq process.
First, debug by checking logs and then restart the dnsmasq processes on-
ly for that project (tenant). In VLAN mode, there is a dnsmasq process for
each tenant. Once you have restarted targeted dnsmasq processes, the
simplest way to rule out dnsmasq causes is to kill all of the dnsmasq pro-
cesses on the machine and restart nova-network. As a last resort, do this
as root:

killall dnsmasq
restart nova-network

Note

Use openstack-nova-network on RHEL/CentOS/Fedora
but nova-network on Ubuntu/Debian.

OpenStack Ops Guide September 12, 2014

165

Several minutes after nova-network is restarted, you should see new
dnsmasq processes running:

OpenStack Ops Guide September 12, 2014

166

ps aux | grep dnsmasq

nobody 3735 0.0 0.0 27540 1044 ? S 15:40 0:00 /usr/sbin/dnsmasq
 --strict-order \
 --bind-interfaces --conf-file= \
 --domain=novalocal --pid-file=/var/lib/nova/networks/nova-
br100.pid \
 --listen-address=192.168.100.1 --except-interface=lo \
 --dhcp-range=set:'novanetwork',192.168.100.2,static,120s \
 --dhcp-lease-max=256 \
 --dhcp-hostsfile=/var/lib/nova/networks/nova-br100.conf \
 --dhcp-script=/usr/bin/nova-dhcpbridge --leasefile-ro
root 3736 0.0 0.0 27512 444 ? S 15:40 0:00 /usr/sbin/dnsmasq --
strict-order \
 --bind-interfaces --conf-file= \
 --domain=novalocal --pid-file=/var/lib/nova/networks/nova-
br100.pid \
 --listen-address=192.168.100.1 --except-interface=lo \
 --dhcp-range=set:'novanetwork',192.168.100.2,static,120s \
 --dhcp-lease-max=256
 --dhcp-hostsfile=/var/lib/nova/networks/nova-br100.conf
 --dhcp-script=/usr/bin/nova-dhcpbridge --leasefile-ro

If your instances are still not able to obtain IP addresses, the next thing to
check is whether dnsmasq is seeing the DHCP requests from the instance.
On the machine that is running the dnsmasq process, which is the compute
host if running in multi-host mode, look at /var/log/syslog to see the
dnsmasq output. If dnsmasq is seeing the request properly and handing
out an IP, the output looks like this:

Feb 27 22:01:36 mynode dnsmasq-dhcp[2438]: DHCPDISCOVER(br100)
 fa:16:3e:56:0b:6f
Feb 27 22:01:36 mynode dnsmasq-dhcp[2438]: DHCPOFFER(br100) 192.
168.100.3
 fa:16:3e:56:0b:6f
Feb 27 22:01:36 mynode dnsmasq-dhcp[2438]: DHCPREQUEST(br100)
 192.168.100.3
 fa:16:3e:56:0b:6f
Feb 27 22:01:36 mynode dnsmasq-dhcp[2438]: DHCPACK(br100) 192.
168.100.3
fa:16:3e:56:0b:6f test

If you do not see the DHCPDISCOVER, a problem exists with the packet
getting from the instance to the machine running dnsmasq. If you see all
of the preceding output and your instances are still not able to obtain IP
addresses, then the packet is able to get from the instance to the host run-
ning dnsmasq, but it is not able to make the return trip.

You might also see a message such as this:

OpenStack Ops Guide September 12, 2014

167

Feb 27 22:01:36 mynode dnsmasq-dhcp[25435]: DHCPDISCOVER(br100)
 fa:16:3e:78:44:84 no address available

This may be a dnsmasq and/or nova-network related issue. (For the pre-
ceding example, the problem happened to be that dnsmasq did not have
any more IP addresses to give away because there were no more fixed IPs
available in the OpenStack Compute database.)

If there's a suspicious-looking dnsmasq log message, take a look at the
command-line arguments to the dnsmasq processes to see if they look cor-
rect:

$ ps aux | grep dnsmasq

The output looks something like the following:

108 1695 0.0 0.0 25972 1000 ? S Feb26 0:00 /usr/sbin/dnsmasq
-u libvirt-dnsmasq \
--strict-order --bind-interfaces
 --pid-file=/var/run/libvirt/network/default.pid --conf-file=
 --except-interface lo --listen-address 192.168.122.1
 --dhcp-range 192.168.122.2,192.168.122.254
 --dhcp-leasefile=/var/lib/libvirt/dnsmasq/default.leases
 --dhcp-lease-max=253 --dhcp-no-override
nobody 2438 0.0 0.0 27540 1096 ? S Feb26 0:00 /usr/sbin/dnsmasq
 --strict-order
--bind-interfaces --conf-file=
 --domain=novalocal --pid-file=/var/lib/nova/networks/nova-
br100.pid
 --listen-address=192.168.100.1
 --except-interface=lo \
 --dhcp-range=set:'novanetwork',192.168.100.2,static,120s
 --dhcp-lease-max=256
 --dhcp-hostsfile=/var/lib/nova/networks/nova-br100.conf
 --dhcp-script=/usr/bin/nova-dhcpbridge --leasefile-ro
 root 2439 0.0 0.0 27512 472 ? S Feb26 0:00 /usr/sbin/dnsmasq
 --strict-order
--bind-interfaces --conf-file=
 --domain=novalocal --pid-file=/var/lib/nova/networks/nova-
br100.pid
 --listen-address=192.168.100.1
 --except-interface=lo
 --dhcp-range=set:'novanetwork',192.168.100.2,static,120s
 --dhcp-lease-max=256
 --dhcp-hostsfile=/var/lib/nova/networks/nova-br100.conf
 --dhcp-script=/usr/bin/nova-dhcpbridge --leasefile-ro

The output shows three different dnsmasq processes. The dnsmasq pro-
cess that has the DHCP subnet range of 192.168.122.0 belongs to libvirt
and can be ignored. The other two dnsmasq processes belong to no-

OpenStack Ops Guide September 12, 2014

168

va-network. The two processes are actually related—one is simply the
parent process of the other. The arguments of the dnsmasq processes
should correspond to the details you configured nova-network with.

If the problem does not seem to be related to dnsmasq itself, at this point
use tcpdump on the interfaces to determine where the packets are get-
ting lost.

DHCP traffic uses UDP. The client sends from port 68 to port 67 on the
server. Try to boot a new instance and then systematically listen on the
NICs until you identify the one that isn't seeing the traffic. To use tcpdump
to listen to ports 67 and 68 on br100, you would do:

tcpdump -i br100 -n port 67 or port 68

You should be doing sanity checks on the interfaces using command such
as ip a and brctl show to ensure that the interfaces are actually up
and configured the way that you think that they are.

Debugging DNS Issues
If you are able to use SSH to log into an instance, but it takes a very long
time (on the order of a minute) to get a prompt, then you might have a
DNS issue. The reason a DNS issue can cause this problem is that the SSH
server does a reverse DNS lookup on the IP address that you are connect-
ing from. If DNS lookup isn't working on your instances, then you must
wait for the DNS reverse lookup timeout to occur for the SSH login process
to complete.

When debugging DNS issues, start by making sure that the host where the
dnsmasq process for that instance runs is able to correctly resolve. If the
host cannot resolve, then the instances won't be able to either.

A quick way to check whether DNS is working is to resolve a hostname in-
side your instance by using the host command. If DNS is working, you
should see:

$ host openstack.org
openstack.org has address 174.143.194.225
openstack.org mail is handled by 10 mx1.emailsrvr.com.
openstack.org mail is handled by 20 mx2.emailsrvr.com.

If you're running the Cirros image, it doesn't have the "host" program in-
stalled, in which case you can use ping to try to access a machine by host-

OpenStack Ops Guide September 12, 2014

169

name to see whether it resolves. If DNS is working, the first line of ping
would be:

$ ping openstack.org
PING openstack.org (174.143.194.225): 56 data bytes

If the instance fails to resolve the hostname, you have a DNS problem. For
example:

$ ping openstack.org
ping: bad address 'openstack.org'

In an OpenStack cloud, the dnsmasq process acts as the DNS server for
the instances in addition to acting as the DHCP server. A misbehaving dns-
masq process may be the source of DNS-related issues inside the instance.
As mentioned in the previous section, the simplest way to rule out a misbe-
having dnsmasq process is to kill all the dnsmasq processes on the machine
and restart nova-network. However, be aware that this command af-
fects everyone running instances on this node, including tenants that have
not seen the issue. As a last resort, as root:

killall dnsmasq
restart nova-network

After the dnsmasq processes start again, check whether DNS is working.

If restarting the dnsmasq process doesn't fix the issue, you might need
to use tcpdump to look at the packets to trace where the failure is. The
DNS server listens on UDP port 53. You should see the DNS request on the
bridge (such as, br100) of your compute node. Let's say you start listening
with tcpdump on the compute node:

tcpdump -i br100 -n -v udp port 53
tcpdump: listening on br100, link-type EN10MB (Ethernet),
 capture size 65535
bytes

Then, if you use SSH to log into your instance and try ping
openstack.org, you should see something like:

16:36:18.807518 IP (tos 0x0, ttl 64, id 56057, offset 0, flags
 [DF],
proto UDP (17), length 59)
 192.168.100.4.54244 > 192.168.100.1.53: 2+ A? openstack.org.
 (31)
16:36:18.808285 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF],
proto UDP (17), length 75)
 192.168.100.1.53 > 192.168.100.4.54244: 2 1/0/0 openstack.org.
 A

OpenStack Ops Guide September 12, 2014

170

 174.143.194.225 (47)

Troubleshooting Open vSwitch
Open vSwitch as used in the previous OpenStack Networking Service
examples is a full-featured multilayer virtual switch licensed under the
open source Apache 2.0 license. Full documentation can be found at the
project's website. In practice, given the preceding configuration, the most
common issues are being sure that the required bridges (br-int, br-
tun, br-ex, etc.) exist and have the proper ports connected to them.

The Open vSwitch driver should and usually does manage this automati-
cally, but it is useful to know how to do this by hand with the ovs-vsctl
command. This command has many more subcommands than we will use
here; see the man page or use ovs-vsctl --help for the full listing.

To list the bridges on a system, use ovs-vsctl list-br. This example
shows a compute node that has an internal bridge and a tunnel bridge.
VLAN networks are trunked through the eth1 network interface:

ovs-vsctl list-br
br-int
br-tun
eth1-br

Working from the physical interface inwards, we can see the chain of ports
and bridges. First, the bridge eth1-br, which contains the physical net-
work interface eth1 and the virtual interface phy-eth1-br:

ovs-vsctl list-ports eth1-br
eth1
phy-eth1-br

Next, the internal bridge, br-int, contains int-eth1-br, which pairs
with phy-eth1-br to connect to the physical network shown in the pre-
vious bridge, patch-tun, which is used to connect to the GRE tunnel
bridge and the TAP devices that connect to the instances currently running
on the system:

ovs-vsctl list-ports br-int
int-eth1-br
patch-tun
tap2d782834-d1
tap690466bc-92
tap8a864970-2d

http://openvswitch.org/
http://openvswitch.org/

OpenStack Ops Guide September 12, 2014

171

The tunnel bridge, br-tun, contains the patch-int interface and gre-
<N> interfaces for each peer it connects to via GRE, one for each compute
and network node in your cluster:

ovs-vsctl list-ports br-tun
patch-int
gre-1
.
.
.
gre-<N>

If any of these links is missing or incorrect, it suggests a configuration er-
ror. Bridges can be added with ovs-vsctl add-br, and ports can be
added to bridges with ovs-vsctl add-port. While running these by
hand can be useful debugging, it is imperative that manual changes that
you intend to keep be reflected back into your configuration files.

Dealing with Network Namespaces
Linux network namespaces are a kernel feature the networking service us-
es to support multiple isolated layer-2 networks with overlapping IP ad-
dress ranges. The support may be disabled, but it is on by default. If it is
enabled in your environment, your network nodes will run their dhcp-
agents and l3-agents in isolated namespaces. Network interfaces and traf-
fic on those interfaces will not be visible in the default namespace.

To see whether you are using namespaces, run ip netns:

ip netns
qdhcp-e521f9d0-a1bd-4ff4-bc81-78a60dd88fe5
qdhcp-a4d00c60-f005-400e-a24c-1bf8b8308f98
qdhcp-fe178706-9942-4600-9224-b2ae7c61db71
qdhcp-0a1d0a27-cffa-4de3-92c5-9d3fd3f2e74d
qrouter-8a4ce760-ab55-4f2f-8ec5-a2e858ce0d39

L3-agent router namespaces are named qrouter-<router_uuid>,
and dhcp-agent name spaces are named qdhcp-<net_uuid>. This out-
put shows a network node with four networks running dhcp-agents, one
of which is also running an l3-agent router. It's important to know which
network you need to be working in. A list of existing networks and their
UUIDs can be obtained buy running neutron net-list with adminis-
trative credentials.

OpenStack Ops Guide September 12, 2014

172

Once you've determined which namespace you need to work in, you can
use any of the debugging tools mention earlier by prefixing the command
with ip netns exec <namespace>. For example, to see what network
interfaces exist in the first qdhcp namespace returned above, do this:

ip netns exec qdhcp-e521f9d0-a1bd-4ff4-bc81-78a60dd88fe5 ip a
10: tape6256f7d-31: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc
 noqueue state UNKNOWN
 link/ether fa:16:3e:aa:f7:a1 brd ff:ff:ff:ff:ff:ff
 inet 10.0.1.100/24 brd 10.0.1.255 scope global
 tape6256f7d-31
 inet 169.254.169.254/16 brd 169.254.255.255 scope global
 tape6256f7d-31
 inet6 fe80::f816:3eff:feaa:f7a1/64 scope link
 valid_lft forever preferred_lft forever
28: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state
 UNKNOWN
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever

From this you see that the DHCP server on that network is using the
tape6256f7d-31 device and has an IP address of 10.0.1.100. Seeing the ad-
dress 169.254.169.254, you can also see that the dhcp-agent is running a
metadata-proxy service. Any of the commands mentioned previously in
this chapter can be run in the same way. It is also possible to run a shell,
such as bash, and have an interactive session within the namespace. In
the latter case, exiting the shell returns you to the top-level default names-
pace.

Summary
The authors have spent too much time looking at packet dumps in order
to distill this information for you. We trust that, following the methods
outlined in this chapter, you will have an easier time! Aside from working
with the tools and steps above, don't forget that sometimes an extra pair
of eyes goes a long way to assist.

OpenStack Ops Guide September 12, 2014

173

13. Logging and Monitoring

Where Are the Logs? ... 173
Reading the Logs ... 174
Tracing Instance Requests .. 176
Adding Custom Logging Statements .. 176
RabbitMQ Web Management Interface or rabbitmqctl 177
Centrally Managing Logs .. 178
StackTach ... 180
Monitoring ... 180
Summary .. 187

As an OpenStack cloud is composed of so many different services, there
are a large number of log files. This chapter aims to assist you in locating
and working with them and describes other ways to track the status of
your deployment.

Where Are the Logs?
Most services use the convention of writing their log files to subdirectories
of the /var/log directory, as listed in Table 13.1, “OpenStack log lo-
cations” [173].

Table 13.1. OpenStack log locations

Node type Service Log location

Cloud controller nova-* /var/log/nova

Cloud controller glance-* /var/log/glance

Cloud controller cinder-* /var/log/cinder

Cloud controller keystone-* /var/log/keystone

Cloud controller neutron-* /var/log/neutron

Cloud controller horizon /var/log/apache2/

All nodes misc (swift, dnsmasq) /var/log/syslog

Compute nodes libvirt /var/log/lib-
virt/libvirtd.log

Compute nodes Console (boot up messages)
for VM instances:

/var/lib/nova/in-
stances/instance-<in-
stance id>/console.log

Block Storage nodes cinder-volume /var/log/cinder/cin-
der-volume.log

OpenStack Ops Guide September 12, 2014

174

Reading the Logs
OpenStack services use the standard logging levels, at increasing severity:
DEBUG, INFO, AUDIT, WARNING, ERROR, CRITICAL, and TRACE. That is,
messages only appear in the logs if they are more "severe" than the partic-
ular log level, with DEBUG allowing all log statements through. For exam-
ple, TRACE is logged only if the software has a stack trace, while INFO is
logged for every message including those that are only for information.

To disable DEBUG-level logging, edit /etc/nova/nova.conf as follows:

debug=false

Keystone is handled a little differently. To modify the logging level, edit
the /etc/keystone/logging.conf file and look at the logger_root
and handler_file sections.

Logging for horizon is configured in /etc/openstack_dashboard/
local_settings.py. Because horizon is a Django web application, it
follows the Django Logging framework conventions.

The first step in finding the source of an error is typically to search for a
CRITICAL, TRACE, or ERROR message in the log starting at the bottom of
the log file.

Here is an example of a CRITICAL log message, with the corresponding
TRACE (Python traceback) immediately following:

2013-02-25 21:05:51 17409 CRITICAL cinder [-] Bad or unexpected
 response from the storage volume backend API: volume group
 cinder-volumes doesn't exist
2013-02-25 21:05:51 17409 TRACE cinder Traceback (most recent
 call last):
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/bin/cinder-
volume", line 48, in <module>
2013-02-25 21:05:51 17409 TRACE cinder service.wait()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/
dist-packages/cinder/service.py", line 422, in wait
2013-02-25 21:05:51 17409 TRACE cinder _launcher.wait()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/
dist-packages/cinder/service.py", line 127, in wait
2013-02-25 21:05:51 17409 TRACE cinder service.wait()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/
dist-packages/eventlet/greenthread.py", line 166, in wait
2013-02-25 21:05:51 17409 TRACE cinder return self._exit_event.
wait()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/
dist-packages/eventlet/event.py", line 116, in wait

https://docs.djangoproject.com/en/dev/topics/logging/

OpenStack Ops Guide September 12, 2014

175

2013-02-25 21:05:51 17409 TRACE cinder return hubs.get_hub().
switch()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/
dist-packages/eventlet/hubs/hub.py", line 177, in switch
2013-02-25 21:05:51 17409 TRACE cinder return self.greenlet.
switch()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/
dist-packages/eventlet/greenthread.py", line 192, in main
2013-02-25 21:05:51 17409 TRACE cinder result = function(*args,
 **kwargs)
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/
dist-packages/cinder/service.py", line 88, in run_server
2013-02-25 21:05:51 17409 TRACE cinder server.start()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/
dist-packages/cinder/service.py", line 159, in start
2013-02-25 21:05:51 17409 TRACE cinder self.manager.init_host()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/
dist-packages/cinder/volume/manager.py", line 95,
 in init_host
2013-02-25 21:05:51 17409 TRACE cinder self.driver.
check_for_setup_error()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/
dist-packages/cinder/volume/driver.py", line 116,
 in check_for_setup_error
2013-02-25 21:05:51 17409 TRACE cinder raise exception.
VolumeBackendAPIException(data=exception_message)
2013-02-25 21:05:51 17409 TRACE cinder
 VolumeBackendAPIException: Bad or unexpected response from the
 storage volume
 backend API: volume group cinder-volumes doesn't exist
2013-02-25 21:05:51 17409 TRACE cinder

In this example, cinder-volumes failed to start and has provided a stack
trace, since its volume backend has been unable to set up the storage vol-
ume—probably because the LVM volume that is expected from the config-
uration does not exist.

Here is an example error log:

2013-02-25 20:26:33 6619 ERROR nova.openstack.common.rpc.common
 [-] AMQP server on localhost:5672 is unreachable:
 [Errno 111] ECONNREFUSED. Trying again in 23 seconds.

In this error, a nova service has failed to connect to the RabbitMQ server
because it got a connection refused error.

OpenStack Ops Guide September 12, 2014

176

Tracing Instance Requests
When an instance fails to behave properly, you will often have to trace ac-
tivity associated with that instance across the log files of various nova-*
services and across both the cloud controller and compute nodes.

The typical way is to trace the UUID associated with an instance across the
service logs.

Consider the following example:

$ nova list
+--------------------------------+--------+--------
+--------------------------+
| ID | Name | Status | Networks
 |
+--------------------------------+--------+--------
+--------------------------+
| fafed8-4a46-413b-b113-f1959ffe | cirros | ACTIVE |
 novanetwork=192.168.100.3|
+--------------------------------------+--------+--------
+--------------------+

Here, the ID associated with the instance is faf7ded8-4a46-413b-
b113-f19590746ffe. If you search for this string on the cloud controller
in the /var/log/nova-*.log files, it appears in nova-api.log and
nova-scheduler.log. If you search for this on the compute nodes in
/var/log/nova-*.log, it appears in nova-network.log and no-
va-compute.log. If no ERROR or CRITICAL messages appear, the most
recent log entry that reports this may provide a hint about what has gone
wrong.

Adding Custom Logging Statements
If there is not enough information in the existing logs, you may need to
add your own custom logging statements to the nova-* services.

The source files are located in /usr/lib/python2.7/dist-pack-
ages/nova.

To add logging statements, the following line should be near the top of
the file. For most files, these should already be there:

from nova.openstack.common import log as logging
LOG = logging.getLogger(__name__)

OpenStack Ops Guide September 12, 2014

177

To add a DEBUG logging statement, you would do:

LOG.debug("This is a custom debugging statement")

You may notice that all the existing logging messages are preceded by an
underscore and surrounded by parentheses, for example:

LOG.debug(_("Logging statement appears here"))

This formatting is used to support translation of logging messages into dif-
ferent languages using the gettext internationalization library. You don't
need to do this for your own custom log messages. However, if you want
to contribute the code back to the OpenStack project that includes logging
statements, you must surround your log messages with underscores and
parentheses.

RabbitMQ Web Management Interface or
rabbitmqctl

Aside from connection failures, RabbitMQ log files are generally not useful
for debugging OpenStack related issues. Instead, we recommend you use
the RabbitMQ web management interface. Enable it on your cloud con-
troller:

/usr/lib/rabbitmq/bin/rabbitmq-plugins enable
 rabbitmq_management

service rabbitmq-server restart

The RabbitMQ web management interface is accessible on your cloud con-
troller at http://localhost:55672.

Note

Ubuntu 12.04 installs RabbitMQ version 2.7.1, which uses port
55672. RabbitMQ versions 3.0 and above use port 15672 in-
stead. You can check which version of RabbitMQ you have run-
ning on your local Ubuntu machine by doing:

$ dpkg -s rabbitmq-server | grep "Version:"
Version: 2.7.1-0ubuntu4

An alternative to enabling the RabbitMQ web management interface
is to use the rabbitmqctl commands. For example, rabbitmqctl
list_queues| grep cinder displays any messages left in the queue.

https://docs.python.org/2/library/gettext.html

OpenStack Ops Guide September 12, 2014

178

If there are messages, it's a possible sign that cinder services didn't connect
properly to rabbitmq and might have to be restarted.

Items to monitor for RabbitMQ include the number of items in each of the
queues and the processing time statistics for the server.

Centrally Managing Logs
Because your cloud is most likely composed of many servers, you must
check logs on each of those servers to properly piece an event together. A
better solution is to send the logs of all servers to a central location so that
they can all be accessed from the same area.

Ubuntu uses rsyslog as the default logging service. Since it is natively able
to send logs to a remote location, you don't have to install anything extra
to enable this feature, just modify the configuration file. In doing this, con-
sider running your logging over a management network or using an en-
crypted VPN to avoid interception.

rsyslog Client Configuration

To begin, configure all OpenStack components to log to syslog in addition
to their standard log file location. Also configure each component to log
to a different syslog facility. This makes it easier to split the logs into indi-
vidual components on the central server:

nova.conf:

use_syslog=True
syslog_log_facility=LOG_LOCAL0

glance-api.conf and glance-registry.conf:

use_syslog=True
syslog_log_facility=LOG_LOCAL1

cinder.conf:

use_syslog=True
syslog_log_facility=LOG_LOCAL2

keystone.conf:

use_syslog=True
syslog_log_facility=LOG_LOCAL3

By default, Object Storage logs to syslog.

OpenStack Ops Guide September 12, 2014

179

Next, create /etc/rsyslog.d/client.conf with the following line:

. @192.168.1.10

This instructs rsyslog to send all logs to the IP listed. In this example, the IP
points to the cloud controller.

rsyslog Server Configuration

Designate a server as the central logging server. The best practice is to
choose a server that is solely dedicated to this purpose. Create a file called
/etc/rsyslog.d/server.conf with the following contents:

Enable UDP
$ModLoad imudp
Listen on 192.168.1.10 only
$UDPServerAddress 192.168.1.10
Port 514
$UDPServerRun 514

Create logging templates for nova
$template NovaFile,"/var/log/rsyslog/%HOSTNAME%/nova.log"
$template NovaAll,"/var/log/rsyslog/nova.log"

Log everything else to syslog.log
$template DynFile,"/var/log/rsyslog/%HOSTNAME%/syslog.log"
. ?DynFile

Log various openstack components to their own individual file
local0.* ?NovaFile
local0.* ?NovaAll
& ~

This example configuration handles the nova service only. It first config-
ures rsyslog to act as a server that runs on port 514. Next, it creates a series
of logging templates. Logging templates control where received logs are
stored. Using the last example, a nova log from c01.example.com goes to
the following locations:

• /var/log/rsyslog/c01.example.com/nova.log

• /var/log/rsyslog/nova.log

This is useful, as logs from c02.example.com go to:

• /var/log/rsyslog/c02.example.com/nova.log

• /var/log/rsyslog/nova.log

OpenStack Ops Guide September 12, 2014

180

You have an individual log file for each compute node as well as an aggre-
gated log that contains nova logs from all nodes.

StackTach
StackTach is a tool created by Rackspace to collect and report the notifica-
tions sent by nova. Notifications are essentially the same as logs but can
be much more detailed. A good overview of notifications can be found at
System Usage Data.

To enable nova to send notifications, add the following to nova.conf:

notification_topics=monitor
notification_driver=nova.openstack.common.notifier.rpc_notifier

Once nova is sending notifications, install and configure StackTach. Since
StackTach is relatively new and constantly changing, installation instruc-
tions would quickly become outdated. Please refer to the StackTach
GitHub repo for instructions as well as a demo video.

Monitoring
There are two types of monitoring: watching for problems and watching
usage trends. The former ensures that all services are up and running, cre-
ating a functional cloud. The latter involves monitoring resource usage
over time in order to make informed decisions about potential bottlenecks
and upgrades.

https://wiki.openstack.org/wiki/SystemUsageData
https://github.com/rackerlabs/stacktach
https://github.com/rackerlabs/stacktach

OpenStack Ops Guide September 12, 2014

181

Nagios

Nagios is an open source monitoring service. It's capable of execut-
ing arbitrary commands to check the status of server and network
services, remotely executing arbitrary commands directly on servers,
and allowing servers to push notifications back in the form of passive
monitoring. Nagios has been around since 1999. Although newer
monitoring services are available, Nagios is a tried-and-true systems
administration staple.

Process Monitoring

A basic type of alert monitoring is to simply check and see whether a re-
quired process is running. For example, ensure that the nova-api service
is running on the cloud controller:

ps aux | grep nova-api
nova 12786 0.0 0.0 37952 1312 ? Ss Feb11 0:00 su -s /bin/sh -c
 exec nova-api
--config-file=/etc/nova/nova.conf nova
nova 12787 0.0 0.1 135764 57400 ? S Feb11 0:01 /usr/bin/python
 /usr/bin/nova-api --config-file=/etc/nova/nova.conf
nova 12792 0.0 0.0 96052 22856 ? S Feb11 0:01 /usr/bin/python
/usr/bin/nova-api --config-file=/etc/nova/nova.conf
nova 12793 0.0 0.3 290688 115516 ? S Feb11 1:23 /usr/bin/python
/usr/bin/nova-api --config-file=/etc/nova/nova.conf
nova 12794 0.0 0.2 248636 77068 ? S Feb11 0:04 /usr/bin/python
/usr/bin/nova-api --config-file=/etc/nova/nova.conf
root 24121 0.0 0.0 11688 912 pts/5 S+ 13:07 0:00 grep nova-api

You can create automated alerts for critical processes by using Nagios and
NRPE. For example, to ensure that the nova-compute process is running
on compute nodes, create an alert on your Nagios server that looks like
this:

define service {
 host_name c01.example.com
 check_command check_nrpe_1arg!check_nova-compute
 use generic-service
 notification_period 24x7
 contact_groups sysadmins
 service_description nova-compute
}

Then on the actual compute node, create the following NRPE configura-
tion:

OpenStack Ops Guide September 12, 2014

182

\command[check_nova-compute]=/usr/lib/nagios/plugins/check_procs
 -c 1: \
-a nova-compute

Nagios checks that at least one nova-compute service is running at all
times.

Resource Alerting
Resource alerting provides notifications when one or more resources are
critically low. While the monitoring thresholds should be tuned to your
specific OpenStack environment, monitoring resource usage is not specific
to OpenStack at all—any generic type of alert will work fine.

Some of the resources that you want to monitor include:

• Disk usage

• Server load

• Memory usage

• Network I/O

• Available vCPUs

For example, to monitor disk capacity on a compute node with Nagios,
add the following to your Nagios configuration:

define service {
 host_name c01.example.com
 check_command check_nrpe!check_all_disks!20% 10%
 use generic-service
 contact_groups sysadmins
 service_description Disk
}

On the compute node, add the following to your NRPE configuration:

command[check_all_disks]=/usr/lib/nagios/plugins/check_disk -w $ARG1$ -c
 \
$ARG2$ -e

Nagios alerts you with a WARNING when any disk on the compute node is
80 percent full and CRITICAL when 90 percent is full.

Metering and Telemetry with Ceilometer
An integrated OpenStack project (code-named ceilometer) collects me-
tering data and provides alerts for Compute, Storage, and Networking.

OpenStack Ops Guide September 12, 2014

183

Data collected by the metering system could be used for billing. Depend-
ing on deployment configuration, metered data may be accessible to
users based on the deployment configuration. The Telemetry service pro-
vides a REST API documented at http://developer.openstack.org/api-
ref-telemetry-v2.html. You can read more about the project at http://
docs.openstack.org/developer/ceilometer.

OpenStack-Specific Resources

Resources such as memory, disk, and CPU are generic resources that all
servers (even non-OpenStack servers) have and are important to the over-
all health of the server. When dealing with OpenStack specifically, these re-
sources are important for a second reason: ensuring that enough are avail-
able to launch instances. There are a few ways you can see OpenStack re-
source usage. The first is through the nova command:

nova usage-list

This command displays a list of how many instances a tenant has running
and some light usage statistics about the combined instances. This com-
mand is useful for a quick overview of your cloud, but it doesn't really get
into a lot of details.

Next, the nova database contains three tables that store usage informa-
tion.

The nova.quotas and nova.quota_usages tables store quota infor-
mation. If a tenant's quota is different from the default quota settings, its
quota is stored in the nova.quotas table. For example:

mysql> select project_id, resource, hard_limit from quotas;
+----------------------------------
+-----------------------------+------------+
| project_id | resource
 | hard_limit |
+----------------------------------
+-----------------------------+------------+
| 628df59f091142399e0689a2696f5baa | metadata_items
 | 128 |
| 628df59f091142399e0689a2696f5baa | injected_file_content_bytes
 | 10240 |
| 628df59f091142399e0689a2696f5baa | injected_files
 | 5 |
| 628df59f091142399e0689a2696f5baa | gigabytes
 | 1000 |
| 628df59f091142399e0689a2696f5baa | ram
 | 51200 |

http://developer.openstack.org/api-ref-telemetry-v2.html
http://developer.openstack.org/api-ref-telemetry-v2.html
http://docs.openstack.org/developer/ceilometer
http://docs.openstack.org/developer/ceilometer

OpenStack Ops Guide September 12, 2014

184

| 628df59f091142399e0689a2696f5baa | floating_ips
 | 10 |
| 628df59f091142399e0689a2696f5baa | instances
 | 10 |
| 628df59f091142399e0689a2696f5baa | volumes
 | 10 |
| 628df59f091142399e0689a2696f5baa | cores
 | 20 |
+----------------------------------
+-----------------------------+------------+

The nova.quota_usages table keeps track of how many resources the
tenant currently has in use:

mysql> select project_id, resource, in_use from quota_usages
 where project_id like '628%';
+----------------------------------+--------------+--------+
| project_id | resource | in_use |
+----------------------------------+--------------+--------+
628df59f091142399e0689a2696f5baa	instances	1
628df59f091142399e0689a2696f5baa	ram	512
628df59f091142399e0689a2696f5baa	cores	1
628df59f091142399e0689a2696f5baa	floating_ips	1
628df59f091142399e0689a2696f5baa	volumes	2
628df59f091142399e0689a2696f5baa	gigabytes	12
628df59f091142399e0689a2696f5baa	images	1
+----------------------------------+--------------+--------+

By comparing a tenant's hard limit with their current resource usage, you
can see their usage percentage. For example, if this tenant is using 1 float-
ing IP out of 10, then they are using 10 percent of their floating IP quota.
Rather than doing the calculation manually, you can use SQL or the script-
ing language of your choice and create a formatted report:

+----------------------------------+------------+-------------
+---------------+
| some_tenant
 |
+-----------------------------------+------------+------------
+---------------+
| Resource | Used | Limit |
 |
+-----------------------------------+------------+------------
+---------------+
| cores | 1 | 20 |
 5 % |
| floating_ips | 1 | 10 |
 10 % |
| gigabytes | 12 | 1000 |
 1 % |

OpenStack Ops Guide September 12, 2014

185

| images | 1 | 4 |
 25 % |
| injected_file_content_bytes | 0 | 10240 |
 0 % |
| injected_file_path_bytes | 0 | 255 |
 0 % |
| injected_files | 0 | 5 |
 0 % |
| instances | 1 | 10 |
 10 % |
| key_pairs | 0 | 100 |
 0 % |
| metadata_items | 0 | 128 |
 0 % |
| ram | 512 | 51200 |
 1 % |
| reservation_expire | 0 | 86400 |
 0 % |
| security_group_rules | 0 | 20 |
 0 % |
| security_groups | 0 | 10 |
 0 % |
| volumes | 2 | 10 |
 20 % |
+-----------------------------------+------------+------------
+---------------+

The preceding information was generated by using a custom script that
can be found on GitHub.

Note

This script is specific to a certain OpenStack installation and
must be modified to fit your environment. However, the logic
should easily be transferable.

Intelligent Alerting

Intelligent alerting can be thought of as a form of continuous integra-
tion for operations. For example, you can easily check to see whether the
Image Service is up and running by ensuring that the glance-api and
glance-registry processes are running or by seeing whether glace-
api is responding on port 9292.

But how can you tell whether images are being successfully uploaded to
the Image Service? Maybe the disk that Image Service is storing the images
on is full or the S3 backend is down. You could naturally check this by do-
ing a quick image upload:

https://github.com/cybera/novac/blob/dev/libexec/novac-quota-report

OpenStack Ops Guide September 12, 2014

186

#!/bin/bash
#
assumes that reasonable credentials have been stored at
/root/auth

. /root/openrc
wget https://launchpad.net/cirros/trunk/0.3.0/+download/ \
 cirros-0.3.0-x86_64-disk.img
glance image-create --name='cirros image' --is-public=true
--container-format=bare --disk-format=qcow2 < cirros-0.3.0-x8
6_64-disk.img

By taking this script and rolling it into an alert for your monitoring system
(such as Nagios), you now have an automated way of ensuring that image
uploads to the Image Catalog are working.

Note

You must remove the image after each test. Even better, test
whether you can successfully delete an image from the Image
Service.

Intelligent alerting takes considerably more time to plan and implement
than the other alerts described in this chapter. A good outline to imple-
ment intelligent alerting is:

• Review common actions in your cloud.

• Create ways to automatically test these actions.

• Roll these tests into an alerting system.

Some other examples for Intelligent Alerting include:

• Can instances launch and be destroyed?

• Can users be created?

• Can objects be stored and deleted?

• Can volumes be created and destroyed?

Trending
Trending can give you great insight into how your cloud is performing day
to day. You can learn, for example, if a busy day was simply a rare occur-
rence or if you should start adding new compute nodes.

OpenStack Ops Guide September 12, 2014

187

Trending takes a slightly different approach than alerting. While alerting
is interested in a binary result (whether a check succeeds or fails), trend-
ing records the current state of something at a certain point in time. Once
enough points in time have been recorded, you can see how the value has
changed over time.

All of the alert types mentioned earlier can also be used for trend report-
ing. Some other trend examples include:

• The number of instances on each compute node

• The types of flavors in use

• The number of volumes in use

• The number of Object Storage requests each hour

• The number of nova-api requests each hour

• The I/O statistics of your storage services

As an example, recording nova-api usage can allow you to track the
need to scale your cloud controller. By keeping an eye on nova-api re-
quests, you can determine whether you need to spawn more nova-api
processes or go as far as introducing an entirely new server to run no-
va-api. To get an approximate count of the requests, look for standard
INFO messages in /var/log/nova/nova-api.log:

grep INFO /var/log/nova/nova-api.log | wc

You can obtain further statistics by looking for the number of successful re-
quests:

grep " 200 " /var/log/nova/nova-api.log | wc

By running this command periodically and keeping a record of the result,
you can create a trending report over time that shows whether your no-
va-api usage is increasing, decreasing, or keeping steady.

A tool such as collectd can be used to store this information. While collectd
is out of the scope of this book, a good starting point would be to use col-
lectd to store the result as a COUNTER data type. More information can be
found in collectd's documentation.

Summary
For stable operations, you want to detect failure promptly and determine
causes efficiently. With a distributed system, it's even more important to

https://collectd.org/wiki/index.php/Data_source

OpenStack Ops Guide September 12, 2014

188

track the right items to meet a service-level target. Learning where these
logs are located in the file system or API gives you an advantage. This
chapter also showed how to read, interpret, and manipulate information
from OpenStack services so that you can monitor effectively.

OpenStack Ops Guide September 12, 2014

189

14. Backup and Recovery
What to Back Up ... 189
Database Backups .. 190
File System Backups ... 190
Recovering Backups ... 192
Summary .. 193

Standard backup best practices apply when creating your OpenStack back-
up policy. For example, how often to back up your data is closely related
to how quickly you need to recover from data loss.

Note

If you cannot have any data loss at all, you should also focus
on a highly available deployment. The OpenStack High Avail-
ability Guide offers suggestions for elimination of a single point
of failure that could cause system downtime. While it is not a
completely prescriptive document, it offers methods and tech-
niques for avoiding downtime and data loss.

Other backup considerations include:

• How many backups to keep?

• Should backups be kept off-site?

• How often should backups be tested?

Just as important as a backup policy is a recovery policy (or at least recov-
ery testing).

What to Back Up
While OpenStack is composed of many components and moving parts,
backing up the critical data is quite simple.

This chapter describes only how to back up configuration files and
databases that the various OpenStack components need to run. This chap-
ter does not describe how to back up objects inside Object Storage or data
contained inside Block Storage. Generally these areas are left for users to
back up on their own.

http://docs.openstack.org/high-availability-guide/content/
http://docs.openstack.org/high-availability-guide/content/

OpenStack Ops Guide September 12, 2014

190

Database Backups
The example OpenStack architecture designates the cloud controller as the
MySQL server. This MySQL server hosts the databases for nova, glance, cin-
der, and keystone. With all of these databases in one place, it's very easy
to create a database backup:

mysqldump --opt --all-databases > openstack.sql

If you only want to backup a single database, you can instead run:

mysqldump --opt nova > nova.sql

where nova is the database you want to back up.

You can easily automate this process by creating a cron job that runs the
following script once per day:

#!/bin/bash
backup_dir="/var/lib/backups/mysql"
filename="${backup_dir}/mysql-`hostname`-`eval date +%Y%m%d`.sql.gz"
Dump the entire MySQL database
/usr/bin/mysqldump --opt --all-databases | gzip > $filename
Delete backups older than 7 days
find $backup_dir -ctime +7 -type f -delete

This script dumps the entire MySQL database and deletes any backups old-
er than seven days.

File System Backups
This section discusses which files and directories should be backed up regu-
larly, organized by service.

Compute
The /etc/nova directory on both the cloud controller and compute
nodes should be regularly backed up.

/var/log/nova does not need to be backed up if you have all logs going
to a central area. It is highly recommended to use a central logging server
or back up the log directory.

/var/lib/nova is another important directory to back up. The excep-
tion to this is the /var/lib/nova/instances subdirectory on compute
nodes. This subdirectory contains the KVM images of running instances.
You would want to back up this directory only if you need to maintain
backup copies of all instances. Under most circumstances, you do not need

OpenStack Ops Guide September 12, 2014

191

to do this, but this can vary from cloud to cloud and your service levels. Al-
so be aware that making a backup of a live KVM instance can cause that
instance to not boot properly if it is ever restored from a backup.

Image Catalog and Delivery

/etc/glance and /var/log/glance follow the same rules as their no-
va counterparts.

/var/lib/glance should also be backed up. Take special notice of /
var/lib/glance/images. If you are using a file-based backend of
glance, /var/lib/glance/images is where the images are stored and
care should be taken.

There are two ways to ensure stability with this directory. The first is to
make sure this directory is run on a RAID array. If a disk fails, the directo-
ry is available. The second way is to use a tool such as rsync to replicate the
images to another server:

rsync -az --progress /var/lib/glance/images \
backup-server:/var/lib/glance/images/

Identity

/etc/keystone and /var/log/keystone follow the same rules as
other components.

/var/lib/keystone, although it should not contain any data being
used, can also be backed up just in case.

Block Storage

/etc/cinder and /var/log/cinder follow the same rules as other
components.

/var/lib/cinder should also be backed up.

Object Storage

/etc/swift is very important to have backed up. This directory contains
the swift configuration files as well as the ring files and ring builder files,
which if lost, render the data on your cluster inaccessible. A best practice is
to copy the builder files to all storage nodes along with the ring files. Mul-
tiple backup copies are spread throughout your storage cluster.

OpenStack Ops Guide September 12, 2014

192

Recovering Backups
Recovering backups is a fairly simple process. To begin, first ensure that the
service you are recovering is not running. For example, to do a full recov-
ery of nova on the cloud controller, first stop all nova services:

OpenStack Ops Guide September 12, 2014

193

stop nova-api
stop nova-cert
stop nova-consoleauth
stop nova-novncproxy
stop nova-objectstore
stop nova-scheduler

Now you can import a previously backed-up database:

mysql nova < nova.sql

You can also restore backed-up nova directories:

mv /etc/nova{,.orig}
cp -a /path/to/backup/nova /etc/

Once the files are restored, start everything back up:

start mysql
for i in nova-api nova-cert nova-consoleauth nova-novncproxy
nova-objectstore nova-scheduler
> do
> start $i
> done

Other services follow the same process, with their respective directories
and databases.

Summary
Backup and subsequent recovery is one of the first tasks system administra-
tors learn. However, each system has different items that need attention.
By taking care of your database, image service, and appropriate file system
locations, you can be assured that you can handle any event requiring re-
covery.

OpenStack Ops Guide September 12, 2014

195

15. Customization
Create an OpenStack Development Environment 195
Customizing Object Storage (Swift) Middleware 198
Customizing the OpenStack Compute (nova) Scheduler 205
Customizing the Dashboard (Horizon) .. 210
Conclusion ... 210

OpenStack might not do everything you need it to do out of the box. To
add a new feature, you can follow different paths.

To take the first path, you can modify the OpenStack code directly. Learn
how to contribute, follow the code review workflow, make your changes,
and contribute them back to the upstream OpenStack project. This path is
recommended if the feature you need requires deep integration with an
existing project. The community is always open to contributions and wel-
comes new functionality that follows the feature-development guidelines.
This path still requires you to use DevStack for testing your feature addi-
tions, so this chapter walks you through the DevStack environment.

For the second path, you can write new features and plug them in using
changes to a configuration file. If the project where your feature would
need to reside uses the Python Paste framework, you can create middle-
ware for it and plug it in through configuration. There may also be specific
ways of customizing a project, such as creating a new scheduler driver for
Compute or a custom tab for the dashboard.

This chapter focuses on the second path for customizing OpenStack by
providing two examples for writing new features. The first example shows
how to modify Object Storage (swift) middleware to add a new feature,
and the second example provides a new scheduler feature for OpenStack
Compute (nova). To customize OpenStack this way you need a develop-
ment environment. The best way to get an environment up and running
quickly is to run DevStack within your cloud.

Create an OpenStack Development Envi-
ronment

To create a development environment, you can use DevStack. DevStack is
essentially a collection of shell scripts and configuration files that builds an
OpenStack development environment for you. You use it to create such an
environment for developing a new feature.

https://wiki.openstack.org/wiki/How_To_Contribute
https://wiki.openstack.org/wiki/GerritWorkflow

OpenStack Ops Guide September 12, 2014

196

You can find all of the documentation at the DevStack website.

To run DevStack for the stable Havana branch on an instance in
your OpenStack cloud:

1. Boot an instance from the dashboard or the nova command-line inter-
face (CLI) with the following parameters:

• Name: devstack-havana

• Image: Ubuntu 12.04 LTS

• Memory Size: 4 GB RAM

• Disk Size: minimum 5 GB

If you are using the nova client, specify --flavor 3 for the nova
boot command to get adequate memory and disk sizes.

2. Log in and set up DevStack. Here's an example of the commands you
can use to set up DevStack on a virtual machine:

a. Log in to the instance:

$ ssh username@my.instance.ip.address

b. Update the virtual machine's operating system:

apt-get -y update

c. Install git:

apt-get -y install git

d. Clone the stable/havana branch of the devstack repository:

$ git clone https://github.com/openstack-dev/devstack.
git -b
stable/havana devstack/

e. Change to the devstack repository:

$ cd devstack

3. (Optional) If you've logged in to your instance as the root user, you
must create a "stack" user; otherwise you'll run into permission issues.
If you've logged in as a user other than root, you can skip these steps:

a. Run the DevStack script to create the stack user:

http://devstack.org/

OpenStack Ops Guide September 12, 2014

197

tools/create-stack-user.sh

b. Give ownership of the devstack directory to the stack user:

chown -R stack:stack /root/devstack

c. Set some permissions you can use to view the DevStack screen lat-
er:

chmod o+rwx /dev/pts/0

d. Switch to the stack user:

$ su stack

4. Edit the localrc configuration file that controls what DevStack will
deploy. Copy the example localrc file at the end of this section (Ex-
ample 15.1, “localrc” [198]):

$ vim localrc

5. Run the stack script that will install OpenStack:

$./stack.sh

6. When the stack script is done, you can open the screen session it start-
ed to view all of the running OpenStack services:

$ screen -r stack

7. Press Ctrl+A followed by 0 to go to the first screen window.

Note

• The stack.sh script takes a while to run. Perhaps you can
take this opportunity to join the OpenStack Foundation.

• Screen is a useful program for viewing many related ser-
vices at once. For more information, see the GNU screen
quick reference.

Now that you have an OpenStack development environment, you're free
to hack around without worrying about damaging your production de-
ployment. Example 15.1, “localrc” [198] provides a working environ-
ment for running OpenStack Identity, Compute, Block Storage, Image Ser-
vice, the OpenStack dashboard, and Object Storage with the stable/ha-
vana branches as the starting point.

https://www.openstack.org/join/
http://aperiodic.net/screen/quick_reference
http://aperiodic.net/screen/quick_reference

OpenStack Ops Guide September 12, 2014

198

Example 15.1. localrc

Credentials
ADMIN_PASSWORD=devstack
MYSQL_PASSWORD=devstack
RABBIT_PASSWORD=devstack
SERVICE_PASSWORD=devstack
SERVICE_TOKEN=devstack

OpenStack Identity Service branch
KEYSTONE_BRANCH=stable/havana

OpenStack Compute branch
NOVA_BRANCH=stable/havana

OpenStack Block Storage branch
CINDER_BRANCH=stable/havana

OpenStack Image Service branch
GLANCE_BRANCH=stable/havana

OpenStack Dashboard branch
HORIZON_BRANCH=stable/havana

OpenStack Object Storage branch
SWIFT_BRANCH=stable/havana

enable_service swift

Object Storage Settings
SWIFT_HASH=66a3d6b56c1f479c8b4e70ab5c2000f5
SWIFT_REPLICAS=1

Block Storage Setting
VOLUME_BACKING_FILE_SIZE=20480M

Output
LOGFILE=/opt/stack/logs/stack.sh.log
VERBOSE=True
LOG_COLOR=False
SCREEN_LOGDIR=/opt/stack/logs

Customizing Object Storage (Swift) Mid-
dleware

OpenStack Object Storage, known as swift when reading the code, is
based on the Python Paste framework. The best introduction to its archi-
tecture is A Do-It-Yourself Framework. Because of the swift project's use of
this framework, you are able to add features to a project by placing some
custom code in a project's pipeline without having to change any of the
core code.

http://pythonpaste.org/
http://pythonpaste.org/do-it-yourself-framework.html

OpenStack Ops Guide September 12, 2014

199

Imagine a scenario where you have public access to one of your containers,
but what you really want is to restrict access to that to a set of IPs based
on a whitelist. In this example, we'll create a piece of middleware for swift
that allows access to a container from only a set of IP addresses, as deter-
mined by the container's metadata items. Only those IP addresses that you
explicitly whitelist using the container's metadata will be able to access the
container.

Warning

This example is for illustrative purposes only. It should not be
used as a container IP whitelist solution without further devel-
opment and extensive security testing.

When you join the screen session that stack.sh starts with screen -r
stack, you see a screen for each service running, which can be a few or
several, depending on how many services you configured DevStack to run.

The asterisk * indicates which screen window you are viewing. This exam-
ple shows we are viewing the key (for keystone) screen window:

0$ shell 1$ key* 2$ horizon 3$ s-proxy 4$ s-object 5$ s-
container 6$ s-account

The purpose of the screen windows are as follows:

shell A shell where you can get some work done

key* The keystone service

horizon The horizon dashboard web application

s-{name} The swift services

To create the middleware and plug it in through Paste
configuration:

All of the code for OpenStack lives in /opt/stack. Go to the swift direc-
tory in the shell screen and edit your middleware module.

1. Change to the directory where Object Storage is installed:

$ cd /opt/stack/swift

2. Create the ip_whitelist.py Python source code file:

OpenStack Ops Guide September 12, 2014

200

$ vim swift/common/middleware/ip_whitelist.py

3. Copy the code in Example 15.2, “ip_whitelist.py” [200] into
ip_whitelist.py. The following code is a middleware example
that restricts access to a container based on IP address as explained at
the beginning of the section. Middleware passes the request on to an-
other application. This example uses the swift "swob" library to wrap
Web Server Gateway Interface (WSGI) requests and responses into ob-
jects for swift to interact with. When you're done, save and close the
file.

Example 15.2. ip_whitelist.py

vim: tabstop=4 shiftwidth=4 softtabstop=4
Copyright (c) 2014 OpenStack Foundation
All Rights Reserved.
#
Licensed under the Apache License, Version 2.0 (the "License");
 you may
not use this file except in compliance with the License. You
 may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing,
 software
distributed under the License is distributed on an "AS IS"
 BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied. See the
License for the specific language governing permissions and
 limitations
under the License.

import socket

from swift.common.utils import get_logger
from swift.proxy.controllers.base import get_container_info
from swift.common.swob import Request, Response

class IPWhitelistMiddleware(object):
 """
 IP Whitelist Middleware

 Middleware that allows access to a container from only a set of
 IP
 addresses as determined by the container's metadata items that
 start
 with the prefix 'allow'. E.G. allow-dev=192.168.0.20
 """

 def __init__(self, app, conf, logger=None):
 self.app = app

OpenStack Ops Guide September 12, 2014

201

 if logger:
 self.logger = logger
 else:
 self.logger = get_logger(conf, log_route='ip_whitelist')

 self.deny_message = conf.get('deny_message', "IP Denied")
 self.local_ip = socket.gethostbyname(socket.gethostname())

 def __call__(self, env, start_response):
 """
 WSGI entry point.
 Wraps env in swob.Request object and passes it down.

 :param env: WSGI environment dictionary
 :param start_response: WSGI callable
 """
 req = Request(env)

 try:
 version, account, container, obj = req.split_path(1, 4,
 True)
 except ValueError:
 return self.app(env, start_response)

 container_info = get_container_info(
 req.environ, self.app, swift_source=
'IPWhitelistMiddleware')

 remote_ip = env['REMOTE_ADDR']
 self.logger.debug("Remote IP: %(remote_ip)s",
 {'remote_ip': remote_ip})

 meta = container_info['meta']
 allow = {k:v for k,v in meta.iteritems() if k.
startswith('allow')}
 allow_ips = set(allow.values())
 allow_ips.add(self.local_ip)
 self.logger.debug("Allow IPs: %(allow_ips)s",
 {'allow_ips': allow_ips})

 if remote_ip in allow_ips:
 return self.app(env, start_response)
 else:
 self.logger.debug(
 "IP %(remote_ip)s denied access to Account=
%(account)s "
 "Container=%(container)s. Not in %(allow_ips)s",
 locals())
 return Response(
 status=403,
 body=self.deny_message,
 request=req)(env, start_response)

def filter_factory(global_conf, **local_conf):
 """
 paste.deploy app factory for creating WSGI proxy apps.

OpenStack Ops Guide September 12, 2014

202

 """
 conf = global_conf.copy()
 conf.update(local_conf)

 def ip_whitelist(app):
 return IPWhitelistMiddleware(app, conf)
 return ip_whitelist

There is a lot of useful information in env and conf that you can use
to decide what to do with the request. To find out more about what
properties are available, you can insert the following log statement in-
to the __init__ method:

self.logger.debug("conf = %(conf)s", locals())

and the following log statement into the __call__ method:

self.logger.debug("env = %(env)s", locals())

4. To plug this middleware into the swift Paste pipeline, you edit one
configuration file, /etc/swift/proxy-server.conf:

$ vim /etc/swift/proxy-server.conf

5. Find the [filter:ratelimit] section in /etc/swift/proxy-
server.conf, and copy in the following configuration section after
it:

[filter:ip_whitelist]
paste.filter_factory = swift.common.middleware.
ip_whitelist:filter_factory
You can override the default log routing for this filter here:
set log_name = ratelimit
set log_facility = LOG_LOCAL0
set log_level = INFO
set log_headers = False
set log_address = /dev/log
deny_message = You shall not pass!

6. Find the [pipeline:main] section in /etc/swift/proxy-
server.conf, and add ip_whitelist after ratelimit to the list like
so. When you're done, save and close the file:

[pipeline:main]
pipeline = catch_errors healthcheck proxy-logging cache bulk slo
 ratelimit ip_whitelist ...

7. Restart the swift proxy service to make swift use your middleware.
Start by switching to the swift-proxy screen:

a. Press Ctrl+A followed by 3.

b. Press Ctrl+C to kill the service.

OpenStack Ops Guide September 12, 2014

203

c. Press Up Arrow to bring up the last command.

d. Press Enter to run it.

8. Test your middleware with the swift CLI. Start by switching to the
shell screen and finish by switching back to the swift-proxy screen
to check the log output:

a. Press Ctrl+A followed by 0.

b. Make sure you're in the devstack directory:

$ cd /root/devstack

c. Source openrc to set up your environment variables for the CLI:

$ source openrc

d. Create a container called middleware-test:

$ swift post middleware-test

e. Press Ctrl+A followed by 3 to check the log output.

9. Among the log statements you'll see the lines:

proxy-server Remote IP: my.instance.ip.address (txn: ...)
proxy-server Allow IPs: set(['my.instance.ip.address'])
 (txn: ...)

These two statements are produced by our middleware and show
that the request was sent from our DevStack instance and was al-
lowed.

10. Test the middleware from outside DevStack on a remote machine that
has access to your DevStack instance:

a. Install the keystone and swift clients on your local machine:

pip install python-keystoneclient python-swiftclient

b. Attempt to list the objects in the middleware-test container:

$ swift --os-auth-url=http://my.instance.ip.
address:5000/v2.0/ \
--os-region-name=RegionOne --os-username=demo:demo \
--os-password=devstack list middleware-test
Container GET failed: http://my.instance.ip.
address:8080/v1/AUTH_.../

OpenStack Ops Guide September 12, 2014

204

 middleware-test?format=json 403 Forbidden You
 shall not pass!

11. Press Ctrl+A followed by 3 to check the log output. Look at the swift
log statements again, and among the log statements, you'll see the
lines:

proxy-server Authorizing from an overriding middleware (i.e:
 tempurl) (txn: ...)
proxy-server ... IPWhitelistMiddleware
proxy-server Remote IP: my.local.ip.address (txn: ...)
proxy-server Allow IPs: set(['my.instance.ip.address'])
 (txn: ...)
proxy-server IP my.local.ip.address denied access to
 Account=AUTH_... \
 Container=None. Not in set(['my.instance.ip.address'])
 (txn: ...)

Here we can see that the request was denied because the remote IP
address wasn't in the set of allowed IPs.

12. Back in your DevStack instance on the shell screen, add some metada-
ta to your container to allow the request from the remote machine:

a. Press Ctrl+A followed by 0.

b. Add metadata to the container to allow the IP:

$ swift post --meta allow-dev:my.local.ip.address
 middleware-test

c. Now try the command from Step 10 again and it succeeds. There
are no objects in the container, so there is nothing to list; howev-
er, there is also no error to report.

Warning

Functional testing like this is not a replacement for proper unit
and integration testing, but it serves to get you started.

You can follow a similar pattern in other projects that use the Python
Paste framework. Simply create a middleware module and plug it in
through configuration. The middleware runs in sequence as part of that
project's pipeline and can call out to other services as necessary. No project
core code is touched. Look for a pipeline value in the project's conf or
ini configuration files in /etc/<project> to identify projects that use
Paste.

OpenStack Ops Guide September 12, 2014

205

When your middleware is done, we encourage you to open source it and
let the community know on the OpenStack mailing list. Perhaps others
need the same functionality. They can use your code, provide feedback,
and possibly contribute. If enough support exists for it, perhaps you can
propose that it be added to the official swift middleware.

Customizing the OpenStack Compute (no-
va) Scheduler

Many OpenStack projects allow for customization of specific features using
a driver architecture. You can write a driver that conforms to a particular
interface and plug it in through configuration. For example, you can easily
plug in a new scheduler for Compute. The existing schedulers for Compute
are feature full and well documented at Scheduling. However, depending
on your user's use cases, the existing schedulers might not meet your re-
quirements. You might need to create a new scheduler.

To create a scheduler, you must inherit from the class
nova.scheduler.driver.Scheduler. Of the five methods that you
can override, you must override the two methods marked with an asterisk
(*) below:

• update_service_capabilities

• hosts_up

• group_hosts

• * schedule_run_instance

• * select_destinations

To demonstrate customizing OpenStack, we'll create an example of a Com-
pute scheduler that randomly places an instance on a subset of hosts, de-
pending on the originating IP address of the request and the prefix of the
hostname. Such an example could be useful when you have a group of
users on a subnet and you want all of their instances to start within some
subset of your hosts.

Warning

This example is for illustrative purposes only. It should not be
used as a scheduler for Compute without further development
and testing.

https://github.com/openstack/swift/tree/master/swift/common/middleware
http://docs.openstack.org/trunk/config-reference/content/section_compute-scheduler.html

OpenStack Ops Guide September 12, 2014

206

When you join the screen session that stack.sh starts with screen -r
stack, you are greeted with many screen windows:

0$ shell* 1$ key 2$ horizon ... 9$ n-api ... 14$ n-sch ...

shell A shell where you can get some work done

key The keystone service

horizon The horizon dashboard web application

n-{name} The nova services

n-sch The nova scheduler service

To create the scheduler and plug it in through configuration:

1. The code for OpenStack lives in /opt/stack, so go to the nova
directory and edit your scheduler module. Change to the directory
where nova is installed:

$ cd /opt/stack/nova

2. Create the ip_scheduler.py Python source code file:

$ vim nova/scheduler/ip_scheduler.py

3. The code in Example 15.3, “ip_scheduler.py” [206] is a driver that
will schedule servers to hosts based on IP address as explained at the
beginning of the section. Copy the code into ip_scheduler.py.
When you're done, save and close the file.

Example 15.3. ip_scheduler.py
vim: tabstop=4 shiftwidth=4 softtabstop=4
Copyright (c) 2014 OpenStack Foundation
All Rights Reserved.
#
Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

"""
IP Scheduler implementation
"""

import random

OpenStack Ops Guide September 12, 2014

207

from oslo.config import cfg

from nova.compute import rpcapi as compute_rpcapi
from nova import exception
from nova.openstack.common import log as logging
from nova.openstack.common.gettextutils import _
from nova.scheduler import driver

CONF = cfg.CONF
CONF.import_opt('compute_topic', 'nova.compute.rpcapi')
LOG = logging.getLogger(__name__)

class IPScheduler(driver.Scheduler):
 """
 Implements Scheduler as a random node selector based on
 IP address and hostname prefix.
 """

 def __init__(self, *args, **kwargs):
 super(IPScheduler, self).__init__(*args, **kwargs)
 self.compute_rpcapi = compute_rpcapi.ComputeAPI()

 def _filter_hosts(self, request_spec, hosts, filter_properties,
 hostname_prefix):
 """Filter a list of hosts based on hostname prefix."""

 hosts = [host for host in hosts if host.startswith(hostname_prefix)]
 return hosts

 def _schedule(self, context, topic, request_spec, filter_properties):
 """Picks a host that is up at random."""

 elevated = context.elevated()
 hosts = self.hosts_up(elevated, topic)
 if not hosts:
 msg = _("Is the appropriate service running?")
 raise exception.NoValidHost(reason=msg)

 remote_ip = context.remote_address

 if remote_ip.startswith('10.1'):
 hostname_prefix = 'doc'
 elif remote_ip.startswith('10.2'):
 hostname_prefix = 'ops'
 else:
 hostname_prefix = 'dev'

 hosts = self._filter_hosts(request_spec, hosts, filter_properties,
 hostname_prefix)
 if not hosts:
 msg = _("Could not find another compute")
 raise exception.NoValidHost(reason=msg)

 host = random.choice(hosts)
 LOG.debug("Request from %(remote_ip)s scheduled to %(host)s" %
 locals())

 return host

 def select_destinations(self, context, request_spec, filter_properties):
 """Selects random destinations."""
 num_instances = request_spec['num_instances']
 # NOTE(timello): Returns a list of dicts with 'host', 'nodename' and
 # 'limits' as keys for compatibility with filter_scheduler.
 dests = []
 for i in range(num_instances):
 host = self._schedule(context, CONF.compute_topic,

OpenStack Ops Guide September 12, 2014

208

 request_spec, filter_properties)
 host_state = dict(host=host, nodename=None, limits=None)
 dests.append(host_state)

 if len(dests) < num_instances:
 raise exception.NoValidHost(reason='')
 return dests

 def schedule_run_instance(self, context, request_spec,
 admin_password, injected_files,
 requested_networks, is_first_time,
 filter_properties, legacy_bdm_in_spec):
 """Create and run an instance or instances."""
 instance_uuids = request_spec.get('instance_uuids')
 for num, instance_uuid in enumerate(instance_uuids):
 request_spec['instance_properties']['launch_index'] = num
 try:
 host = self._schedule(context, CONF.compute_topic,
 request_spec, filter_properties)
 updated_instance = driver.instance_update_db(context,
 instance_uuid)
 self.compute_rpcapi.run_instance(context,
 instance=updated_instance, host=host,
 requested_networks=requested_networks,
 injected_files=injected_files,
 admin_password=admin_password,
 is_first_time=is_first_time,
 request_spec=request_spec,
 filter_properties=filter_properties,
 legacy_bdm_in_spec=legacy_bdm_in_spec)
 except Exception as ex:
 # NOTE(vish): we don't reraise the exception here to make sure
 # that all instances in the request get set to
 # error properly
 driver.handle_schedule_error(context, ex, instance_uuid,
 request_spec)

There is a lot of useful information in context, request_spec,
and filter_properties that you can use to decide where to
schedule the instance. To find out more about what properties
are available, you can insert the following log statements into the
schedule_run_instance method of the scheduler above:

LOG.debug("context = %(context)s" % {'context': context.__dict__})
LOG.debug("request_spec = %(request_spec)s" % locals())
LOG.debug("filter_properties = %(filter_properties)s" % locals())

4. To plug this scheduler into nova, edit one configuration file, /etc/
nova/nova.conf:

$ vim /etc/nova/nova.conf

5. Find the scheduler_driver config and change it like so:

scheduler_driver=nova.scheduler.ip_scheduler.IPScheduler

6. Restart the nova scheduler service to make nova use your scheduler.
Start by switching to the n-sch screen:

a. Press Ctrl+A followed by 9.

OpenStack Ops Guide September 12, 2014

209

b. Press Ctrl+A followed by N until you reach the n-sch screen.

c. Press Ctrl+C to kill the service.

d. Press Up Arrow to bring up the last command.

e. Press Enter to run it.

7. Test your scheduler with the nova CLI. Start by switching to the
shell screen and finish by switching back to the n-sch screen to
check the log output:

a. Press Ctrl+A followed by 0.

b. Make sure you're in the devstack directory:

$ cd /root/devstack

c. Source openrc to set up your environment variables for the CLI:

$ source openrc

d. Put the image ID for the only installed image into an environment
variable:

$ IMAGE_ID=`nova image-list | egrep cirros | egrep -v
 "kernel|ramdisk" | awk '{print $2}'`

e. Boot a test server:

$ nova boot --flavor 1 --image $IMAGE_ID scheduler-test

8. Switch back to the n-sch screen. Among the log statements, you'll
see the line:

2014-01-23 19:57:47.262 DEBUG nova.scheduler.ip_scheduler \
[req-... demo demo] Request from 162.242.221.84 \
scheduled to devstack-havana \
_schedule /opt/stack/nova/nova/scheduler/ip_scheduler.py:76

Warning

Functional testing like this is not a replacement for proper unit
and integration testing, but it serves to get you started.

A similar pattern can be followed in other projects that use the driver ar-
chitecture. Simply create a module and class that conform to the driver in-
terface and plug it in through configuration. Your code runs when that

OpenStack Ops Guide September 12, 2014

210

feature is used and can call out to other services as necessary. No project
core code is touched. Look for a "driver" value in the project's .conf con-
figuration files in /etc/<project> to identify projects that use a driver
architecture.

When your scheduler is done, we encourage you to open source it and let
the community know on the OpenStack mailing list. Perhaps others need
the same functionality. They can use your code, provide feedback, and
possibly contribute. If enough support exists for it, perhaps you can pro-
pose that it be added to the official Compute schedulers.

Customizing the Dashboard (Horizon)
The dashboard is based on the Python Django web application frame-
work. The best guide to customizing it has already been written and can
be found at Building on Horizon.

Conclusion
When operating an OpenStack cloud, you may discover that your users can
be quite demanding. If OpenStack doesn't do what your users need, it may
be up to you to fulfill those requirements. This chapter provided you with
some options for customization and gave you the tools you need to get
started.

https://github.com/openstack/nova/tree/master/nova/scheduler
https://www.djangoproject.com/
http://docs.openstack.org/developer/horizon/topics/tutorial.html

OpenStack Ops Guide September 12, 2014

211

16. Upstream OpenStack
Getting Help .. 211
Reporting Bugs .. 212
Join the OpenStack Community ... 215
How to Contribute to the Documentation .. 216
Security Information ... 216
Finding Additional Information .. 217

OpenStack is founded on a thriving community that is a source of help and
welcomes your contributions. This chapter details some of the ways you
can interact with the others involved.

Getting Help
There are several avenues available for seeking assistance. The quickest
way is to help the community help you. Search the Q&A sites, mailing list
archives, and bug lists for issues similar to yours. If you can't find anything,
follow the directions for reporting bugs or use one of the channels for sup-
port, which are listed below.

Your first port of call should be the official OpenStack documentation,
found on http://docs.openstack.org. You can get questions answered on
http://ask.openstack.org.

Mailing lists are also a great place to get help. The wiki page has more in-
formation about the various lists. As an operator, the main lists you should
be aware of are:

General list openstack@lists.openstack.org. The
scope of this list is the current state of
OpenStack. This is a very high-traffic
mailing list, with many, many emails
per day.

Operators list open-
stack-operators@lists.openstack.org.
This list is intended for discussion
among existing OpenStack cloud oper-
ators, such as yourself. Currently, this
list is relatively low traffic, on the order
of one email a day.

http://docs.openstack.org
http://ask.openstack.org
https://wiki.openstack.org/wiki/Mailing_Lists
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-operators

OpenStack Ops Guide September 12, 2014

212

Development list openstack-dev@lists.openstack.org. The
scope of this list is the future state of
OpenStack. This is a high-traffic mailing
list, with multiple emails per day.

We recommend that you subscribe to the general list and the operator
list, although you must set up filters to manage the volume for the general
list. You'll also find links to the mailing list archives on the mailing list wiki
page, where you can search through the discussions.

Multiple IRC channels are available for general questions and devel-
oper discussions. The general discussion channel is #openstack on
irc.freenode.net.

Reporting Bugs
As an operator, you are in a very good position to report unexpected be-
havior with your cloud. Since OpenStack is flexible, you may be the only in-
dividual to report a particular issue. Every issue is important to fix, so it is
essential to learn how to easily submit a bug report.

All OpenStack projects use Launchpad for bug tracking. You'll need to cre-
ate an account on Launchpad before you can submit a bug report.

Once you have a Launchpad account, reporting a bug is as simple as iden-
tifying the project or projects that are causing the issue. Sometimes this is
more difficult than expected, but those working on the bug triage are hap-
py to help relocate issues if they are not in the right place initially:

• Report a bug in nova.

• Report a bug in python-novaclient.

• Report a bug in swift.

• Report a bug in python-swiftclient.

• Report a bug in glance.

• Report a bug in python-glanceclient.

• Report a bug in keystone.

• Report a bug in python-keystoneclient.

• Report a bug in neutron.

http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-dev
https://wiki.openstack.org/wiki/IRC
https://launchpad.net/
https://bugs.launchpad.net/nova/+filebug/+login
https://bugs.launchpad.net/python-novaclient/+filebug/+login
https://bugs.launchpad.net/swift/+filebug/+login
https://bugs.launchpad.net/python-swiftclient/+filebug/+login
https://bugs.launchpad.net/glance/+filebug/+login
https://bugs.launchpad.net/python-glanceclient/+filebug/+login
https://bugs.launchpad.net/keystone/+filebug/+login
https://bugs.launchpad.net/python-keystoneclient/+filebug/+login
https://bugs.launchpad.net/neutron/+filebug/+login

OpenStack Ops Guide September 12, 2014

213

• Report a bug in python-neutronclient.

• Report a bug in cinder.

• Report a bug in python-cinderclient.

• Report a bug in horizon.

• Report a bug with the documentation.

• Report a bug with the API documentation.

To write a good bug report, the following process is essential. First, search
for the bug to make sure there is no bug already filed for the same issue. If
you find one, be sure to click on "This bug affects X people. Does this bug
affect you?" If you can't find the issue, then enter the details of your re-
port. It should at least include:

• The release, or milestone, or commit ID corresponding to the software
that you are running

• The operating system and version where you've identified the bug

• Steps to reproduce the bug, including what went wrong

• Description of the expected results instead of what you saw

• Portions of your log files so that you include only relevant excerpts

When you do this, the bug is created with:

• Status: New

In the bug comments, you can contribute instructions on how to fix a giv-
en bug, and set it to Triaged. Or you can directly fix it: assign the bug to
yourself, set it to In progress, branch the code, implement the fix, and pro-
pose your change for merging. But let's not get ahead of ourselves; there
are bug triaging tasks as well.

Confirming and Prioritizing
This stage is about checking that a bug is real and assessing its impact.
Some of these steps require bug supervisor rights (usually limited to core
teams). If the bug lacks information to properly reproduce or assess the
importance of the bug, the bug is set to:

• Status: Incomplete

https://bugs.launchpad.net/python-neutronclient/+filebug/+login
https://bugs.launchpad.net/cinder/+filebug/+login
https://bugs.launchpad.net/python-cinderclient/+filebug/+login
https://bugs.launchpad.net/horizon/+filebug/+login
https://bugs.launchpad.net/openstack-manuals/+filebug/+login
https://bugs.launchpad.net/openstack-api-site/+filebug/+login

OpenStack Ops Guide September 12, 2014

214

Once you have reproduced the issue (or are 100 percent confident that
this is indeed a valid bug) and have permissions to do so, set:

• Status: Confirmed

Core developers also prioritize the bug, based on its impact:

• Importance: <Bug impact>

The bug impacts are categorized as follows:

OpenStack Ops Guide September 12, 2014

215

1. Critical if the bug prevents a key feature from working properly (regres-
sion) for all users (or without a simple workaround) or results in data
loss

2. High if the bug prevents a key feature from working properly for some
users (or with a workaround)

3. Medium if the bug prevents a secondary feature from working properly

4. Low if the bug is mostly cosmetic

5. Wishlist if the bug is not really a bug but rather a welcome change in be-
havior

If the bug contains the solution, or a patch, set the bug status to Triaged.

Bug Fixing
At this stage, a developer works on a fix. During that time, to avoid dupli-
cating the work, the developer should set:

• Status: In Progress

• Assignee: <yourself>

When the fix is ready, the developer proposes a change and gets the
change reviewed.

After the Change Is Accepted
After the change is reviewed, accepted, and lands in master, it automati-
cally moves to:

• Status: Fix Committed

When the fix makes it into a milestone or release branch, it automatically
moves to:

• Milestone: Milestone the bug was fixed in

• Status: Fix Released

Join the OpenStack Community
Since you've made it this far in the book, you should consider becoming
an official individual member of the community and join the OpenStack

https://www.openstack.org/join/

OpenStack Ops Guide September 12, 2014

216

Foundation. The OpenStack Foundation is an independent body providing
shared resources to help achieve the OpenStack mission by protecting, em-
powering, and promoting OpenStack software and the community around
it, including users, developers, and the entire ecosystem. We all share the
responsibility to make this community the best it can possibly be, and sign-
ing up to be a member is the first step to participating. Like the software,
individual membership within the OpenStack Foundation is free and acces-
sible to anyone.

How to Contribute to the Documentation
OpenStack documentation efforts encompass operator and administrator
docs, API docs, and user docs.

The genesis of this book was an in-person event, but now that the book is
in your hands, we want you to contribute to it. OpenStack documentation
follows the coding principles of iterative work, with bug logging, investi-
gating, and fixing.

Just like the code, http://docs.openstack.org is updated constantly us-
ing the Gerrit review system, with source stored in GitHub in the open-
stack-manuals repository and the api-site repository, in DocBook format.

To review the documentation before it's published, go to the Open-
Stack Gerrit server at http://review.openstack.org and search for
project:openstack/openstack-manuals or project:openstack/api-site.

See the How To Contribute page on the wiki for more information on
the steps you need to take to submit your first documentation review or
change.

Security Information
As a community, we take security very seriously and follow a specific pro-
cess for reporting potential issues. We vigilantly pursue fixes and regular-
ly eliminate exposures. You can report security issues you discover through
this specific process. The OpenStack Vulnerability Management Team is a
very small group of experts in vulnerability management drawn from the
OpenStack community. The team's job is facilitating the reporting of vul-
nerabilities, coordinating security fixes and handling progressive disclosure
of the vulnerability information. Specifically, the team is responsible for the
following functions:

https://www.openstack.org/join/
http://docs.openstack.org
https://github.com/openstack/openstack-manuals/
https://github.com/openstack/openstack-manuals/
https://github.com/openstack/api-site/
http://review.openstack.org
https://review.openstack.org/#/q/status:open+project:openstack/openstack-manuals,n,z
https://review.openstack.org/#/q/status:open+project:openstack/api-site,n,z
https://wiki.openstack.org/wiki/How_To_Contribute

OpenStack Ops Guide September 12, 2014

217

Vulnerability management All vulnerabilities discovered by com-
munity members (or users) can be re-
ported to the team.

Vulnerability tracking The team will curate a set of vulnera-
bility related issues in the issue tracker.
Some of these issues are private to the
team and the affected product leads,
but once remediation is in place, all vul-
nerabilities are public.

Responsible disclosure As part of our commitment to work
with the security community, the team
ensures that proper credit is given to
security researchers who responsibly re-
port issues in OpenStack.

We provide two ways to report issues to the OpenStack Vulnerability Man-
agement Team, depending on how sensitive the issue is:

• Open a bug in Launchpad and mark it as a "security bug." This makes the
bug private and accessible to only the Vulnerability Management Team.

• If the issue is extremely sensitive, send an encrypted email to one of the
team's members. Find their GPG keys at OpenStack Security.

You can find the full list of security-oriented teams you can join at Security
Teams. The vulnerability management process is fully documented at Vul-
nerability Management.

Finding Additional Information
In addition to this book, there are many other sources of information
about OpenStack. The OpenStack website is a good starting point, with-
 OpenStack Docs and OpenStack API Docs providing technical documenta-
tion about OpenStack. The OpenStack wiki contains a lot of general infor-
mation that cuts across the OpenStack projects, including a list of recom-
mended tools. Finally, there are a number of blogs aggregated at Planet
OpenStack.

http://www.openstack.org/projects/openstack-security/
https://wiki.openstack.org/wiki/SecurityTeams
https://wiki.openstack.org/wiki/SecurityTeams
https://wiki.openstack.org/wiki/VulnerabilityManagement
https://wiki.openstack.org/wiki/VulnerabilityManagement
http://www.openstack.org/
http://docs.openstack.org/
http://developer.openstack.org/
https://wiki.openstack.org/wiki/Main_Page
https://wiki.openstack.org/wiki/OperationsTools
https://wiki.openstack.org/wiki/OperationsTools
http://planet.openstack.org/
http://planet.openstack.org/

OpenStack Ops Guide September 12, 2014

219

17. Advanced Configuration
Differences Between Various Drivers .. 219
Implementing Periodic Tasks .. 219
Specific Configuration Topics .. 221

OpenStack is intended to work well across a variety of installation flavors,
from very small private clouds to large public clouds. To achieve this, the
developers add configuration options to their code that allow the behavior
of the various components to be tweaked depending on your needs. Un-
fortunately, it is not possible to cover all possible deployments with the de-
fault configuration values.

At the time of writing, OpenStack has more than 1,500 configuration op-
tions. You can see them documented at the OpenStack configuration ref-
erence guide. This chapter cannot hope to document all of these, but we
do try to introduce the important concepts so that you know where to go
digging for more information.

Differences Between Various Drivers
Many OpenStack projects implement a driver layer, and each of these
drivers will implement its own configuration options. For example, in
OpenStack Compute (nova), there are various hypervisor drivers imple-
mented—libvirt, xenserver, hyper-v, and vmware, for example. Not all of
these hypervisor drivers have the same features, and each has different
tuning requirements.

Note

The currently implemented hypervisors are listed on the Open-
Stack documentation website. You can see a matrix of the var-
ious features in OpenStack Compute (nova) hypervisor drivers
on the OpenStack wiki at the Hypervisor support matrix page.

The point we are trying to make here is that just because an option exists
doesn't mean that option is relevant to your driver choices. Normally, the
documentation notes which drivers the configuration applies to.

Implementing Periodic Tasks
Another common concept across various OpenStack projects is that of pe-
riodic tasks. Periodic tasks are much like cron jobs on traditional Unix sys-

http://docs.openstack.org/trunk/config-reference/content/config_overview.html
http://docs.openstack.org/trunk/config-reference/content/config_overview.html
http://docs.openstack.org/trunk/config-reference/content/section_compute-hypervisors.html
http://docs.openstack.org/trunk/config-reference/content/section_compute-hypervisors.html
https://wiki.openstack.org/wiki/HypervisorSupportMatrix

OpenStack Ops Guide September 12, 2014

220

tems, but they are run inside an OpenStack process. For example, when
OpenStack Compute (nova) needs to work out what images it can remove
from its local cache, it runs a periodic task to do this.

Periodic tasks are important to understand because of limitations in the
threading model that OpenStack uses. OpenStack uses cooperative thread-
ing in Python, which means that if something long and complicated is run-
ning, it will block other tasks inside that process from running unless it vol-
untarily yields execution to another cooperative thread.

A tangible example of this is the nova-compute process. In order to man-
age the image cache with libvirt, nova-compute has a periodic process
that scans the contents of the image cache. Part of this scan is calculating a
checksum for each of the images and making sure that checksum matches
what nova-compute expects it to be. However, images can be very large,
and these checksums can take a long time to generate. At one point, be-
fore it was reported as a bug and fixed, nova-compute would block on
this task and stop responding to RPC requests. This was visible to users as
failure of operations such as spawning or deleting instances.

The take away from this is if you observe an OpenStack process that ap-
pears to "stop" for a while and then continue to process normally, you
should check that periodic tasks aren't the problem. One way to do this is
to disable the periodic tasks by setting their interval to zero. Additional-
ly, you can configure how often these periodic tasks run—in some cases, it
might make sense to run them at a different frequency from the default.

The frequency is defined separately for each periodic task. Therefore, to
disable every periodic task in OpenStack Compute (nova), you would need
to set a number of configuration options to zero. The current list of config-
uration options you would need to set to zero are:

• bandwidth_poll_interval

• sync_power_state_interval

• heal_instance_info_cache_interval

• host_state_interval

• image_cache_manager_interval

• reclaim_instance_interval

• volume_usage_poll_interval

OpenStack Ops Guide September 12, 2014

221

• shelved_poll_interval

• shelved_offload_time

• instance_delete_interval

To set a configuration option to zero, include a line such as
image_cache_manager_interval=0 in your nova.conf file.

This list will change between releases, so please refer to your configuration
guide for up-to-date information.

Specific Configuration Topics
This section covers specific examples of configuration options you might
consider tuning. It is by no means an exhaustive list.

Security Configuration for Compute, Networking,
and Storage

The OpenStack Security Guide provides a deep dive into securing an Open-
Stack cloud, including SSL/TLS, key management, PKI and certificate man-
agement, data transport and privacy concerns, and compliance.

High Availability

The OpenStack High Availability Guide offers suggestions for elimination
of a single point of failure that could cause system downtime. While it is
not a completely prescriptive document, it offers methods and techniques
for avoiding downtime and data loss.

Enabling IPv6 Support

The Havana release with OpenStack Networking (neutron) does not offer
complete support of IPv6. Better support is planned for the Icehouse re-
lease. You can follow along the progress being made by watching the neu-
tron IPv6 Subteam at work.

By modifying your configuration setup, you can set up IPv6 when using
nova-network for networking, and a tested setup is documented for
FlatDHCP and a multi-host configuration. The key is to make nova-net-
work think a radvd command ran successfully. The entire configuration is
detailed in a Cybera blog post, “An IPv6 enabled cloud”.

http://docs.openstack.org/sec/
http://docs.openstack.org/high-availability-guide/content/
https://wiki.openstack.org/wiki/Meetings/Neutron-IPv6-Subteam
https://wiki.openstack.org/wiki/Meetings/Neutron-IPv6-Subteam
http://www.cybera.ca/news-and-events/tech-radar/an-ipv6-enabled-cloud/

OpenStack Ops Guide September 12, 2014

222

Periodic Task Frequency for Compute

Before the Grizzly release, the frequency of periodic tasks was specified in
seconds between runs. This meant that if the periodic task took 30 min-
utes to run and the frequency was set to hourly, then the periodic task
actually ran every 90 minutes, because the task would wait an hour after
running before running again. This changed in Grizzly, and we now time
the frequency of periodic tasks from the start of the work the task does.
So, our 30 minute periodic task will run every hour, with a 30 minute wait
between the end of the first run and the start of the next.

Geographical Considerations for Object Storage

Enhanced support for global clustering of object storage servers contin-
ues to be added since the Grizzly (1.8.0) release, when regions were in-
troduced. You would implement these global clusters to ensure replica-
tion across geographic areas in case of a natural disaster and also to en-
sure that users can write or access their objects more quickly based on the
closest data center. You configure a default region with one zone for each
cluster, but be sure your network (WAN) can handle the additional request
and response load between zones as you add more zones and build a ring
that handles more zones. Refer to Geographically Distributed Clusters in
the documentation for additional information.

http://docs.openstack.org/developer/swift/admin_guide.html#geographically-distributed-clusters

OpenStack Ops Guide September 12, 2014

223

18. Upgrades
Pre-Upgrade Testing Environment .. 223
Preparing for a Rollback ... 225
Upgrades ... 226
Upgrade Levels .. 227
How to Perform an Upgrade from Grizzly to Havana—Ubuntu 228
How to Perform an Upgrade from Grizzly to Havana—Red Hat Enter-
prise Linux and Derivatives ... 235
How to Perform an Upgrade from Havana to Icehouse—Ubuntu 242
How to Perform an Upgrade from Havana to Icehouse—Red Hat En-
terprise Linux and Derivatives ... 252
Cleaning Up and Final Configuration File Updates 262
Rolling Back a Failed Upgrade .. 263

With the exception of Object Storage, upgrading from one version of
OpenStack to another can take a great deal of effort. Until the situation
improves, this chapter provides some guidance on the operational aspects
that you should consider for performing an upgrade based on detailed
steps for a basic architecture.

Pre-Upgrade Testing Environment
The most important step is the pre-upgrade testing. If you are upgrading
immediately after release of a new version, undiscovered bugs might hin-
der your progress. Some deployers prefer to wait until the first point re-
lease is announced. However, if you have a significant deployment, you
might follow the development and testing of the release to ensure that
bugs for your use cases are fixed.

Even if you have what seems to be a near-identical architecture as the one
described in this guide, each OpenStack cloud is different. As a result, you
must still test upgrades between versions in your environment. For this,
you need an approximate clone of your environment.

However, that is not to say that it needs to be the same size or use iden-
tical hardware as the production environment—few of us have that luxu-
ry. It is important to consider the hardware and scale of the cloud that you
are upgrading, but these tips can help you avoid that incredible cost:

Use your own cloud The simplest place to start testing the
next version of OpenStack is by setting
up a new environment inside your own

OpenStack Ops Guide September 12, 2014

224

cloud. This might seem odd—especial-
ly the double virtualization used in run-
ning compute nodes—but it's a sure
way to very quickly test your configura-
tion.

Use a public cloud Especially because your own cloud is
unlikely to have sufficient space to
scale test to the level of the entire
cloud, consider using a public cloud to
test the scalability limits of your cloud
controller configuration. Most public
clouds bill by the hour, which means it
can be inexpensive to perform even a
test with many nodes.

Make another storage endpoint
on the same system

If you use an external storage plug-in
or shared file system with your cloud,
in many cases, you can test whether
it works by creating a second share or
endpoint. This action enables you to
test the system before entrusting the
new version onto your storage.

Watch the network Even at smaller-scale testing, look for
excess network packets to determine
whether something is going horribly
wrong in inter-component communica-
tion.

To set up the test environment, you can use one of several methods:

• Do a full manual install by using the OpenStack Installation Guide for
your platform. Review the final configuration files and installed pack-
ages.

• Create a clone of your automated configuration infrastructure with
changed package repository URLs.

Alter the configuration until it works.

Either approach is valid. Use the approach that matches your experience.

An upgrade pre-testing system is excellent for getting the configuration to
work; however, it is important to note that the historical use of the system

http://docs.openstack.org/

OpenStack Ops Guide September 12, 2014

225

and differences in user interaction can affect the success of upgrades, too.
We've seen experiences where database migrations encountered a bug
(later fixed!) because of slight table differences between fresh Grizzly in-
stalls and those that migrated from Folsom to Grizzly.

Artificial scale testing can go only so far. After your cloud is upgraded, you
must pay careful attention to the performance aspects of your cloud.

Preparing for a Rollback
Like all major system upgrades, your upgrade could fail for one or more
difficult-to-determine reasons. You should prepare for this situation by
leaving the ability to roll back your environment to the previous release, in-
cluding databases, configuration files, and packages. We provide an exam-
ple process for rolling back your environment in the section called “Rolling
Back a Failed Upgrade” [263].

OpenStack Ops Guide September 12, 2014

226

Upgrades
The upgrade process generally follows these steps:

1. Perform some "cleaning" of the environment prior to starting the up-
grade process to ensure a consistent state. For example, instances not
fully purged from the system after deletion might cause indeterminate
behavior.

2. Read the release notes and documentation.

3. Find incompatibilities between your versions.

4. Develop an upgrade procedure and assess it thoroughly by using a test
environment similar to your production environment.

5. Run the upgrade procedure on the production environment.

You can perform an upgrade with operational instances, but this strategy
can be dangerous. You might consider using live migration to temporari-
ly relocate instances to other compute nodes while performing upgrades.
However, you must ensure database consistency throughout the process;
otherwise your environment might become unstable. Also, don't forget to
provide sufficient notice to your users, including giving them plenty of time
to perform their own backups.

The following order for service upgrades seems the most successful:

1. Upgrade the OpenStack Identity Service (keystone).

2. Upgrade the OpenStack Image Service (glance).

3. Upgrade OpenStack Compute (nova), including networking compo-
nents.

4. Upgrade OpenStack Block Storage (cinder).

5. Upgrade the OpenStack dashboard.

The general upgrade process includes the following steps:

1. Create a backup of configuration files and databases.

2. Update the configuration files according to the release notes.

OpenStack Ops Guide September 12, 2014

227

3. Upgrade the packages by using your distribution's package manager.

4. Stop services, update database schemas, and restart services.

5. Verify proper operation of your environment.

Upgrade Levels
Upgrade levels are a feature added to OpenStack Compute in the Grizzly
release to provide version locking on the RPC (Message Queue) communi-
cations between the various Compute services.

This functionality is an important piece of the puzzle when it comes to live
upgrades and is conceptually similar to the existing API versioning that al-
lows OpenStack services of different versions to communicate without is-
sue, for example Grizzly Compute can still make Grizzly Identity API calls
even if Identity is running Icehouse.

Without upgrade levels, an X+1 version Compute service can receive and
understand X version RPC messages, but it can only send out X+1 version
RPC messages. For example, if a nova-conductor process has been up-
graded to Icehouse, then the conductor service will be able to understand
messages from Havana nova-compute processes, but those compute ser-
vices will not be able to understand messages sent by the conductor ser-
vice.

During an upgrade, operators can add configuration options to
nova.conf which lock the version of RPC messages and allow live upgrad-
ing of the services without interruption caused by version mismatch. The
configuration options allow the specification of RPC version numbers if de-
sired, but release name alias are also supported. For example:

[upgrade_levels]
compute=havana
conductor=havana
scheduler=havana

will keep the RPC version locked across the specified services to the RPC
version used in Havana. As all instances of a particular service are upgrad-
ed to the newer version, the corresponding line can be removed from
nova.conf.

Using this functionality, ideally one would lock the RPC version to the
OpenStack version being upgraded from on nova-compute nodes, to en-
sure that, for example Havana nova-compute processes will continue to

OpenStack Ops Guide September 12, 2014

228

work with Grizzly nova-conductor processes while the upgrade com-
pletes. Once the upgrade of nova-compute processes is complete, the
operator can move onto upgrading nova-conductor and remove the
version locking for nova-compute in nova.conf.

How to Perform an Upgrade from Grizzly
to Havana—Ubuntu

For this section, we assume that you are starting with the architecture pro-
vided in the OpenStack OpenStack Installation Guide and upgrading to the
same architecture for Havana. All nodes should run Ubuntu 12.04 LTS. This
section primarily addresses upgrading core OpenStack services, such as the
Identity Service (keystone), Image Service (glance), Compute (nova) includ-
ing networking, Block Storage (cinder), and the dashboard.

Impact on Users

The upgrade process interrupts management of your environment, includ-
ing the dashboard. If you properly prepare for this upgrade, tenant in-
stances continue to operate normally.

Upgrade Considerations

Always review the release notes before performing an upgrade to learn
about newly available features that you might want to enable and depre-
cated features that you should disable.

Perform a Backup

Save the configuration files on all nodes, as shown here:

for i in keystone glance nova cinder openstack-dashboard; \
 do mkdir $i-grizzly; \
 done
for i in keystone glance nova cinder openstack-dashboard; \
 do cp -r /etc/$i/* $i-grizzly/; \
 done

Note

You can modify this example script on each node to handle dif-
ferent services.

http://docs.openstack.org/havana/install-guide/install/apt/content/
https://wiki.openstack.org/wiki/ReleaseNotes/Havana

OpenStack Ops Guide September 12, 2014

229

Back up all databases on the controller:

mysqldump -u root -p --opt --add-drop-database \
--all-databases > grizzly-db-backup.sql

Manage Repositories

On all nodes, remove the repository for Grizzly packages and add the
repository for Havana packages:

apt-add-repository -r cloud-archive:grizzly
apt-add-repository cloud-archive:havana

Warning

Make sure any automatic updates are disabled.

Update Configuration Files

Update the glance configuration on the controller node for compatibility
with Havana.

Add or modify the following keys in the /etc/glance/glance-
api.conf and /etc/glance/glance-registry.conf files:

[keystone_authtoken]
auth_uri = http://controller:5000
auth_host = controller
admin_tenant_name = service
admin_user = glance
admin_password = GLANCE_PASS

[paste_deploy]
flavor = keystone

If currently present, remove the following key from the
[filter:authtoken] section in the /etc/glance/glance-api-
paste.ini and /etc/glance/glance-registry-paste.ini files:

[filter:authtoken]
flavor = keystone

Update the nova configuration on all nodes for compatibility with Havana.

Add the [database] section and associated key to the /etc/no-
va/nova.conf file:

OpenStack Ops Guide September 12, 2014

230

[database]
connection = mysql://nova:NOVA_DBPASS@controller/nova

Remove defunct configuration from the [DEFAULT] section in the /etc/
nova/nova.conf file:

[DEFAULT]
sql_connection = mysql://nova:NOVA_DBPASS@controller/nova

Add or modify the following keys in the /etc/nova/nova.conf file:

[keystone_authtoken]
auth_uri = http://controller:5000/v2.0
auth_host = controller
auth_port = 35357
auth_protocol = http
admin_tenant_name = service
admin_user = nova
admin_password = NOVA_PASS

On all compute nodes, increase the DHCP lease time (measured in seconds)
in the /etc/nova/nova.conf file to enable currently active instances to
continue leasing their IP addresses during the upgrade process:

[DEFAULT]
dhcp_lease_time = 86400

Warning

Setting this value too high might cause more dynamic environ-
ments to run out of available IP addresses. Use an appropriate
value for your environment.

You must restart dnsmasq and the networking component of Compute to
enable the new DHCP lease time:

pkill -9 dnsmasq
service nova-network restart

Update the Cinder configuration on the controller and storage nodes for
compatibility with Havana.

Add or modify the following key in the /etc/cinder/cinder.conf
file:

[keystone_authtoken]
auth_uri = http://controller:5000

Update the dashboard configuration on the controller node for compati-
bility with Havana.

OpenStack Ops Guide September 12, 2014

231

The dashboard installation procedure and configuration file changed
substantially between Grizzly and Havana. Particularly, if you are
running Django 1.5 or later, you must ensure that /etc/open-
stack-dashboard/local_settings contains a correctly configured
ALLOWED_HOSTS key that contains a list of host names recognized by the
dashboard.

If users access your dashboard by using http://dashboard.example.com, de-
fine ALLOWED_HOSTS, as follows:

ALLOWED_HOSTS=['dashboard.example.com']

If users access your dashboard on the local system, define
ALLOWED_HOSTS, as follows:

ALLOWED_HOSTS=['localhost']

If users access your dashboard by using an IP address in addition to a host
name, define ALLOWED_HOSTS, as follows:

ALLOWED_HOSTS=['dashboard.example.com', '192.168.122.200']

Upgrade Packages on the Controller Node

Upgrade packages on the controller node to Havana, as follows:

apt-get update
apt-get dist-upgrade

Note

Depending on your specific configuration, performing a dist-
upgrade might restart services supplemental to your Open-
Stack environment. For example, if you use Open-iSCSI for
Block Storage volumes and the upgrade includes a new open-
scsi package, the package manager restarts Open-iSCSI ser-
vices, which might cause the volumes for your users to be dis-
connected.

The package manager prompts you to update various configuration files.
Reject these changes. The package manager appends .dpkg-dist to the
newer versions of existing configuration files. You should consider adopt-
ing conventions associated with the newer configuration files and merging
them with your existing configuration files after completing the upgrade
process.

OpenStack Ops Guide September 12, 2014

232

Stop Services, Update Database Schemas, and
Restart Services on the Controller Node

Stop each service, run the database synchronization command if necessary
to update the associated database schema, and restart each service to ap-
ply the new configuration. Some services require additional commands:

OpenStack Identity # service keystone stop
keystone-manage token_flush
keystone-manage db_sync
service keystone start

OpenStack Image Service # service glance-api stop
service glance-registry stop
glance-manage db_sync
service glance-api start
service glance-registry start

OpenStack Compute # service nova-api stop
service nova-scheduler stop
service nova-conductor stop
service nova-cert stop
service nova-consoleauth stop
service nova-novncproxy stop
nova-manage db sync
service nova-api start
service nova-scheduler start
service nova-conductor start
service nova-cert start
service nova-consoleauth start
service nova-novncproxy start

OpenStack Block Storage # service cinder-api stop
service cinder-scheduler stop
cinder-manage db sync
service cinder-api start
service cinder-scheduler start

The controller node update is complete. Now you can upgrade the com-
pute nodes.

Upgrade Packages and Restart Services on the
Compute Nodes

Upgrade packages on the compute nodes to Havana:

apt-get update
apt-get dist-upgrade

OpenStack Ops Guide September 12, 2014

233

Note

Make sure you have removed the repository for Grizzly pack-
ages and added the repository for Havana packages.

Warning

Due to a packaging issue, this command might fail with the fol-
lowing error:

Errors were encountered while processing:
 /var/cache/apt/archives/
 qemu-utils_1.5.0+dfsg-3ubuntu5~cloud0_amd64.deb
 /var/cache/apt/archives/
 qemu-system-common_1.5.0+dfsg-3ubuntu5~cloud0_
 amd64.deb
 E: Sub-process /usr/bin/dpkg
 returned an error code (1)

Fix this issue by running this command:

apt-get -f install

The packaging system prompts you to update the /etc/nova/api-
paste.ini file. As with the controller upgrade, we recommend that you
reject these changes and review the .dpkg-dist file after the upgrade
process completes.

To restart compute services:

service nova-compute restart
service nova-network restart
service nova-api-metadata restart

Upgrade Packages and Restart Services on the
Block Storage Nodes

Upgrade packages on the storage nodes to Havana:

apt-get update
apt-get dist-upgrade

Note

Make sure you have removed the repository for Grizzly pack-
ages and added the repository for Havana packages.

OpenStack Ops Guide September 12, 2014

234

The packaging system prompts you to update the /etc/cinder/api-
paste.ini file. Like the controller upgrade, reject these changes and re-
view the .dpkg-dist file after the the upgrade process completes.

OpenStack Ops Guide September 12, 2014

235

To restart Block Storage services:

service cinder-volume restart

How to Perform an Upgrade from Grizzly
to Havana—Red Hat Enterprise Linux and
Derivatives

For this section, we assume that you are starting with the architecture pro-
vided in the OpenStack OpenStack Installation Guide and upgrading to the
same architecture for Havana. All nodes should run Red Hat Enterprise Lin-
ux 6.4 or compatible derivatives. Newer minor releases should also work.
This section primarily addresses upgrading core OpenStack services, such as
the Identity Service (keystone), Image Service (glance), Compute (nova) in-
cluding networking, Block Storage (cinder), and the dashboard.

Impact on Users
The upgrade process interrupts management of your environment, includ-
ing the dashboard. If you properly prepare for this upgrade, tenant in-
stances continue to operate normally.

Upgrade Considerations
Always review the release notes before performing an upgrade to learn
about newly available features that you might want to enable and depre-
cated features that you should disable.

Perform a Backup
First, save the configuration files on all nodes:

for i in keystone glance nova cinder openstack-dashboard; \
 do mkdir $i-grizzly; \
 done
for i in keystone glance nova cinder openstack-dashboard; \
 do cp -r /etc/$i/* $i-grizzly/; \
 done

Note

You can modify this example script on each node to handle dif-
ferent services.

http://docs.openstack.org/havana/install-guide/install/yum/content/
https://wiki.openstack.org/wiki/ReleaseNotes/Havana

OpenStack Ops Guide September 12, 2014

236

Next, back up all databases on the controller:

mysqldump -u root -p --opt --add-drop-database \
 --all-databases > grizzly-db-backup.sql

Manage Repositories

On all nodes, remove the repository for Grizzly packages and add the
repository for Havana packages:

yum erase rdo-release-grizzly
yum install http://repos.fedorapeople.org/repos/openstack/
openstack-havana/ \
 rdo-release-havana-7.noarch.rpm

Warning

Make sure any automatic updates are disabled.

Note

Consider checking for newer versions of the Havana repository.

Update Configuration Files

Update the glance configuration on the controller node for compatibility
with Havana.

Add or modify the following keys in the /etc/glance/glance-
api.conf and /etc/glance/glance-registry.conf files:

openstack-config --set /etc/glance/glance-api.conf
 keystone_authtoken \
 auth_uri http://controller:5000
openstack-config --set /etc/glance/glance-api.conf
 keystone_authtoken \
 auth_host controller
openstack-config --set /etc/glance/glance-api.conf
 keystone_authtoken \
 admin_tenant_name service
openstack-config --set /etc/glance/glance-api.conf
 keystone_authtoken \
 admin_user glance
openstack-config --set /etc/glance/glance-api.conf
 keystone_authtoken \
 admin_password GLANCE_PASS
openstack-config --set /etc/glance/glance-api.conf
 paste_deploy \

https://repos.fedorapeople.org/repos/openstack/openstack-havana/

OpenStack Ops Guide September 12, 2014

237

 flavor keystone

openstack-config --set /etc/glance/glance-registry.conf
 keystone_authtoken \
 auth_uri http://controller:5000
openstack-config --set /etc/glance/glance-registry.conf
 keystone_authtoken \
 auth_host controller
openstack-config --set /etc/glance/glance-registry.conf
 keystone_authtoken \
 admin_tenant_name service
openstack-config --set /etc/glance/glance-registry.conf
 keystone_authtoken \
 admin_user glance
openstack-config --set /etc/glance/glance-registry.conf
 keystone_authtoken \
 admin_password GLANCE_PASS
openstack-config --set /etc/glance/glance-registry.conf
 paste_deploy \
 flavor keystone

If currently present, remove the following key from the [filter:authtoken]
section in the /etc/glance/glance-api-paste.ini and /etc/
glance/glance-registry-paste.ini files:

[filter:authtoken]
flavor = keystone

Update the nova configuration on all nodes for compatibility with Havana.

Add the [database] section and associated key to the /etc/no-
va/nova.conf file:

openstack-config --set /etc/nova/nova.conf database \
 connection mysql://nova:NOVA_DBPASS@controller/nova

Remove defunct database configuration from the /etc/no-
va/nova.conf file:

openstack-config --del /etc/nova/nova.conf DEFAULT
 sql_connection

Add or modify the following keys in the /etc/nova/nova.conf file:

openstack-config --set /etc/nova/nova.conf keystone_authtoken
 \
 auth_uri http://controller:5000/v2.0
openstack-config --set /etc/nova/nova.conf keystone_authtoken
 \
 auth_host controller

OpenStack Ops Guide September 12, 2014

238

openstack-config --set /etc/nova/nova.conf keystone_authtoken
 \
 admin_tenant_name service
openstack-config --set /etc/nova/nova.conf keystone_authtoken
 \
 admin_user nova
openstack-config --set /etc/nova/nova.conf keystone_authtoken
 \
 admin_password NOVA_PASS

On all compute nodes, increase the DHCP lease time (measured in seconds)
in the /etc/nova/nova.conf file to enable currently active instances to
continue leasing their IP addresses during the upgrade process, as follows:

openstack-config --set /etc/nova/nova.conf DEFAULT \
 dhcp_lease_time 86400

Warning

Setting this value too high might cause more dynamic environ-
ments to run out of available IP addresses. Use an appropriate
value for your environment.

OpenStack Ops Guide September 12, 2014

239

You must restart dnsmasq and the nova networking service to enable the
new DHCP lease time:

pkill -9 dnsmasq
service openstack-nova-network restart

Update the cinder configuration on the controller and storage nodes for
compatibility with Havana.

Add the [database] section and associated key to the /etc/cin-
der/cinder.conf file:

openstack-config --set /etc/cinder/cinder.conf database \
 connection mysql://cinder:CINDER_DBPASS@controller/cinder

Remove defunct database configuration from the /etc/cin-
der/cinder.conf file:

openstack-config --del /etc/cinder/cinder.conf DEFAULT
 sql_connection

Add or modify the following key in the /etc/cinder/cinder.conf
file:

openstack-config --set /etc/cinder/cinder.conf
 keystone_authtoken \
 auth_uri http://controller:5000

Update the dashboard configuration on the controller node for compati-
bility with Havana.

The dashboard installation procedure and configuration file changed
substantially between Grizzly and Havana. Particularly, if you are run-
ning Django 1.5 or later, you must ensure that the /etc/open-
stack-dashboard/local_settings file contains a correctly config-
ured ALLOWED_HOSTS key that contains a list of host names recognized
by the dashboard.

If users access your dashboard by using http://dashboard.example.com, de-
fine ALLOWED_HOSTS, as follows:

ALLOWED_HOSTS=['dashboard.example.com']

If users access your dashboard on the local system, define
ALLOWED_HOSTS, as follows:

ALLOWED_HOSTS=['localhost']

If users access your dashboard by using an IP address in addition to a host
name, define ALLOWED_HOSTS, as follows:

OpenStack Ops Guide September 12, 2014

240

ALLOWED_HOSTS=['dashboard.example.com', '192.168.122.200']

Upgrade Packages on the Controller Node
Upgrade packages on the controller node to Havana:

yum upgrade

Note

Some services might terminate with an error during the pack-
age upgrade process. If this error might cause a problem with
your environment, consider stopping all services before up-
grading them to Havana.

Install the OpenStack SELinux package on the controller node:

yum install openstack-selinux

Note

The package manager appends .rpmnew to the end of new-
er versions of existing configuration files. You should consider
adopting conventions associated with the newer configuration
files and merging them with your existing configuration files
after completing the upgrade process.

Stop Services, Update Database Schemas, and
Restart Services on the Controller Node

Stop each service, run the database synchronization command if necessary
to update the associated database schema, and restart each service to ap-
ply the new configuration. Some services require additional commands:

OpenStack Identity # service openstack-keystone stop
keystone-manage token_flush
keystone-manage db_sync
service openstack-keystone start

OpenStack Image Service # service openstack-glance-api stop
service openstack-glance-registry
 stop
glance-manage db_sync
service openstack-glance-api
 start
service openstack-glance-registry
 start

OpenStack Ops Guide September 12, 2014

241

OpenStack Compute # service openstack-nova-api stop
service openstack-nova-scheduler
 stop
service openstack-nova-conductor
 stop
service openstack-nova-cert stop
service openstack-nova-
consoleauth stop
service openstack-nova-novncproxy
 stop
nova-manage db sync
service openstack-nova-api start
service openstack-nova-scheduler
 start
service openstack-nova-conductor
 start
service openstack-nova-cert start
service openstack-nova-
consoleauth start
service openstack-nova-novncproxy
 start

OpenStack Block Storage # service openstack-cinder-api stop
service openstack-cinder-
scheduler stop
cinder-manage db sync
service openstack-cinder-api
 start
service openstack-cinder-
scheduler start

The controller node update is complete. Now you can upgrade the com-
pute nodes.

Upgrade Packages and Restart Services on the
Compute Nodes

Upgrade packages on the compute nodes to Havana:

yum upgrade

Note

Make sure you have removed the repository for Grizzly pack-
ages and added the repository for Havana packages.

Install the OpenStack SELinux package on the compute nodes:

yum install openstack-selinux

OpenStack Ops Guide September 12, 2014

242

Restart compute services:

service openstack-nova-compute restart
service openstack-nova-network restart
service openstack-nova-metadata-api restart

Upgrade Packages and Restart Services on the
Block Storage Nodes

Upgrade packages on the storage nodes to Havana:

yum upgrade

Note

Make sure you have removed the repository for Grizzly pack-
ages and added the repository for Havana packages.

Install the OpenStack SELinux package on the storage nodes:

yum install openstack-selinux

Restart Block Storage services:

service openstack-cinder-volume restart

How to Perform an Upgrade from Havana
to Icehouse—Ubuntu

For this section, we assume that you are starting with the architecture pro-
vided in the OpenStack Installation Guide and upgrading to the same ar-
chitecture for Icehouse. All nodes should run Ubuntu 12.04 LTS with Lin-
ux kernel 3.11 and the latest Havana packages installed and operational.
This section primarily addresses upgrading core OpenStack services such
as Identity (keystone), Image Service (glance), Compute (nova), Network-
ing (neutron), Block Storage (cinder), and the dashboard. The Networking
upgrade includes conversion from the Open vSwitch (OVS) plug-in to the
Modular Layer 2 (M2) plug-in. This section does not cover the upgrade pro-
cess from Ubuntu 12.04 LTS to Ubuntu 14.04 LTS.

Impact on Users
The upgrade process interrupts management of your environment, includ-
ing the dashboard. If you properly prepare for this upgrade, tenant in-

http://docs.openstack.org/havana/install-guide/install/apt/content/

OpenStack Ops Guide September 12, 2014

243

stances continue to operate normally. However, instances might experi-
ence intermittent network interruptions while the Networking service re-
builds virtual networking infrastructure.

Upgrade Considerations

Always review the Icehouse Release Notes before you upgrade to learn
about newly available features that you might want to enable and depre-
cated features that you should disable.

Perform a Backup

Save the configuration files on all nodes:

for i in keystone glance nova cinder neutron openstack-
dashboard; \
 do mkdir $i-havana; \
 done
for i in keystone glance nova cinder neutron openstack-
dashboard; \
 do cp -r /etc/$i/* $i-havana/; \
 done

Note

You can modify this example script on each node to handle dif-
ferent services.

Back up all databases on the controller:

mysqldump -u root -p --opt --add-drop-database --all-databases
 > havana-db-backup.sql

Note

Although not necessary, you should consider updating your
MySQL server configuration as described in the MySQL con-
troller setup section of the OpenStack Installation Guide.

Manage Repositories

On all nodes, remove the repository for Havana packages and add the
repository for Icehouse packages:

apt-add-repository -r cloud-archive:havana
apt-add-repository cloud-archive:icehouse

https://wiki.openstack.org/wiki/ReleaseNotes/Icehouse
http://docs.openstack.org/icehouse/install-guide/install/apt/content/basics-database-controller.html
http://docs.openstack.org/icehouse/install-guide/install/apt/content/basics-database-controller.html
http://docs.openstack.org/icehouse/install-guide/install/apt/content/

OpenStack Ops Guide September 12, 2014

244

Warning

Disable any automatic package updates.

Upgrade Notes

• Disable Compute file injection:

Icehouse disables file injection by default per the Icehouse Release
Notes.

If you plan to deploy Icehouse in stages, you must disable file injection
on all compute nodes that remain on Havana.

Edit the /etc/nova/nova-compute.conf file:

[libvirt]
...
libvirt_inject_partition = -2

• Convert from the OVS plug-in to the ML2 plug-in:

You must convert the configuration for your environment contained
in the /etc/neutron/neutron.conf and /etc/neutron/plug-
ins/openvswitch/ovs_neutron_plugin.ini files from OVS to
ML2. For example, the OpenStack Installation Guide covers ML2 plug-in
configuration using GRE tunnels.

Keep the OVS plug-in packages and configuration files until you verify
the upgrade.

Upgrade the Controller Node

Upgrade packages on the controller node to Icehouse, as follows:

apt-get update
apt-get dist-upgrade

Note

Depending on your specific configuration, performing a dist-
upgrade might restart services supplemental to your Open-
Stack environment. For example, if you use Open-iSCSI for
Block Storage volumes and the upgrade includes a new open-
scsi package, the package manager restarts Open-iSCSI ser-

https://help.ubuntu.com/12.04/serverguide/automatic-updates.html
https://wiki.openstack.org/wiki/ReleaseNotes/Icehouse
https://wiki.openstack.org/wiki/ReleaseNotes/Icehouse
http://docs.openstack.org/icehouse/install-guide/install/apt/content/
http://docs.openstack.org/icehouse/install-guide/install/apt/content/section_neutron-networking-ml2.html
http://docs.openstack.org/icehouse/install-guide/install/apt/content/section_neutron-networking-ml2.html

OpenStack Ops Guide September 12, 2014

245

vices, which might cause the volumes for your users to be dis-
connected.

The package manager prompts you to update various configuration files.
Reject these changes. The package manager appends .dpkg-dist to the
newer versions of existing configuration files. You should consider adopt-
ing conventions associated with the newer configuration files and merging
them with your existing configuration files after completing the upgrade
process. You can find newer versions of existing configuration files with
the following command:

find /etc -name *.dpkg-dist

Upgrade Each Service
The upgrade procedure for each service typically requires that you stop the
service, run the database synchronization command to update the associ-
ated database, and start the service to apply the new configuration. You
need administrator privileges for these procedures. Some services require
additional steps.

• OpenStack Identity:

Update the configuration file for compatibility with Icehouse.

Edit the /etc/keystone/keystone.conf file:

Add the [database] section.

Move the connection key from the [sql] section to the
[database] section.

Stop services, upgrade the database, and start services.

service keystone stop
keystone-manage token_flush
keystone-manage db_sync
service keystone start

• OpenStack Image Service:

Before upgrading the Image Service database, you must convert the
character set for each table to UTF-8.

Use the MySQL client to execute the following commands:

mysql -u root -p
mysql> SET foreign_key_checks = 0;

OpenStack Ops Guide September 12, 2014

246

mysql> ALTER TABLE glance.image_locations CONVERT TO CHARACTER
 SET 'utf8';
mysql> ALTER TABLE glance.image_members CONVERT TO CHARACTER
 SET 'utf8';
mysql> ALTER TABLE glance.image_properties CONVERT TO
 CHARACTER SET 'utf8';
mysql> ALTER TABLE glance.image_tags CONVERT TO CHARACTER SET
 'utf8';
mysql> ALTER TABLE glance.images CONVERT TO CHARACTER SET
 'utf8';
mysql> ALTER TABLE glance.migrate_version CONVERT TO CHARACTER
 SET 'utf8';
mysql> SET foreign_key_checks = 1;
mysql> exit

Note

Your environment might contain different or additional ta-
bles that you must also convert to UTF-8 by using similar
commands.

Update the configuration for compatibility with Icehouse.

Edit the /etc/glance/glance-api.conf and /etc/glance/
glance-registry.conf files:

Add the [database] section.

Rename the sql_connection key to connection and move it to the
[database] section.

Edit the /etc/glance/glance-api.conf file:

Add RabbitMQ message broker keys to the [DEFAULT] section.

Replace RABBIT_PASS with the password you chose for the guest ac-
count in RabbitMQ.

[DEFAULT]
...
rpc_backend = rabbit
rabbit_host = controller
rabbit_password = RABBIT_PASS

Stop services, upgrade the database, and start services:

service glance-api stop
service glance-registry stop
glance-manage db_sync

OpenStack Ops Guide September 12, 2014

247

service glance-api start
service glance-registry start

• OpenStack Compute:

Update the configuration for compatibility with Icehouse.

Edit the /etc/nova/nova.conf file:

Change the rpc_backend key from nova.rpc.impl_kombu to rab-
bit.

Edit the /etc/nova/api-paste.ini file:

Comment out or remove any keys in the [filter:authtoken]
section beneath the paste.filter_factory =
keystoneclient.middleware.auth_token:filter_factory
statement.

Stop services, upgrade the database, and start services.

service nova-api stop
service nova-scheduler stop
service nova-conductor stop
service nova-cert stop
service nova-consoleauth stop
service nova-novncproxy stop
nova-manage db sync
service nova-api start
service nova-scheduler start
service nova-conductor start
service nova-cert start
service nova-consoleauth start
service nova-novncproxy start

• OpenStack Networking:

Before upgrading the Networking database, you must convert the char-
acter set for each table to UTF-8.

Use the MySQL client to execute the following commands:

mysql -u root -p
mysql> USE neutron;
mysql> SET foreign_key_checks = 0;
mysql> ALTER TABLE agents CONVERT TO CHARACTER SET 'utf8';
mysql> ALTER TABLE alembic_version CONVERT TO CHARACTER SET
 'utf8';

OpenStack Ops Guide September 12, 2014

248

mysql> ALTER TABLE allowedaddresspairs CONVERT TO CHARACTER
 SET 'utf8';
mysql> ALTER TABLE dnsnameservers CONVERT TO CHARACTER SET
 'utf8';
mysql> ALTER TABLE externalnetworks CONVERT TO CHARACTER SET
 'utf8';
mysql> ALTER TABLE extradhcpopts CONVERT TO CHARACTER SET
 'utf8';
mysql> ALTER TABLE floatingips CONVERT TO CHARACTER SET
 'utf8';
mysql> ALTER TABLE ipallocationpools CONVERT TO CHARACTER SET
 'utf8';
mysql> ALTER TABLE ipallocations CONVERT TO CHARACTER SET
 'utf8';
mysql> ALTER TABLE ipavailabilityranges CONVERT TO CHARACTER
 SET 'utf8';
mysql> ALTER TABLE networkdhcpagentbindings CONVERT TO
 CHARACTER SET 'utf8';
mysql> ALTER TABLE networks CONVERT TO CHARACTER SET 'utf8';
mysql> ALTER TABLE ovs_network_bindings CONVERT TO CHARACTER
 SET 'utf8';
mysql> ALTER TABLE ovs_tunnel_allocations CONVERT TO CHARACTER
 SET 'utf8';
mysql> ALTER TABLE ovs_tunnel_endpoints CONVERT TO CHARACTER
 SET 'utf8';
mysql> ALTER TABLE ovs_vlan_allocations CONVERT TO CHARACTER
 SET 'utf8';
mysql> ALTER TABLE portbindingports CONVERT TO CHARACTER SET
 'utf8';
mysql> ALTER TABLE ports CONVERT TO CHARACTER SET 'utf8';
mysql> ALTER TABLE quotas CONVERT TO CHARACTER SET 'utf8';
mysql> ALTER TABLE routerl3agentbindings CONVERT TO CHARACTER
 SET 'utf8';
mysql> ALTER TABLE routerroutes CONVERT TO CHARACTER SET
 'utf8';
mysql> ALTER TABLE routers CONVERT TO CHARACTER SET 'utf8';
mysql> ALTER TABLE securitygroupportbindings CONVERT TO
 CHARACTER SET 'utf8';
mysql> ALTER TABLE securitygrouprules CONVERT TO CHARACTER SET
 'utf8';
mysql> ALTER TABLE securitygroups CONVERT TO CHARACTER SET
 'utf8';
mysql> ALTER TABLE servicedefinitions CONVERT TO CHARACTER SET
 'utf8';
mysql> ALTER TABLE servicetypes CONVERT TO CHARACTER SET
 'utf8';
mysql> ALTER TABLE subnetroutes CONVERT TO CHARACTER SET
 'utf8';
mysql> ALTER TABLE subnets CONVERT TO CHARACTER SET 'utf8';
mysql> SET foreign_key_checks = 1;
mysql> exit

OpenStack Ops Guide September 12, 2014

249

Note

Your environment might use a different database name. Al-
so, it might contain different or additional tables that you
must also convert to UTF-8 by using similar commands.

Populate the /etc/neutron/plugins/ml2/ml2_conf.ini file
with the equivalent configuration for your environment. Do not edit the
/etc/neutron/neutron.conf file until after the conversion steps.

Stop services, upgrade the database, and perform the conversion from
OVS to ML2.

Replace NEUTRON_DBPASS with the password you chose for the
database.

Warning

We highly recommend that you perform a database back-
up prior to executing the following commands as the conver-
sion script cannot roll back.

service neutron-server stop
neutron-db-manage --config-file /etc/neutron/neutron.conf \
 --config-file /etc/neutron/plugins/openvswitch/
ovs_neutron_plugin.ini stamp havana
neutron-db-manage --config-file /etc/neutron/neutron.conf \
 --config-file /etc/neutron/plugins/ml2/ml2_conf.ini upgrade
 icehouse
python -m neutron.db.migration.migrate_to_ml2 openvswitch \
 mysql://neutron:NEUTRON_DBPASS@controller/neutron

Edit the /etc/neutron/neutron.conf file to use the ML2 plug-in
and enable network change notifications:

Replace SERVICE_TENANT_ID with the service tenant identifier (id) in
the Identity service and NOVA_PASS with the password you chose for
the nova user in the Identity service.

OpenStack Ops Guide September 12, 2014

250

[DEFAULT]
...
core_plugin = ml2
service_plugins = router
...
notify_nova_on_port_status_changes = True
notify_nova_on_port_data_changes = True
nova_url = http://controller:8774/v2
nova_admin_username = nova
nova_admin_tenant_id = SERVICE_TENANT_ID
nova_admin_password = NOVA_PASS
nova_admin_auth_url = http://controller:35357/v2.0

Start Networking services.

service neutron-server start

• OpenStack Block Storage:

Stop services, upgrade the database, and start services.

service cinder-api stop
service cinder-volume stop
service cinder-scheduler stop
cinder-manage db sync
service cinder-api start
service cinder-volume start
service cinder-scheduler start

• Dashboard:

Update the configuration for compatibility with Icehouse.

Edit the /etc/openstack-dashboard/local_settings.py file:

Change the OPENSTACK_KEYSTONE_DEFAULT_ROLE key from "Mem-
ber" to "_member_".

Restart Dashboard services.

service apache2 restart

The controller node update is complete. Now you can upgrade the remain-
ing nodes.

Upgrade the Network Node

Upgrade packages on the network node to Icehouse:

OpenStack Ops Guide September 12, 2014

251

Note

Make sure you have removed the repository for Havana pack-
ages and added the repository for Icehouse packages.

apt-get update
apt-get dist-upgrade

Edit the /etc/neutron/neutron.conf file to use the ML2 plug-in:

[DEFAULT]
core_plugin = ml2
service_plugins = router

Populate the /etc/neutron/plugins/ml2/ml2_conf.ini file with
the equivalent configuration for your environment.

Clean the active OVS configuration:

service neutron-ovs-cleanup restart

Restart Networking services:

service neutron-dhcp-agent restart
service neutron-l3-agent restart
service neutron-metadata-agent restart
service neutron-plugin-openvswitch-agent restart

Upgrade the Compute Nodes
Upgrade packages on the compute nodes to Icehouse:

Note

Make sure you have removed the repository for Havana pack-
ages and added the repository for Icehouse packages.

apt-get update
apt-get dist-upgrade

Edit the /etc/neutron/neutron.conf file to use the ML2 plug-in:

[DEFAULT]
core_plugin = ml2
service_plugins = router

Populate the /etc/neutron/plugins/ml2/ml2_conf.ini file with
the equivalent configuration for your environment.

Clean the active OVS configuration:

OpenStack Ops Guide September 12, 2014

252

service neutron-ovs-cleanup restart

Restart Networking services:

service neutron-plugin-openvswitch-agent restart

Restart Compute services:

service nova-compute restart

Upgrade the Storage Nodes
Upgrade packages on the storage nodes to Icehouse:

Note

Make sure you have removed the repository for Havana pack-
ages and added the repository for Icehouse packages.

apt-get update
apt-get dist-upgrade

Restart Block Storage services.

service cinder-volume restart

How to Perform an Upgrade from Havana
to Icehouse—Red Hat Enterprise Linux
and Derivatives

For this section, we assume that you are starting with the architecture pro-
vided in the OpenStack OpenStack Installation Guide and upgrading to the
same architecture for Icehouse. All nodes should run Red Hat Enterprise
Linux 6.5 or compatible derivatives such as CentOS and Scientific Linux
with the latest Havana packages installed and operational. This section pri-
marily addresses upgrading core OpenStack services such as Identity (key-
stone), Image Service (glance), Compute (nova), Networking (neutron),
Block Storage (cinder), and the dashboard. The Networking upgrade pro-
cedure includes conversion from the Open vSwitch (OVS) plug-in to the
Modular Layer 2 (ML2) plug-in.

Impact on Users
The upgrade process interrupts management of your environment, includ-
ing the dashboard. If you properly prepare for this upgrade, tenant in-

http://docs.openstack.org/havana/install-guide/install/yum/content/

OpenStack Ops Guide September 12, 2014

253

stances continue to operate normally. However, instances might experi-
ence intermittent network interruptions while the Networking service re-
builds virtual networking infrastructure.

Upgrade Considerations
Always review the release notes before performing an upgrade to learn
about newly available features that you might want to enable and depre-
cated features that you should disable.

Perform a Backup
Save the configuration files on all nodes, as shown here:

for i in keystone glance nova cinder neutron openstack-
dashboard; \
 do mkdir $i-havana; \
 done
for i in keystone glance nova cinder neutron openstack-
dashboard; \
 do cp -r /etc/$i/* $i-havana/; \
 done

Note

You can modify this example script on each node to handle dif-
ferent services.

Back up all databases on the controller:

mysqldump -u root -p --opt --add-drop-database --all-databases
 > havana-db-backup.sql

Note

You must update your MySQL server configuration and restart
the service as described in the MySQL controller setup section
of the OpenStack Installation Guide.

Manage Repositories
On all nodes, remove the repository for Havana packages and add the
repository for Icehouse packages:

yum erase rdo-release-havana
yum install http://repos.fedorapeople.org/repos/openstack/
openstack-icehouse/ \
 rdo-release-icehouse-3.noarch.rpm

https://wiki.openstack.org/wiki/ReleaseNotes/Icehouse
http://docs.openstack.org/icehouse/install-guide/install/yum/content/basics-database-controller.html
http://docs.openstack.org/icehouse/install-guide/install/yum/content/

OpenStack Ops Guide September 12, 2014

254

Warning

Disable any automatic package updates.

Note

Consider checking for newer versions of the Icehouse reposito-
ry.

Upgrade Notes

• Disable Compute file injection:

Icehouse disables file injection by default per the release notes.

If you plan to deploy Icehouse in stages, you must disable file injection
on all compute nodes that will remain on Havana.

Edit the /etc/nova/nova-compute.conf file:

[libvirt]
...
libvirt_inject_partition = -2

• Convert from OVS to ML2 plug-in:

You must convert the configuration for your environment contained
in the /etc/neutron/neutron.conf and /etc/neutron/plug-
ins/openvswitch/ovs_neutron_plugin.ini files from OVS to
ML2. For example, the OpenStack Installation Guide covers ML2 plug-in
configuration using GRE tunnels.

We recommend keeping the OVS plug-in packages and configuration
files until you verify the upgrade.

Upgrade the Controller Node

Upgrade packages on the controller node to Icehouse, as follows:

yum upgrade

Note

The package manager appends .rpmnew to the end of new-
er versions of existing configuration files. You should consid-

http://repos.fedorapeople.org/repos/openstack/openstack-icehouse/
http://repos.fedorapeople.org/repos/openstack/openstack-icehouse/
https://wiki.openstack.org/wiki/ReleaseNotes/Icehouse
http://docs.openstack.org/icehouse/install-guide/install/yum/content/
http://docs.openstack.org/icehouse/install-guide/install/yum/content/section_neutron-networking-ml2.html
http://docs.openstack.org/icehouse/install-guide/install/yum/content/section_neutron-networking-ml2.html

OpenStack Ops Guide September 12, 2014

255

er adopting conventions associated with the newer configura-
tion files and merging them with your existing configuration
files after completing the upgrade process. You can find newer
versions of existing configuration files with the following com-
mand:

find /etc -name *.rpmnew

Upgrade Each Service

The upgrade procedure for each service typically requires that you stop the
service, run the database synchronization command to update the associ-
ated database, and start the service to apply the new configuration. You
need administrator privileges for these procedures. Some services require
additional steps.

• OpenStack Identity:

Update the configuration file for compatibility with Icehouse.

Edit the /etc/keystone/keystone.conf file:

Add the [database] section.

Move the connection key from the [sql] section to the
[database] section.

Stop services, upgrade the database, and start services.

service openstack-keystone stop
keystone-manage token_flush
keystone-manage db_sync
service openstack-keystone start

• OpenStack Image Service:

Before you upgrade the Image Service database, convert the character
set for each table to UTF-8.

Use the MySQL client to run the following commands:

mysql -u root -p
mysql> SET foreign_key_checks = 0;
mysql> ALTER TABLE glance.image_locations CONVERT TO CHARACTER
 SET 'utf8';
mysql> ALTER TABLE glance.image_members CONVERT TO CHARACTER
 SET 'utf8';

OpenStack Ops Guide September 12, 2014

256

mysql> ALTER TABLE glance.image_properties CONVERT TO
 CHARACTER SET 'utf8';
mysql> ALTER TABLE glance.image_tags CONVERT TO CHARACTER SET
 'utf8';
mysql> ALTER TABLE glance.images CONVERT TO CHARACTER SET
 'utf8';
mysql> ALTER TABLE glance.migrate_version CONVERT TO CHARACTER
 SET 'utf8';
mysql> SET foreign_key_checks = 1;
mysql> exit

Note

Your environment might contain different or additional ta-
bles that you must convert to UTF-8 by using similar com-
mands.

Update the configuration for compatibility with Icehouse.

Edit the /etc/glance/glance-api.conf and /etc/glance/
glance-registry.conf files:

Add the [database] section.

Rename the sql_connection key to connection and move it to the
[database] section.

Edit the /etc/glance/glance-api.conf file:

Add Qpid message broker keys to the [DEFAULT] section.

[DEFAULT]
...
rpc_backend = qpid
qpid_hostname = controller

Stop services, upgrade the database, and start services:

service openstack-glance-api stop
service openstack-glance-registry stop
glance-manage db_sync
service openstack-glance-api start
service openstack-glance-registry start

• OpenStack Compute:

Update the configuration for compatibility with Icehouse.

Edit the /etc/nova/nova.conf file:

OpenStack Ops Guide September 12, 2014

257

Change the rpc_backend key from
nova.openstack.common.rpc.impl_qpid to qpid.

Edit the /etc/nova/api-paste.ini file:

Comment out or remove any keys in the [filter:authtoken]
section beneath the paste.filter_factory =
keystoneclient.middleware.auth_token:filter_factory
statement.

Stop services, upgrade the database, and start services.

service openstack-nova-api stop
service openstack-nova-scheduler stop
service openstack-nova-conductor stop
service openstack-nova-cert stop
service openstack-nova-consoleauth stop
service openstack-nova-novncproxy stop
nova-manage db sync
service openstack-nova-api start
service openstack-nova-scheduler start
service openstack-nova-conductor start
service openstack-nova-cert start
service openstack-nova-consoleauth start
service openstack-nova-novncproxy start

• OpenStack Networking:

Before upgrading the Networking database, you must convert the char-
acter set for each table to UTF-8.

Use the MySQL client to execute the following commands:

mysql -u root -p
mysql> USE neutron;
mysql> SET foreign_key_checks = 0;
mysql> ALTER TABLE agents CONVERT TO CHARACTER SET 'utf8';
mysql> ALTER TABLE alembic_version CONVERT TO CHARACTER SET
 'utf8';
mysql> ALTER TABLE allowedaddresspairs CONVERT TO CHARACTER
 SET 'utf8';
mysql> ALTER TABLE dnsnameservers CONVERT TO CHARACTER SET
 'utf8';
mysql> ALTER TABLE externalnetworks CONVERT TO CHARACTER SET
 'utf8';
mysql> ALTER TABLE extradhcpopts CONVERT TO CHARACTER SET
 'utf8';
mysql> ALTER TABLE floatingips CONVERT TO CHARACTER SET
 'utf8';

OpenStack Ops Guide September 12, 2014

258

mysql> ALTER TABLE ipallocationpools CONVERT TO CHARACTER SET
 'utf8';
mysql> ALTER TABLE ipallocations CONVERT TO CHARACTER SET
 'utf8';
mysql> ALTER TABLE ipavailabilityranges CONVERT TO CHARACTER
 SET 'utf8';
mysql> ALTER TABLE networkdhcpagentbindings CONVERT TO
 CHARACTER SET 'utf8';
mysql> ALTER TABLE networks CONVERT TO CHARACTER SET 'utf8';
mysql> ALTER TABLE ovs_network_bindings CONVERT TO CHARACTER
 SET 'utf8';
mysql> ALTER TABLE ovs_tunnel_allocations CONVERT TO CHARACTER
 SET 'utf8';
mysql> ALTER TABLE ovs_tunnel_endpoints CONVERT TO CHARACTER
 SET 'utf8';
mysql> ALTER TABLE ovs_vlan_allocations CONVERT TO CHARACTER
 SET 'utf8';
mysql> ALTER TABLE portbindingports CONVERT TO CHARACTER SET
 'utf8';
mysql> ALTER TABLE ports CONVERT TO CHARACTER SET 'utf8';
mysql> ALTER TABLE quotas CONVERT TO CHARACTER SET 'utf8';
mysql> ALTER TABLE routerl3agentbindings CONVERT TO CHARACTER
 SET 'utf8';
mysql> ALTER TABLE routerroutes CONVERT TO CHARACTER SET
 'utf8';
mysql> ALTER TABLE routers CONVERT TO CHARACTER SET 'utf8';
mysql> ALTER TABLE securitygroupportbindings CONVERT TO
 CHARACTER SET 'utf8';
mysql> ALTER TABLE securitygrouprules CONVERT TO CHARACTER SET
 'utf8';
mysql> ALTER TABLE securitygroups CONVERT TO CHARACTER SET
 'utf8';
mysql> ALTER TABLE servicedefinitions CONVERT TO CHARACTER SET
 'utf8';
mysql> ALTER TABLE servicetypes CONVERT TO CHARACTER SET
 'utf8';
mysql> ALTER TABLE subnetroutes CONVERT TO CHARACTER SET
 'utf8';
mysql> ALTER TABLE subnets CONVERT TO CHARACTER SET 'utf8';
mysql> SET foreign_key_checks = 1;
mysql> exit

Note

Your environment might use a different database name. Al-
so, it might contain different or additional tables that you
must also convert to UTF-8 by using similar commands.

Install the ML2 plug-in package:

OpenStack Ops Guide September 12, 2014

259

yum install openstack-neutron-ml2

Populate the /etc/neutron/plugins/ml2/ml2_conf.ini file
with the equivalent configuration for your environment. Do not edit the
/etc/neutron/neutron.conf file until after the conversion steps.

Change the /etc/neutron/plugin.ini symbolic link to reference /
etc/neutron/plugins/ml2/ml2_conf.ini.

Stop services, upgrade the database, and perform the conversion from
OVS to ML2.

Replace NEUTRON_DBPASS with the password you chose for the
database.

Warning

We highly recommend that you perform a database back-
up prior to executing the following commands as the conver-
sion script cannot roll back.

service neutron-server stop
neutron-db-manage --config-file /etc/neutron/neutron.conf \
 --config-file /etc/neutron/plugins/openvswitch/
ovs_neutron_plugin.ini stamp havana
neutron-db-manage --config-file /etc/neutron/neutron.conf \
 --config-file /etc/neutron/plugins/ml2/ml2_conf.ini upgrade
 icehouse
python -m neutron.db.migration.migrate_to_ml2 openvswitch \
 mysql://neutron:NEUTRON_DBPASS@controller/neutron

Edit the /etc/neutron/neutron.conf file to use the ML2 plug-in
and enable network change notifications:

Replace SERVICE_TENANT_ID with the service tenant identifier (id) in
the Identity service and NOVA_PASS with the password you chose for
the nova user in the Identity service.

OpenStack Ops Guide September 12, 2014

260

[DEFAULT]
...
core_plugin = ml2
service_plugins = router
...
notify_nova_on_port_status_changes = True
notify_nova_on_port_data_changes = True
nova_url = http://controller:8774/v2
nova_admin_username = nova
nova_admin_tenant_id = SERVICE_TENANT_ID
nova_admin_password = NOVA_PASS
nova_admin_auth_url = http://controller:35357/v2.0

Start Networking services.

service neutron-server start

• OpenStack Block Storage:

Stop services, upgrade the database, and start services.

service openstack-cinder-api stop
service openstack-cinder-volume stop
service openstack-cinder-scheduler stop
cinder-manage db sync
service openstack-cinder-api start
service openstack-cinder-volume start
service openstack-cinder-scheduler start

• Dashboard:

Update the configuration for compatibility with Icehouse.

Edit the /etc/openstack-dashboard/local_settings file:

Change the OPENSTACK_KEYSTONE_DEFAULT_ROLE key from "Mem-
ber" to "_member_".

Restart Dashboard services.

service httpd restart

The controller node update is complete. Now you can upgrade the remain-
ing nodes.

Upgrade the Network Node

Upgrade packages on the network node to Icehouse:

OpenStack Ops Guide September 12, 2014

261

Note

Make sure you have removed the repository for Havana pack-
ages and added the repository for Icehouse packages.

yum upgrade

Install the ML2 plug-in package:

yum install openstack-neutron-ml2

Edit the /etc/neutron/neutron.conf file to use the ML2 plug-in:

[DEFAULT]
core_plugin = ml2
service_plugins = router

Populate the /etc/neutron/plugins/ml2/ml2_conf.ini file with
the equivalent configuration for your environment.

Change the /etc/neutron/plugin.ini symbolic link to reference /
etc/neutron/plugins/ml2/ml2_conf.ini.

Clean the active OVS configuration:

service neutron-ovs-cleanup restart

Restart Networking services:

service neutron-dhcp-agent restart
service neutron-l3-agent restart
service neutron-metadata-agent restart
service neutron-openvswitch-agent restart

Upgrade the Compute Nodes
Upgrade packages on the compute nodes to Icehouse:

Note

Make sure you have removed the repository for Havana pack-
ages and added the repository for Icehouse packages.

yum upgrade

Install the ML2 plug-in package:

yum install openstack-neutron-ml2

Edit the /etc/neutron/neutron.conf file to use the ML2 plug-in:

OpenStack Ops Guide September 12, 2014

262

[DEFAULT]
core_plugin = ml2
service_plugins = router

Populate the /etc/neutron/plugins/ml2/ml2_conf.ini file with
the equivalent configuration for your environment.

Change the /etc/neutron/plugin.ini symbolic link to reference /
etc/neutron/plugins/ml2/ml2_conf.ini.

Clean the active OVS configuration:

service neutron-ovs-cleanup restart

Restart Networking services:

service neutron-openvswitch-agent restart

Restart Compute services:

service openstack-nova-compute restart

Upgrade the Storage Nodes
Upgrade packages on the storage nodes to Icehouse:

Note

Make sure you have removed the repository for Havana pack-
ages and added the repository for Icehouse packages.

yum upgrade

Restart Block Storage services.

service openstack-cinder-volume restart

Cleaning Up and Final Configuration File
Updates

On all distributions, you must perform some final tasks to complete the up-
grade process.

Decrease DHCP timeouts by modifying /etc/nova/nova.conf on the
compute nodes back to the original value for your environment.

Update all .ini files to match passwords and pipelines as required for Ha-
vana in your environment.

OpenStack Ops Guide September 12, 2014

263

After a migration, your users see different results from nova image-list
and glance image-list unless you match policies for access to private
images. To do so, edit the /etc/glance/policy.json and /
etc/nova/policy.json files to contain "context_is_admin":
"role:admin", which limits access to private images for projects.

Thoroughly test the environment. Then, let your users know that their
cloud is running normally again.

Rolling Back a Failed Upgrade
Upgrades involve complex operations and can fail. This section provides
guidance for rolling back to a previous release of OpenStack. Although on-
ly tested on Ubuntu, other distributions follow a similar procedure.

In this section, we consider only the most immediate case: you have tak-
en down production management services in preparation for an upgrade,
completed part of the upgrade process, discovered one or more problems
not encountered during testing, and you must roll back your environment
to the original "known good" state. Make sure that you did not make any
state changes after attempting the upgrade process: no new instances,
networks, storage volumes, and so on.

Within this scope, you must complete these steps to successfully roll back
your environment:

1. Roll back configuration files.

2. Roll back databases.

3. Roll back packages.

The upgrade instructions provided in earlier sections ensure that you have
proper backups of your databases and configuration files. Read through
this section carefully and verify that you have the requisite backups to re-
store. Rolling back upgrades is a tricky process because distributions tend
to put much more effort into testing upgrades than downgrades. Bro-
ken downgrades often take significantly more effort to troubleshoot and,
hopefully, resolve than broken upgrades. Only you can weigh the risks of
trying to push a failed upgrade forward versus rolling it back. Generally,
consider rolling back as the very last option.

The following steps described for Ubuntu have worked on at least one pro-
duction environment, but they might not work for all environments.

OpenStack Ops Guide September 12, 2014

264

To perform the rollback from Havana to Grizzly

1. Stop all OpenStack services.

2. Copy contents of configuration backup directories /etc/
<service>.grizzly that you created during the upgrade process
back to /etc/<service>:

3. Restore databases from the grizzly-db-backup.sql backup file
that you created with the mysqldump command during the upgrade
process:

mysql -u root -p < grizzly-db-backup.sql

If you created this backup by using the --add-drop-database flag
as instructed, you can proceed to the next step. If you omitted this
flag, MySQL reverts all tables that existed in Grizzly, but does not drop
any tables created during the database migration for Havana. In this
case, you must manually determine which tables to drop, and drop
them to prevent issues with your next upgrade attempt.

4. Downgrade OpenStack packages.

Warning

Downgrading packages is by far the most complicated
step; it is highly dependent on the distribution and the
overall administration of the system.

a. Determine which OpenStack packages are installed on your sys-
tem. Use the dpkg --get-selections command. Filter for Open-
Stack packages, filter again to omit packages explicitly marked in
the deinstall state, and save the final output to a file. For ex-
ample, the following command covers a controller node with key-
stone, glance, nova, neutron, and cinder:

dpkg --get-selections | grep -e keystone -e glance -e
 nova -e neutron \
-e cinder | grep -v deinstall | tee openstack-selections
cinder-api install
cinder-common install
cinder-scheduler install
cinder-volume install
glance install
glance-api install
glance-common install
glance-registry install

OpenStack Ops Guide September 12, 2014

265

neutron-common install
neutron-dhcp-agent install
neutron-l3-agent install
neutron-lbaas-agent install
neutron-metadata-agent install
neutron-plugin-openvswitch install
neutron-plugin-openvswitch-agent install
neutron-server install
nova-api install
nova-cert install
nova-common install
nova-conductor install
nova-consoleauth install
nova-novncproxy install
nova-objectstore install
nova-scheduler install
python-cinder install
python-cinderclient install
python-glance install
python-glanceclient install
python-keystone install
python-keystoneclient install
python-neutron install
python-neutronclient install
python-nova install
python-novaclient install

Note

Depending on the type of server, the contents and or-
der of your package list might vary from this example.

b. You can determine the package versions available for reversion
by using the apt-cache policy command. If you removed the Griz-
zly repositories, you must first reinstall them and run apt-get up-
date:

apt-cache policy nova-common
nova-common:
 Installed: 1:2013.2-0ubuntu1~cloud0
 Candidate: 1:2013.2-0ubuntu1~cloud0
 Version table:
 *** 1:2013.2-0ubuntu1~cloud0 0
 500 http://ubuntu-cloud.archive.canonical.com/
ubuntu/
 precise-updates/havana/main amd64 Packages
 100 /var/lib/dpkg/status
 1:2013.1.4-0ubuntu1~cloud0 0
 500 http://ubuntu-cloud.archive.canonical.com/
ubuntu/

OpenStack Ops Guide September 12, 2014

266

 precise-updates/grizzly/main amd64 Packages
 2012.1.3+stable-20130423-e52e6912-0ubuntu1.2 0
 500 http://us.archive.ubuntu.com/ubuntu/
 precise-updates/main amd64 Packages
 500 http://security.ubuntu.com/ubuntu/
 precise-security/main amd64 Packages
 2012.1-0ubuntu2 0
 500 http://us.archive.ubuntu.com/ubuntu/
 precise/main amd64 Packages

This tells us the currently installed version of the package, newest
candidate version, and all versions along with the repository
that contains each version. Look for the appropriate Grizzly ver-
sion—1:2013.1.4-0ubuntu1~cloud0 in this case. The pro-
cess of manually picking through this list of packages is rather te-
dious and prone to errors. You should consider using the follow-
ing script to help with this process:

for i in `cut -f 1 openstack-selections | sed 's/
neutron/quantum/;'`;
 do echo -n $i ;apt-cache policy $i | grep -B 1 grizzly
 |
 grep -v Packages | awk '{print "="$1}';done | tr '\n'
 ' ' |
 tee openstack-grizzly-versions
cinder-api=1:2013.1.4-0ubuntu1~cloud0
cinder-common=1:2013.1.4-0ubuntu1~cloud0
cinder-scheduler=1:2013.1.4-0ubuntu1~cloud0
cinder-volume=1:2013.1.4-0ubuntu1~cloud0
glance=1:2013.1.4-0ubuntu1~cloud0
glance-api=1:2013.1.4-0ubuntu1~cloud0
glance-common=1:2013.1.4-0ubuntu1~cloud0
glance-registry=1:2013.1.4-0ubuntu1~cloud0
quantum-common=1:2013.1.4-0ubuntu1~cloud0
quantum-dhcp-agent=1:2013.1.4-0ubuntu1~cloud0
quantum-l3-agent=1:2013.1.4-0ubuntu1~cloud0
quantum-lbaas-agent=1:2013.1.4-0ubuntu1~cloud0
quantum-metadata-agent=1:2013.1.4-0ubuntu1~cloud0
quantum-plugin-openvswitch=1:2013.1.4-0ubuntu1~cloud0
quantum-plugin-openvswitch-agent=1:2013.1.
4-0ubuntu1~cloud0
quantum-server=1:2013.1.4-0ubuntu1~cloud0
nova-api=1:2013.1.4-0ubuntu1~cloud0
nova-cert=1:2013.1.4-0ubuntu1~cloud0
nova-common=1:2013.1.4-0ubuntu1~cloud0
nova-conductor=1:2013.1.4-0ubuntu1~cloud0
nova-consoleauth=1:2013.1.4-0ubuntu1~cloud0
nova-novncproxy=1:2013.1.4-0ubuntu1~cloud0
nova-objectstore=1:2013.1.4-0ubuntu1~cloud0
nova-scheduler=1:2013.1.4-0ubuntu1~cloud0

OpenStack Ops Guide September 12, 2014

267

python-cinder=1:2013.1.4-0ubuntu1~cloud0
python-cinderclient=1:1.0.3-0ubuntu1~cloud0
python-glance=1:2013.1.4-0ubuntu1~cloud0
python-glanceclient=1:0.9.0-0ubuntu1.2~cloud0
python-quantum=1:2013.1.4-0ubuntu1~cloud0
python-quantumclient=1:2.2.0-0ubuntu1~cloud0
python-nova=1:2013.1.4-0ubuntu1~cloud0
python-novaclient=1:2.13.0-0ubuntu1~cloud0

Note

If you decide to continue this step manually, don't for-
get to change neutron to quantum where applica-
ble.

c. Use the apt-get install command to install specific versions of
each package by specifying <package-name>=<version>.
The script in the previous step conveniently created a list of
package=version pairs for you:

apt-get install `cat openstack-grizzly-versions`

This step completes the rollback procedure. You should remove
the Havana repository and run apt-get update to prevent acci-
dental upgrades until you solve whatever issue caused you to roll
back your environment.

OpenStack Ops Guide September 12, 2014

269

Appendix A. Use Cases

Table of Contents
NeCTAR ... 269
MIT CSAIL .. 270
DAIR .. 271
CERN ... 272

This appendix contains a small selection of use cases from the community,
with more technical detail than usual. Further examples can be found on
the OpenStack website.

NeCTAR
Who uses it: researchers from the Australian publicly funded research sec-
tor. Use is across a wide variety of disciplines, with the purpose of instances
ranging from running simple web servers to using hundreds of cores for
high-throughput computing.

Deployment
Using OpenStack Compute cells, the NeCTAR Research Cloud spans eight
sites with approximately 4,000 cores per site.

Each site runs a different configuration, as resource cells in an OpenStack
Compute cells setup. Some sites span multiple data centers, some use off
compute node storage with a shared file system, and some use on com-
pute node storage with a nonshared file system. Each site deploys the Im-
age Service with an Object Storage backend. A central Identity Service,
dashboard, and Compute API service are used. A login to the dashboard
triggers a SAML login with Shibboleth, which creates an account in the
Identity Service with an SQL backend.

Compute nodes have 24 to 48 cores, with at least 4 GB of RAM per core
and approximately 40 GB of ephemeral storage per core.

All sites are based on Ubuntu 12.04, with KVM as the hypervisor. The
OpenStack version in use is typically the current stable version, with 5 to
10 percent back-ported code from trunk and modifications. Migration to
Ubuntu 14.04 is planned as part of the Havana to Icehouse upgrade.

https://www.openstack.org/user-stories/

OpenStack Ops Guide September 12, 2014

270

Resources

• OpenStack.org case study

• NeCTAR-RC GitHub

• NeCTAR website

MIT CSAIL
Who uses it: researchers from the MIT Computer Science and Artificial In-
telligence Lab.

Deployment

The CSAIL cloud is currently 64 physical nodes with a total of 768 physical
cores and 3,456 GB of RAM. Persistent data storage is largely outside the
cloud on NFS, with cloud resources focused on compute resources. There
are more than 130 users in more than 40 projects, typically running 2,000–
2,500 vCPUs in 300 to 400 instances.

We initially deployed on Ubuntu 12.04 with the Essex release of OpenStack
using FlatDHCP multi-host networking.

The software stack is still Ubuntu 12.04 LTS, but now with OpenStack Ha-
vana from the Ubuntu Cloud Archive. KVM is the hypervisor, deployed us-
ing FAI and Puppet for configuration management. The FAI and Puppet
combination is used lab-wide, not only for OpenStack. There is a single
cloud controller node, which also acts as network controller, with the re-
mainder of the server hardware dedicated to compute nodes.

Host aggregates and instance-type extra specs are used to provide two
different resource allocation ratios. The default resource allocation ratios
we use are 4:1 CPU and 1.5:1 RAM. Compute-intensive workloads use in-
stance types that require non-oversubscribed hosts where cpu_ratio and
ram_ratio are both set to 1.0. Since we have hyperthreading enabled on
our compute nodes, this provides one vCPU per CPU thread, or two vCPUs
per physical core.

With our upgrade to Grizzly in August 2013, we moved to OpenStack Net-
working Service, neutron (quantum at the time). Compute nodes have
two-gigabit network interfaces and a separate management card for IPMI
management. One network interface is used for node-to-node communi-

https://www.openstack.org/user-stories/nectar/
https://github.com/NeCTAR-RC/
https://www.nectar.org.au/
http://fai-project.org/

OpenStack Ops Guide September 12, 2014

271

cations. The other is used as a trunk port for OpenStack managed VLANs.
The controller node uses two bonded 10g network interfaces for its pub-
lic IP communications. Big pipes are used here because images are served
over this port, and it is also used to connect to iSCSI storage, backending
the image storage and database. The controller node also has a gigabit in-
terface that is used in trunk mode for OpenStack managed VLAN traffic.
This port handles traffic to the dhcp-agent and metadata-proxy.

We approximate the older nova-network multi-host HA setup by using
"provider vlan networks" that connect instances directly to existing pub-
licly addressable networks and use existing physical routers as their default
gateway. This means that if our network controller goes down, running in-
stances still have their network available, and no single Linux host becomes
a traffic bottleneck. We are able to do this because we have a sufficient
supply of IPv4 addresses to cover all of our instances and thus don't need
NAT and don't use floating IP addresses. We provide a single generic pub-
lic network to all projects and additional existing VLANs on a project-by-
project basis as needed. Individual projects are also allowed to create their
own private GRE based networks.

Resources

• CSAIL homepage

DAIR
Who uses it: DAIR is an integrated virtual environment that leverages the
CANARIE network to develop and test new information communication
technology (ICT) and other digital technologies. It combines such digital in-
frastructure as advanced networking and cloud computing and storage to
create an environment for developing and testing innovative ICT applica-
tions, protocols, and services; performing at-scale experimentation for de-
ployment; and facilitating a faster time to market.

Deployment

DAIR is hosted at two different data centers across Canada: one in Alber-
ta and the other in Quebec. It consists of a cloud controller at each loca-
tion, although, one is designated the "master" controller that is in charge
of central authentication and quotas. This is done through custom scripts
and light modifications to OpenStack. DAIR is currently running Grizzly.

For Object Storage, each region has a swift environment.

http://www.csail.mit.edu/

OpenStack Ops Guide September 12, 2014

272

A NetApp appliance is used in each region for both block storage and in-
stance storage. There are future plans to move the instances off the Ne-
tApp appliance and onto a distributed file system such as Ceph or Glus-
terFS.

VlanManager is used extensively for network management. All servers
have two bonded 10GbE NICs that are connected to two redundant
switches. DAIR is set up to use single-node networking where the cloud
controller is the gateway for all instances on all compute nodes. Internal
OpenStack traffic (for example, storage traffic) does not go through the
cloud controller.

Resources

• DAIR homepage

CERN
Who uses it: researchers at CERN (European Organization for Nuclear Re-
search) conducting high-energy physics research.

Deployment

The environment is largely based on Scientific Linux 6, which is Red Hat
compatible. We use KVM as our primary hypervisor, although tests are on-
going with Hyper-V on Windows Server 2008.

We use the Puppet Labs OpenStack modules to configure Compute, Image
Service, Identity, and dashboard. Puppet is used widely for instance config-
uration, and Foreman is used as a GUI for reporting and instance provision-
ing.

Users and groups are managed through Active Directory and import-
ed into the Identity Service using LDAP. CLIs are available for nova and
Euca2ools to do this.

There are three clouds currently running at CERN, totaling about 3,400
compute nodes, with approximately 60,000 cores. The CERN IT cloud aims
to expand to 300,000 cores by 2015.

Resources

• “OpenStack in Production: A tale of 3 OpenStack Clouds”

http://www.canarie.ca/en/dair-program/about
http://openstack-in-production.blogspot.de/2013/09/a-tale-of-3-openstack-clouds-50000.html

OpenStack Ops Guide September 12, 2014

273

• “Review of CERN Data Centre Infrastructure”

• “CERN Cloud Infrastructure User Guide”

http://cds.cern.ch/record/1457989/files/chep%202012%20CERN%20infrastructure%20final.pdf?version=1
http://information-technology.web.cern.ch/book/cern-private-cloud-user-guide

OpenStack Ops Guide September 12, 2014

275

Appendix B. Tales From the
Cryp^H^H^H^H Cloud

Table of Contents
Double VLAN ... 275
"The Issue" ... 278
Disappearing Images .. 280
The Valentine's Day Compute Node Massacre 282
Down the Rabbit Hole ... 283
Havana Haunted by the Dead .. 285

Herein lies a selection of tales from OpenStack cloud operators. Read, and
learn from their wisdom.

Double VLAN
I was on-site in Kelowna, British Columbia, Canada setting up a new Open-
Stack cloud. The deployment was fully automated: Cobbler deployed the
OS on the bare metal, bootstrapped it, and Puppet took over from there.
I had run the deployment scenario so many times in practice and took for
granted that everything was working.

On my last day in Kelowna, I was in a conference call from my hotel. In
the background, I was fooling around on the new cloud. I launched an in-
stance and logged in. Everything looked fine. Out of boredom, I ran ps
aux and all of the sudden the instance locked up.

Thinking it was just a one-off issue, I terminated the instance and launched
a new one. By then, the conference call ended and I was off to the data
center.

At the data center, I was finishing up some tasks and remembered the
lock-up. I logged into the new instance and ran ps aux again. It worked.
Phew. I decided to run it one more time. It locked up. WTF.

After reproducing the problem several times, I came to the unfortunate
conclusion that this cloud did indeed have a problem. Even worse, my time
was up in Kelowna and I had to return back to Calgary.

OpenStack Ops Guide September 12, 2014

276

Where do you even begin troubleshooting something like this? An in-
stance just randomly locks when a command is issued. Is it the image?
Nope — it happens on all images. Is it the compute node? Nope — all
nodes. Is the instance locked up? No! New SSH connections work just fine!

We reached out for help. A networking engineer suggested it was an MTU
issue. Great! MTU! Something to go on! What's MTU and why would it
cause a problem?

MTU is maximum transmission unit. It specifies the maximum number of
bytes that the interface accepts for each packet. If two interfaces have two
different MTUs, bytes might get chopped off and weird things happen --
such as random session lockups.

Note

Not all packets have a size of 1500. Running the ls command
over SSH might only create a single packets less than 1500
bytes. However, running a command with heavy output, such
as ps aux requires several packets of 1500 bytes.

OK, so where is the MTU issue coming from? Why haven't we seen this in
any other deployment? What's new in this situation? Well, new data cen-
ter, new uplink, new switches, new model of switches, new servers, first
time using this model of servers… so, basically everything was new. Won-
derful. We toyed around with raising the MTU at various areas: the switch-
es, the NICs on the compute nodes, the virtual NICs in the instances, we
even had the data center raise the MTU for our uplink interface. Some
changes worked, some didn't. This line of troubleshooting didn't feel right,
though. We shouldn't have to be changing the MTU in these areas.

As a last resort, our network admin (Alvaro) and myself sat down with
four terminal windows, a pencil, and a piece of paper. In one window, we
ran ping. In the second window, we ran tcpdump on the cloud controller.
In the third, tcpdump on the compute node. And the forth had tcpdump
on the instance. For background, this cloud was a multi-node, non-mul-
ti-host setup.

One cloud controller acted as a gateway to all compute nodes. VlanMan-
ager was used for the network config. This means that the cloud controller
and all compute nodes had a different VLAN for each OpenStack project.
We used the -s option of ping to change the packet size. We watched as
sometimes packets would fully return, sometimes they'd only make it out
and never back in, and sometimes the packets would stop at a random
point. We changed tcpdump to start displaying the hex dump of the pack-

OpenStack Ops Guide September 12, 2014

277

et. We pinged between every combination of outside, controller, compute,
and instance.

Finally, Alvaro noticed something. When a packet from the outside hits the
cloud controller, it should not be configured with a VLAN. We verified this
as true. When the packet went from the cloud controller to the compute
node, it should only have a VLAN if it was destined for an instance. This
was still true. When the ping reply was sent from the instance, it should be
in a VLAN. True. When it came back to the cloud controller and on its way
out to the public internet, it should no longer have a VLAN. False. Uh oh. It
looked as though the VLAN part of the packet was not being removed.

That made no sense.

While bouncing this idea around in our heads, I was randomly typing com-
mands on the compute node:

$ ip a
…
10: vlan100@vlan20: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500
 qdisc noqueue master br100 state UP
…

"Hey Alvaro, can you run a VLAN on top of a VLAN?"

"If you did, you'd add an extra 4 bytes to the packet…"

Then it all made sense…

$ grep vlan_interface /etc/nova/nova.conf
vlan_interface=vlan20

In nova.conf, vlan_interface specifies what interface OpenStack
should attach all VLANs to. The correct setting should have been:

vlan_interface=bond0

.

As this would be the server's bonded NIC.

vlan20 is the VLAN that the data center gave us for outgoing public inter-
net access. It's a correct VLAN and is also attached to bond0.

By mistake, I configured OpenStack to attach all tenant VLANs to vlan20
instead of bond0 thereby stacking one VLAN on top of another which
then added an extra 4 bytes to each packet which cause a packet of 1504

OpenStack Ops Guide September 12, 2014

278

bytes to be sent out which would cause problems when it arrived at an in-
terface that only accepted 1500!

As soon as this setting was fixed, everything worked.

"The Issue"
At the end of August 2012, a post-secondary school in Alberta, Canada
migrated its infrastructure to an OpenStack cloud. As luck would have it,
within the first day or two of it running, one of their servers just disap-
peared from the network. Blip. Gone.

After restarting the instance, everything was back up and running. We
reviewed the logs and saw that at some point, network communication
stopped and then everything went idle. We chalked this up to a random
occurrence.

A few nights later, it happened again.

We reviewed both sets of logs. The one thing that stood out the most was
DHCP. At the time, OpenStack, by default, set DHCP leases for one minute
(it's now two minutes). This means that every instance contacts the cloud
controller (DHCP server) to renew its fixed IP. For some reason, this in-
stance could not renew its IP. We correlated the instance's logs with the
logs on the cloud controller and put together a conversation:

1. Instance tries to renew IP.

2. Cloud controller receives the renewal request and sends a response.

3. Instance "ignores" the response and re-sends the renewal request.

4. Cloud controller receives the second request and sends a new response.

5. Instance begins sending a renewal request to 255.255.255.255 since
it hasn't heard back from the cloud controller.

6. The cloud controller receives the 255.255.255.255 request and sends
a third response.

7. The instance finally gives up.

With this information in hand, we were sure that the problem had to do
with DHCP. We thought that for some reason, the instance wasn't getting
a new IP address and with no IP, it shut itself off from the network.

OpenStack Ops Guide September 12, 2014

279

A quick Google search turned up this: DHCP lease errors in VLAN mode
(https://lists.launchpad.net/openstack/msg11696.html) which further sup-
ported our DHCP theory.

An initial idea was to just increase the lease time. If the instance only re-
newed once every week, the chances of this problem happening would
be tremendously smaller than every minute. This didn't solve the problem,
though. It was just covering the problem up.

We decided to have tcpdump run on this instance and see if we could
catch it in action again. Sure enough, we did.

The tcpdump looked very, very weird. In short, it looked as though net-
work communication stopped before the instance tried to renew its IP.
Since there is so much DHCP chatter from a one minute lease, it's very hard
to confirm it, but even with only milliseconds difference between packets,
if one packet arrives first, it arrived first, and if that packet reported net-
work issues, then it had to have happened before DHCP.

Additionally, this instance in question was responsible for a very, very large
backup job each night. While "The Issue" (as we were now calling it) didn't
happen exactly when the backup happened, it was close enough (a few
hours) that we couldn't ignore it.

Further days go by and we catch The Issue in action more and more.
We find that dhclient is not running after The Issue happens. Now we're
back to thinking it's a DHCP issue. Running /etc/init.d/networking
restart brings everything back up and running.

Ever have one of those days where all of the sudden you get the Google
results you were looking for? Well, that's what happened here. I was look-
ing for information on dhclient and why it dies when it can't renew its
lease and all of the sudden I found a bunch of OpenStack and dnsmasq
discussions that were identical to the problem we were seeing!

Problem with Heavy Network IO and Dnsmasq (http://www.gossamer-
threads.com/lists/openstack/operators/18197)

instances losing IP address while running, due to No DHCPOFFER (http://
www.gossamer-threads.com/lists/openstack/dev/14696)

Seriously, Google.

This bug report was the key to everything: KVM images lose connectivity
with bridged network (https://bugs.launchpad.net/ubuntu/+source/qe-
mu-kvm/+bug/997978)

https://lists.launchpad.net/openstack/msg11696.html
http://www.gossamer-threads.com/lists/openstack/operators/18197
http://www.gossamer-threads.com/lists/openstack/dev/14696
https://bugs.launchpad.net/ubuntu/+source/qemu-kvm/+bug/997978
https://bugs.launchpad.net/ubuntu/+source/qemu-kvm/+bug/997978

OpenStack Ops Guide September 12, 2014

280

It was funny to read the report. It was full of people who had some
strange network problem but didn't quite explain it in the same way.

So it was a qemu/kvm bug.

At the same time of finding the bug report, a co-worker was able to suc-
cessfully reproduce The Issue! How? He used iperf to spew a ton of band-
width at an instance. Within 30 minutes, the instance just disappeared
from the network.

Armed with a patched qemu and a way to reproduce, we set out to see
if we've finally solved The Issue. After 48 hours straight of hammering the
instance with bandwidth, we were confident. The rest is history. You can
search the bug report for "joe" to find my comments and actual tests.

Disappearing Images
At the end of 2012, Cybera (a nonprofit with a mandate to oversee the
development of cyberinfrastructure in Alberta, Canada) deployed an up-
dated OpenStack cloud for their DAIR project (http://www.canarie.ca/en/
dair-program/about). A few days into production, a compute node locks
up. Upon rebooting the node, I checked to see what instances were host-
ed on that node so I could boot them on behalf of the customer. Luckily,
only one instance.

The nova reboot command wasn't working, so I used virsh, but it imme-
diately came back with an error saying it was unable to find the backing
disk. In this case, the backing disk is the Glance image that is copied to /
var/lib/nova/instances/_base when the image is used for the first
time. Why couldn't it find it? I checked the directory and sure enough it
was gone.

I reviewed the nova database and saw the instance's entry in the
nova.instances table. The image that the instance was using matched
what virsh was reporting, so no inconsistency there.

I checked Glance and noticed that this image was a snapshot that the user
created. At least that was good news — this user would have been the only
user affected.

Finally, I checked StackTach and reviewed the user's events. They had cre-
ated and deleted several snapshots—most likely experimenting. Although
the timestamps didn't match up, my conclusion was that they launched
their instance and then deleted the snapshot and it was somehow re-

http://www.canarie.ca/en/dair-program/about

OpenStack Ops Guide September 12, 2014

281

moved from /var/lib/nova/instances/_base. None of that made
sense, but it was the best I could come up with.

It turns out the reason that this compute node locked up was a hardware
issue. We removed it from the DAIR cloud and called Dell to have it ser-
viced. Dell arrived and began working. Somehow or another (or a fat fin-
ger), a different compute node was bumped and rebooted. Great.

When this node fully booted, I ran through the same scenario of seeing
what instances were running so I could turn them back on. There were a
total of four. Three booted and one gave an error. It was the same error
as before: unable to find the backing disk. Seriously, what?

Again, it turns out that the image was a snapshot. The three other in-
stances that successfully started were standard cloud images. Was it a
problem with snapshots? That didn't make sense.

A note about DAIR's architecture: /var/lib/nova/instances is a
shared NFS mount. This means that all compute nodes have access to it,
which includes the _base directory. Another centralized area is /var/
log/rsyslog on the cloud controller. This directory collects all Open-
Stack logs from all compute nodes. I wondered if there were any entries
for the file that virsh is reporting:

dair-ua-c03/nova.log:Dec 19 12:10:59 dair-ua-c03
2012-12-19 12:10:59 INFO nova.virt.libvirt.imagecache
[-] Removing base file:
/var/lib/nova/instances/_base/
7b4783508212f5d242cbf9ff56fb8d33b4ce6166_10

Ah-hah! So OpenStack was deleting it. But why?

A feature was introduced in Essex to periodically check and see if there
were any _base files not in use. If there were, Nova would delete them.
This idea sounds innocent enough and has some good qualities to it. But
how did this feature end up turned on? It was disabled by default in Es-
sex. As it should be. It was decided to be turned on in Folsom (https://
bugs.launchpad.net/nova/+bug/1029674). I cannot emphasize enough
that:

Actions which delete things should not be enabled by default.

Disk space is cheap these days. Data recovery is not.

Secondly, DAIR's shared /var/lib/nova/instances directory con-
tributed to the problem. Since all compute nodes have access to this direc-

https://bugs.launchpad.net/nova/+bug/1029674

OpenStack Ops Guide September 12, 2014

282

tory, all compute nodes periodically review the _base directory. If there is
only one instance using an image, and the node that the instance is on is
down for a few minutes, it won't be able to mark the image as still in use.
Therefore, the image seems like it's not in use and is deleted. When the
compute node comes back online, the instance hosted on that node is un-
able to start.

The Valentine's Day Compute Node Mas-
sacre

Although the title of this story is much more dramatic than the actu-
al event, I don't think, or hope, that I'll have the opportunity to use
"Valentine's Day Massacre" again in a title.

This past Valentine's Day, I received an alert that a compute node was no
longer available in the cloud — meaning,

$nova-manage service list

showed this particular node with a status of XXX.

I logged into the cloud controller and was able to both ping and SSH into
the problematic compute node which seemed very odd. Usually if I receive
this type of alert, the compute node has totally locked up and would be in-
accessible.

After a few minutes of troubleshooting, I saw the following details:

• A user recently tried launching a CentOS instance on that node

• This user was the only user on the node (new node)

• The load shot up to 8 right before I received the alert

• The bonded 10gb network device (bond0) was in a DOWN state

• The 1gb NIC was still alive and active

I looked at the status of both NICs in the bonded pair and saw that neither
was able to communicate with the switch port. Seeing as how each NIC in
the bond is connected to a separate switch, I thought that the chance of a
switch port dying on each switch at the same time was quite improbable.
I concluded that the 10gb dual port NIC had died and needed replaced. I
created a ticket for the hardware support department at the data center
where the node was hosted. I felt lucky that this was a new node and no
one else was hosted on it yet.

OpenStack Ops Guide September 12, 2014

283

An hour later I received the same alert, but for another compute node.
Crap. OK, now there's definitely a problem going on. Just like the original
node, I was able to log in by SSH. The bond0 NIC was DOWN but the 1gb
NIC was active.

And the best part: the same user had just tried creating a CentOS instance.
What?

I was totally confused at this point, so I texted our network admin to see
if he was available to help. He logged in to both switches and immediate-
ly saw the problem: the switches detected spanning tree packets coming
from the two compute nodes and immediately shut the ports down to pre-
vent spanning tree loops:

Feb 15 01:40:18 SW-1 Stp: %SPANTREE-4-BLOCK_BPDUGUARD: Received
 BPDU packet on Port-Channel35 with BPDU guard enabled.
 Disabling interface. (source mac fa:16:3e:24:e7:22)
Feb 15 01:40:18 SW-1 Ebra: %ETH-4-ERRDISABLE: bpduguard error
 detected on Port-Channel35.
Feb 15 01:40:18 SW-1 Mlag: %MLAG-4-INTF_INACTIVE_LOCAL: Local
 interface Port-Channel35 is link down. MLAG 35 is inactive.
Feb 15 01:40:18 SW-1 Ebra: %LINEPROTO-5-UPDOWN: Line protocol on
 Interface Port-Channel35 (Server35), changed state to down
Feb 15 01:40:19 SW-1 Stp: %SPANTREE-6-INTERFACE_DEL: Interface
 Port-Channel35 has been removed from instance MST0
Feb 15 01:40:19 SW-1 Ebra: %LINEPROTO-5-UPDOWN: Line protocol on
 Interface Ethernet35 (Server35), changed state to down

He re-enabled the switch ports and the two compute nodes immediately
came back to life.

Unfortunately, this story has an open ending... we're still looking into why
the CentOS image was sending out spanning tree packets. Further, we're
researching a proper way on how to mitigate this from happening. It's
a bigger issue than one might think. While it's extremely important for
switches to prevent spanning tree loops, it's very problematic to have an
entire compute node be cut from the network when this happens. If a
compute node is hosting 100 instances and one of them sends a spanning
tree packet, that instance has effectively DDOS'd the other 99 instances.

This is an ongoing and hot topic in networking circles — especially with the
raise of virtualization and virtual switches.

Down the Rabbit Hole
Users being able to retrieve console logs from running instances is a boon
for support — many times they can figure out what's going on inside their

OpenStack Ops Guide September 12, 2014

284

instance and fix what's going on without bothering you. Unfortunately,
sometimes overzealous logging of failures can cause problems of its own.

A report came in: VMs were launching slowly, or not at all. Cue the stan-
dard checks — nothing on the nagios, but there was a spike in network to-
wards the current master of our RabbitMQ cluster. Investigation started,
but soon the other parts of the queue cluster were leaking memory like a
sieve. Then the alert came in — the master rabbit server went down. Con-
nections failed over to the slave.

At that time, our control services were hosted by another team and we
didn't have much debugging information to determine what was going
on with the master, and couldn't reboot it. That team noted that it failed
without alert, but managed to reboot it. After an hour, the cluster had re-
turned to its normal state and we went home for the day.

Continuing the diagnosis the next morning was kick started by another
identical failure. We quickly got the message queue running again, and
tried to work out why Rabbit was suffering from so much network traf-
fic. Enabling debug logging on nova-api quickly brought understanding.
A tail -f /var/log/nova/nova-api.log was scrolling by faster than we'd ev-
er seen before. CTRL+C on that and we could plainly see the contents of a
system log spewing failures over and over again - a system log from one of
our users' instances.

After finding the instance ID we headed over to /var/lib/nova/in-
stances to find the console.log:

adm@cc12:/var/lib/nova/instances/instance-00000e05# wc -l
 console.log
92890453 console.log
adm@cc12:/var/lib/nova/instances/instance-00000e05# ls -sh
 console.log
5.5G console.log

Sure enough, the user had been periodically refreshing the console log
page on the dashboard and the 5G file was traversing the rabbit cluster to
get to the dashboard.

We called them and asked them to stop for a while, and they were happy
to abandon the horribly broken VM. After that, we started monitoring the
size of console logs.

To this day, the issue (https://bugs.launchpad.net/nova/+bug/832507)
doesn't have a permanent resolution, but we look forward to the discus-
sion at the next summit.

https://bugs.launchpad.net/nova/+bug/832507

OpenStack Ops Guide September 12, 2014

285

Havana Haunted by the Dead
Felix Lee of Academia Sinica Grid Computing Centre in Taiwan contributed
this story.

I just upgraded OpenStack from Grizzly to Havana 2013.2-2 using the RDO
repository and everything was running pretty well -- except the EC2 API.

I noticed that the API would suffer from a heavy load and respond slowly
to particular EC2 requests such as RunInstances.

Output from /var/log/nova/nova-api.log on Havana:

2014-01-10 09:11:45.072 129745 INFO nova.ec2.wsgi.server
[req-84d16d16-3808-426b-b7af-3b90a11b83b0
0c6e7dba03c24c6a9bce299747499e8a
 7052bd6714e7460caeb16242e68124f9]
117.103.103.29 "GET
/services/Cloud?AWSAccessKeyId=[something]&Action=
RunInstances&ClientToken=[something]&ImageId=ami-00000001&
InstanceInitiatedShutdownBehavior=terminate...
HTTP/1.1" status: 200 len: 1109 time: 138.5970151

This request took over two minutes to process, but executed quickly on an-
other co-existing Grizzly deployment using the same hardware and system
configuration.

Output from /var/log/nova/nova-api.log on Grizzly:

2014-01-08 11:15:15.704 INFO nova.ec2.wsgi.server
[req-ccac9790-3357-4aa8-84bd-cdaab1aa394e
ebbd729575cb404081a45c9ada0849b7
 8175953c209044358ab5e0ec19d52c37]
117.103.103.29 "GET
/services/Cloud?AWSAccessKeyId=[something]&Action=
RunInstances&ClientToken=[something]&ImageId=ami-00000007&
InstanceInitiatedShutdownBehavior=terminate...
HTTP/1.1" status: 200 len: 931 time: 3.9426181

While monitoring system resources, I noticed a significant increase in mem-
ory consumption while the EC2 API processed this request. I thought it
wasn't handling memory properly -- possibly not releasing memory. If the
API received several of these requests, memory consumption quickly grew
until the system ran out of RAM and began using swap. Each node has 48
GB of RAM and the "nova-api" process would consume all of it within min-
utes. Once this happened, the entire system would become unusably slow
until I restarted the nova-api service.

OpenStack Ops Guide September 12, 2014

286

So, I found myself wondering what changed in the EC2 API on Havana
that might cause this to happen. Was it a bug or a normal behavior that I
now need to work around?

After digging into the Nova code, I noticed two areas in api/ec2/
cloud.py potentially impacting my system:

 instances = self.compute_api.get_all(context,
 search_opts=
search_opts,
 sort_dir='asc')

 sys_metas = self.compute_api.get_all_system_metadata(
 context, search_filts=[{'key':
 ['EC2_client_token']},
 {'value': [client_token]}])

Since my database contained many records -- over 1 million metadata
records and over 300,000 instance records in "deleted" or "errored" states --
each search took ages. I decided to clean up the database by first archiving
a copy for backup and then performing some deletions using the MySQL
client. For example, I ran the following SQL command to remove rows of
instances deleted for over a year:

mysql> delete from nova.instances where deleted=1 and
 terminated_at < (NOW() - INTERVAL 1 YEAR);

Performance increased greatly after deleting the old records and my new
deployment continues to behave well.

OpenStack Ops Guide September 12, 2014

287

Appendix C. Working with
Roadmaps

Table of Contents
Information Available to You ... 288
Influencing the Roadmap ... 289
Aspects to Watch ... 290
Replacement of Open vSwitch Plug-in with Modular Layer 2 292
Compute V3 API .. 292
OpenStack on OpenStack (TripleO) .. 292
Data Processing (Sahara) .. 292
Bare-Metal Deployment (Ironic) ... 292
Database as a Service (Trove) ... 293
Messaging as a Service (Marconi) ... 293
Scheduler Improvements .. 293

The good news: OpenStack has unprecedented transparency when it
comes to providing information about what's coming up. The bad news:
each release moves very quickly. The purpose of this appendix is to high-
light some of the useful pages to track, and take an educated guess at
what is coming up in the Icehouse release and perhaps further afield.

OpenStack follows a six month release cycle, typically releasing in April/
May and October/November each year. At the start of each cycle, the
community gathers in a single location for a design summit. At the sum-
mit, the features for the coming releases are discussed, prioritized, and
planned. Figure C.1, “Release cycle diagram” [288] shows an example
release cycle, with dates showing milestone releases, code freeze, and
string freeze dates, along with an example of when the summit occurs.
Milestones are interim releases within the cycle that are available as pack-
ages for download and testing. Code freeze is putting a stop to adding
new features to the release. String freeze is putting a stop to changing any
strings within the source code.

OpenStack Ops Guide September 12, 2014

288

Figure C.1. Release cycle diagram

Information Available to You
There are several good sources of information available that you can use
to track your OpenStack development desires.

Release notes are maintained on the OpenStack wiki, and also shown here:

Series Status Releases Date

Juno Under development 2014.1 Apr 17, 2014

Icehouse Current stable release,
security-supported

2014.1 Apr 17, 2014

2013.2 Apr 4, 2013Havana Security-supported

2013.2.1 Dec 16, 2013

2013.1 Apr 4, 2013

2013.1.1 May 9, 2013

2013.1.2 Jun 6, 2013

2013.1.3 Aug 8, 2013

Grizzly EOL

2013.1.4 Oct 17, 2013

2012.2 Sep 27, 2012

2012.2.1 Nov 29, 2012

2012.2.2 Dec 13, 2012

2012.2.3 Jan 31, 2013

Folsom Community-supported

2012.2.4 Apr 11, 2013

2012.1 Apr 5, 2012

2012.1.1 Jun 22, 2012

Essex Community-supported

2012.1.2 Aug 10, 2012

https://wiki.openstack.org/wiki/ReleaseNotes/Icehouse
https://wiki.openstack.org/wiki/Icehouse_Release_Schedule
https://wiki.openstack.org/wiki/Icehouse_Release_Schedule
https://wiki.openstack.org/wiki/ReleaseNotes/Icehouse
https://wiki.openstack.org/wiki/ReleaseNotes/Havana
https://wiki.openstack.org/wiki/ReleaseNotes/2013.2.1
https://wiki.openstack.org/wiki/ReleaseNotes/Grizzly
https://wiki.openstack.org/wiki/ReleaseNotes/2013.1.1
https://wiki.openstack.org/wiki/ReleaseNotes/2013.1.2
https://wiki.openstack.org/wiki/ReleaseNotes/2013.1.3
https://wiki.openstack.org/wiki/ReleaseNotes/2013.1.4
https://wiki.openstack.org/wiki/ReleaseNotes/Folsom
https://wiki.openstack.org/wiki/ReleaseNotes/2012.2.1
https://wiki.openstack.org/wiki/ReleaseNotes/2012.2.2
https://wiki.openstack.org/wiki/ReleaseNotes/2012.2.3
https://wiki.openstack.org/wiki/ReleaseNotes/2012.2.4
https://wiki.openstack.org/wiki/ReleaseNotes/Essex
https://wiki.openstack.org/wiki/ReleaseNotes/2012.1.1
https://wiki.openstack.org/wiki/ReleaseNotes/2012.1.2

OpenStack Ops Guide September 12, 2014

289

Series Status Releases Date

2012.1.3 Oct 12, 2012

2011.3 Sep 22, 2011Diablo Deprecated

2011.3.1 Jan 19, 2012

Cactus Deprecated 2011.2 Apr 15, 2011

Bexar Deprecated 2011.1 Feb 3, 2011

Austin Deprecated 2010.1 Oct 21, 2010

Here are some other resources:

• A breakdown of current features under development, with their target
milestone

• A list of all features, including those not yet under development

• Rough-draft design discussions ("etherpads") from the last design sum-
mit

• List of individual code changes under review

Influencing the Roadmap
OpenStack truly welcomes your ideas (and contributions) and highly values
feedback from real-world users of the software. By learning a little about
the process that drives feature development, you can participate and per-
haps get the additions you desire.

Feature requests typically start their life in Etherpad, a collaborative edit-
ing tool, which is used to take coordinating notes at a design summit ses-
sion specific to the feature. This then leads to the creation of a blueprint
on the Launchpad site for the particular project, which is used to describe
the feature more formally. Blueprints are then approved by project team
members, and development can begin.

Therefore, the fastest way to get your feature request up for consideration
is to create an Etherpad with your ideas and propose a session to the de-
sign summit. If the design summit has already passed, you may also create
a blueprint directly. Read this blog post about how to work with blueprints
the perspective of Victoria Martínez, a developer intern.

The roadmap for the next release as it is developed can be seen at Releas-
es.

To determine the potential features going in to future releases, or to look
at features implemented previously, take a look at the existing blueprints

https://wiki.openstack.org/wiki/ReleaseNotes/2012.1.3
https://wiki.openstack.org/wiki/ReleaseNotes/Diablo
https://wiki.openstack.org/wiki/ReleaseNotes/2011.3.1
https://wiki.openstack.org/wiki/ReleaseNotes/Cactus
https://wiki.openstack.org/wiki/ReleaseNotes/Bexar
https://wiki.openstack.org/wiki/ReleaseNotes/Austin
http://status.openstack.org/release/
http://status.openstack.org/release/
https://blueprints.launchpad.net/openstack
https://wiki.openstack.org/wiki/Summit/Icehouse/Etherpads
https://wiki.openstack.org/wiki/Summit/Icehouse/Etherpads
https://review.openstack.org/
http://vmartinezdelacruz.com/how-to-work-with-blueprints-without-losing-your-mind/
http://status.openstack.org/release/
http://status.openstack.org/release/

OpenStack Ops Guide September 12, 2014

290

such as OpenStack Compute (nova) Blueprints, OpenStack Identity (key-
stone) Blueprints, and release notes.

Aside from the direct-to-blueprint pathway, there is another very well-re-
garded mechanism to influence the development roadmap: the user sur-
vey. Found at http://openstack.org/user-survey, it allows you to provide
details of your deployments and needs, anonymously by default. Each cy-
cle, the user committee analyzes the results and produces a report, includ-
ing providing specific information to the technical committee and technical
leads of the projects.

Aspects to Watch
You want to keep an eye on the areas improving within OpenStack. The
best way to "watch" roadmaps for each project is to look at the blueprints
that are being approved for work on milestone releases. You can also
learn from PTL webinars that follow the OpenStack summits twice a year.

Driver Quality Improvements

A major quality push has occurred across drivers and plug-ins in Block Stor-
age, Compute, and Networking. Particularly, developers of Compute and
Networking drivers that require proprietary or hardware products are now
required to provide an automated external testing system for use during
the development process.

Easier Upgrades

One of the most requested features since OpenStack began (for compo-
nents other than Object Storage, which tends to "just work"): easier up-
grades. From Grizzly onward (and significantly improved in Havana), inter-
nal messaging communication is versioned, meaning services can theoret-
ically drop back to backward-compatible behavior. This allows you to run
later versions of some components, while keeping older versions of others.

In addition, a lot of focus has been placed on database migrations. These
are now better managed, including the use of the Turbo Hipster tool,
which tests database migration performance on copies of real-world user
databases.

These changes have facilitated the first proper OpenStack upgrade guide,
found in Chapter 18, “Upgrades” [223], and will continue to improve in
Icehouse.

https://blueprints.launchpad.net/nova
https://blueprints.launchpad.net/keystone
https://blueprints.launchpad.net/keystone
http://openstack.org/user-survey

OpenStack Ops Guide September 12, 2014

291

Deprecation of Nova Network

With the introduction of the full software-defined networking stack pro-
vided by OpenStack Networking (neutron) in the Folsom release, develop-
ment effort on the initial networking code that remains part of the Com-
pute component has gradually lessened. While many still use nova-net-
work in production, there has been a long-term plan to remove the code
in favor of the more flexible and full-featured OpenStack Networking.

An attempt was made to deprecate nova-network during the Havana
release, which was aborted due to the lack of equivalent functionality
(such as the FlatDHCP multi-host high-availability mode mentioned in this
guide), lack of a migration path between versions, insufficient testing, and
simplicity when used for the more straightforward use cases nova-net-
work traditionally supported. Though significant effort has been made to
address these concerns, nova-network will not be deprecated in the Ice-
house release. In addition, the Program Technical Lead of the Compute
project has indicated that, to a limited degree, patches to nova-network
will now again begin to be accepted.

This leaves you with an important point of decision when designing your
cloud. OpenStack Networking is robust enough to use with a small num-
ber of limitations (IPv6 support, performance issues in some scenarios)
and provides many more features than nova-network. However, if you
do not have the more complex use cases that can benefit from fuller soft-
ware-defined networking capabilities, or are uncomfortable with the new
concepts introduced, nova-network may continue to be a viable option
for the next 12 to 18 months.

Similarly, if you have an existing cloud and are looking to upgrade from
nova-network to OpenStack Networking, you should have the option to
delay the upgrade for this period of time. However, each release of Open-
Stack brings significant new innovation, and regardless of your use of net-
working methodology, it is likely best to begin planning for an upgrade
within a reasonable timeframe of each release.

As mentioned, there's currently no way to cleanly migrate from no-
va-network to neutron. We recommend that you keep a migration in
mind and what that process might involve for when a proper migration
path is released. If you must upgrade, please be aware that both service
and instance downtime is likely unavoidable.

OpenStack Ops Guide September 12, 2014

292

Replacement of Open vSwitch Plug-in
with Modular Layer 2

The Modular Layer 2 plug-in is a framework allowing OpenStack Network-
ing to simultaneously utilize the variety of layer-2 networking technologies
found in complex real-world data centers. It currently works with the ex-
isting Open vSwitch, Linux Bridge, and Hyper-V L2 agents and is intended
to replace and deprecate the monolithic plug-ins associated with those L2
agents.

Compute V3 API
The third version of the Compute API was broadly discussed and worked
on during the Havana and Icehouse release cycles. Current discussions indi-
cate that the V2 API will remain for many releases, but this is a great time
to evaluate the Compute API and provide comments while it is being de-
fined. Of particular note is the decision that the V3 API will not support
XML messages—being JSON only. This was based on the poor testing of ex-
isting XML responses in the V2 API and the lack of effort to continue to de-
velop and maintain an entire second response type. Feedback on this and
any such change is welcome by responding to the user survey.

OpenStack on OpenStack (TripleO)
This project continues to improve and you may consider using it for green-
field deployments.

Data Processing (Sahara)
A much-requested answer to big data problems, a dedicated team has
been making solid progress on a Hadoop-as-a-Service project.

Bare-Metal Deployment (Ironic)
Though bare-metal deployment has been widely lauded, and development
continues, the project to replace the Compute bare-metal driver will not
graduate in Icehouse. A particular blueprint to follow is Migration Path
from Nova's BM Driver, which tracks the ability to move to the new project
from an existing bare-metal deployment.

https://www.openstack.org/user-survey/Login
https://blueprints.launchpad.net/ironic/+spec/migration-from-nova
https://blueprints.launchpad.net/ironic/+spec/migration-from-nova

OpenStack Ops Guide September 12, 2014

293

Database as a Service (Trove)
The OpenStack community has had a database-as-a-service tool in develop-
ment for some time, and we will finally see the first integrated release of it
in Icehouse. Initially, it will only support MySQL, with further options avail-
able in Juno onward, but it should be able to deploy database servers out
of the box in a highly available way from this release.

Messaging as a Service (Marconi)
A service to provide queues of messages and notifications has entered “in-
cubation,” meaning if the upcoming development cycles are successful, it
will be released in Juno.

Scheduler Improvements
Both Compute and Block Storage rely on schedulers to determine where to
place virtual machines or volumes. In Havana, the Compute scheduler un-
derwent significant improvement, while in Icehouse the scheduler in Block
Storage is slated for a boost. Further down the track, an effort started this
cycle that aims to create a holistic scheduler covering both will come to
fruition.

Block Storage Improvements

The team discussed many areas of work at the Icehouse summit, includ-
ing volume migration support, Ceph integration, and access control for vol-
umes.

Toward a Python SDK

Though many successfully use the various python-*client code as an effec-
tive SDK for interacting with OpenStack, consistency between the projects
and documentation availability waxes and wanes. To combat this, an ef-
fort to improve the experience has started. Cross-project development
efforts in OpenStack have a checkered history, such as the unified client
project having several false starts. However, the early signs for the SDK
project are promising, and we expect to see results during the Juno cycle.

https://wiki.openstack.org/wiki/PythonOpenStackSDK
https://wiki.openstack.org/wiki/PythonOpenStackSDK
https://wiki.openstack.org/wiki/OpenStackClient
https://wiki.openstack.org/wiki/OpenStackClient

OpenStack Ops Guide September 12, 2014

295

Appendix D. Resources

Table of Contents
OpenStack ... 295
Cloud (General) ... 295
Python ... 295
Networking .. 295
Systems Administration .. 296
Virtualization ... 296
Configuration Management ... 296

OpenStack
• Installation Guide for Debian 7.0

• Installation Guide for openSUSE and SUSE Linux Enterprise Server

• Installation Guide for Red Hat Enterprise Linux, CentOS, and Fedora

• Installation Guide for Ubuntu 12.04/14.04 (LTS) Server

• OpenStack Cloud Administrator Guide

• OpenStack Cloud Computing Cookbook (Packt Publishing)

Cloud (General)
• “The NIST Definition of Cloud Computing”

Python
• Dive Into Python (Apress)

Networking
• TCP/IP Illustrated, Volume 1: The Protocols, 2/E (Pearson)

• The TCP/IP Guide (No Starch Press)

http://docs.openstack.org/icehouse/install-guide/install/apt-debian/content/
http://docs.openstack.org/icehouse/install-guide/install/zypper/content/
http://docs.openstack.org/icehouse/install-guide/install/yum/content/
http://docs.openstack.org/icehouse/install-guide/install/apt/content/
http://docs.openstack.org/admin-guide-cloud/content/
http://www.packtpub.com/openstack-cloud-computing-cookbook-second-edition/book
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.diveintopython.net/
http://www.pearsonhighered.com/educator/product/TCPIP-Illustrated-Volume-1-The-Protocols/9780321336316.page
http://www.nostarch.com/tcpip.htm

OpenStack Ops Guide September 12, 2014

296

• “A tcpdump Tutorial and Primer”

Systems Administration
• UNIX and Linux Systems Administration Handbook (Prentice Hall)

Virtualization
• The Book of Xen (No Starch Press)

Configuration Management
• Puppet Labs Documentation

• Pro Puppet (Apress)

http://danielmiessler.com/study/tcpdump/
http://www.admin.com/
http://www.nostarch.com/xen.htm
http://docs.puppetlabs.com/
http://www.apress.com/9781430230571

OpenStack Ops Guide September 12, 2014

297

Glossary
This glossary offers a list of terms and definitions to define a vocabulary for Open-
Stack-related concepts.

To add to OpenStack glossary, clone the openstack/openstack-manuals repos-
itory and update the source file doc/glossary/glossary-terms.xml through
the OpenStack contribution process.

Numbers
6to4

A mechanism that allows IPv6 packets to be transmitted over an IPv4 network,
providing a strategy for migrating to IPv6.

A
absolute limit

Impassable limits for guest VMs. Settings include total RAM size, maximum num-
ber of vCPUs, and maximum disk size.

access control list
A list of permissions attached to an object. An ACL specifies which users or sys-
tem processes have access to objects. It also defines which operations can be per-
formed on specified objects. Each entry in a typical ACL specifies a subject and an
operation. For instance, the ACL entry (Alice, delete) for a file gives Alice
permission to delete the file.

access key
Alternative term for an Amazon EC2 access key. See EC2 access key.

account
The Object Storage context of an account. Do not confuse with a user account
from an authentication service, such as Active Directory, /etc/passwd, OpenL-
DAP, OpenStack Identity Service, and so on.

account auditor
Checks for missing replicas and incorrect or corrupted objects in a specified Ob-
ject Storage account by running queries against the back-end SQLite database.

account database
A SQLite database that contains Object Storage accounts and related metadata
and that the accounts server accesses.

http://git.openstack.org/cgit/openstack/openstack-manuals
http://git.openstack.org/cgit/openstack/openstack-manuals

OpenStack Ops Guide September 12, 2014

298

account reaper
An Object Storage worker that scans for and deletes account databases and that
the account server has marked for deletion.

account server
Lists containers in Object Storage and stores container information in the account
database.

account service
An Object Storage component that provides account services such as list, create,
modify, and audit. Do not confuse with OpenStack Identity Service, OpenLDAP,
or similar user-account services.

accounting
The Compute service provides accounting information through the event notifica-
tion and system usage data facilities.

ACL
See access control list.

active/active configuration
In a high-availability setup with an active/active configuration, several systems
share the load together and if one fails, the load is distributed to the remaining
systems.

Active Directory
Authentication and identity service by Microsoft, based on LDAP. Supported in
OpenStack.

active/passive configuration
In a high-availability setup with an active/passive configuration, systems are set
up to bring additional resources online to replace those that have failed.

address pool
A group of fixed and/or floating IP addresses that are assigned to a project and
can be used by or assigned to the VM instances in a project.

admin API
A subset of API calls that are accessible to authorized administrators and are gen-
erally not accessible to end users or the public Internet. They can exist as a sepa-
rate service (keystone) or can be a subset of another API (nova).

admin server
In the context of the Identity Service, the worker process that provides access to
the admin API.

OpenStack Ops Guide September 12, 2014

299

Advanced Message Queuing Protocol (AMQP)
The open standard messaging protocol used by OpenStack components for in-
tra-service communications, provided by RabbitMQ, Qpid, or ZeroMQ.

Advanced RISC Machine (ARM)
Lower power consumption CPU often found in mobile and embedded devices.
Supported by OpenStack.

alert
The Compute service can send alerts through its notification system, which in-
cludes a facility to create custom notification drivers. Alerts can be sent to and
displayed on the horizon dashboard.

allocate
The process of taking a floating IP address from the address pool so it can be as-
sociated with a fixed IP on a guest VM instance.

Amazon Kernel Image (AKI)
Both a VM container format and disk format. Supported by Image Service.

Amazon Machine Image (AMI)
Both a VM container format and disk format. Supported by Image Service.

Amazon Ramdisk Image (ARI)
Both a VM container format and disk format. Supported by Image Service.

Anvil
A project that ports the shell script-based project named DevStack to Python.

Apache
The Apache Software Foundation supports the Apache community of open-
source software projects. These projects provide software products for the public
good.

Apache License 2.0
All OpenStack core projects are provided under the terms of the Apache License
2.0 license.

Apache Web Server
The most common web server software currently used on the Internet.

API
Application programming interface.

OpenStack Ops Guide September 12, 2014

300

API endpoint
The daemon, worker, or service that a client communicates with to access an API.
API endpoints can provide any number of services, such as authentication, sales
data, performance metrics, Compute VM commands, census data, and so on.

API extension
Custom modules that extend some OpenStack core APIs.

API extension plug-in
Alternative term for a Networking plug-in or Networking API extension.

API key
Alternative term for an API token.

API server
Any node running a daemon or worker that provides an API endpoint.

API token
Passed to API requests and used by OpenStack to verify that the client is autho-
rized to run the requested operation.

API version
In OpenStack, the API version for a project is part of the URL. For example,
example.com/nova/v1/foobar.

applet
A Java program that can be embedded into a web page.

Application Programming Interface (API)
A collection of specifications used to access a service, application, or program. In-
cludes service calls, required parameters for each call, and the expected return
values.

application server
A piece of software that makes available another piece of software over a net-
work.

Application Service Provider (ASP)
Companies that rent specialized applications that help businesses and organiza-
tions provide additional services with lower cost.

Address Resolution Protocol (ARP)
The protocol by which layer-3 IP addresses are resolved into layer-2 link local ad-
dresses.

OpenStack Ops Guide September 12, 2014

301

arptables
Tool used for maintaining Address Resolution Protocol packet filter rules in the
Linux kernel firewall modules. Used along with iptables, ebtables, and ip6tables
in Compute to provide firewall services for VMs.

associate
The process associating a Compute floating IP address with a fixed IP address.

Asynchronous JavaScript and XML (AJAX)
A group of interrelated web development techniques used on the client-side to
create asynchronous web applications. Used extensively in horizon.

ATA over Ethernet (AoE)
A disk storage protocol tunneled within Ethernet.

attach
The process of connecting a VIF or vNIC to a L2 network in Networking. In the
context of Compute, this process connects a storage volume to an instance.

attachment (network)
Association of an interface ID to a logical port. Plugs an interface into a port.

auditing
Provided in Compute through the system usage data facility.

auditor
A worker process that verifies the integrity of Object Storage objects, containers,
and accounts. Auditors is the collective term for the Object Storage account audi-
tor, container auditor, and object auditor.

Austin
The code name for the initial release of OpenStack. The first design summit took
place in Austin, Texas, US.

auth node
Alternative term for an Object Storage authorization node.

authentication
The process that confirms that the user, process, or client is really who they say
they are through private key, secret token, password, fingerprint, or similar
method.

authentication token
A string of text provided to the client after authentication. Must be provided by
the user or process in subsequent requests to the API endpoint.

OpenStack Ops Guide September 12, 2014

302

AuthN
The Identity Service component that provides authentication services.

authorization
The act of verifying that a user, process, or client is authorized to perform an ac-
tion.

authorization node
An Object Storage node that provides authorization services.

AuthZ
The Identity Service component that provides high-level authorization services.

Auto ACK
Configuration setting within RabbitMQ that enables or disables message ac-
knowledgment. Enabled by default.

auto declare
A Compute RabbitMQ setting that determines whether a message exchange is
automatically created when the program starts.

availability zone
An Amazon EC2 concept of an isolated area that is used for fault tolerance. Do
not confuse with an OpenStack Compute zone or cell.

AWS
Amazon Web Services.

AWS CloudFormation template
AWS CloudFormation allows AWS users to create and manage a collection of re-
lated resources. The Orchestration module supports a CloudFormation-compati-
ble format (CFN).

B
back end

Interactions and processes that are obfuscated from the user, such as Compute
volume mount, data transmission to an iSCSI target by a daemon, or Object Stor-
age object integrity checks.

back-end catalog
The storage method used by the Identity Service catalog service to store and re-
trieve information about API endpoints that are available to the client. Examples
include a SQL database, LDAP database, or KVS back end.

OpenStack Ops Guide September 12, 2014

303

back-end store
The persistent data store used to save and retrieve information for a service, such
as lists of Object Storage objects, current state of guest VMs, lists of user names,
and so on. Also, the method that the Image Service uses to get and store VM im-
ages. Options include Object Storage, local file system, S3, and HTTP.

bandwidth
The amount of available data used by communication resources, such as the In-
ternet. Represents the amount of data that is used to download things or the
amount of data available to download.

bare
An Image Service container format that indicates that no container exists for the
VM image.

base image
An OpenStack-provided image.

Bell-LaPadula model
A security model that focuses on data confidentiality and controlled access to
classified information. This model divide the entities into subjects and objects.
The clearance of a subject is compared to the classification of the object to de-
termine if the subject is authorized for the specific access mode. The clearance or
classification scheme is expressed in terms of a lattice.

Bexar
A grouped release of projects related to OpenStack that came out in February of
2011. It included only Compute (nova) and Object Storage (swift).

Bexar is the code name for the second release of OpenStack. The design summit
took place in San Antonio, Texas, US, which is the county seat for Bexar county.

binary
Information that consists solely of ones and zeroes, which is the language of com-
puters.

bit
A bit is a single digit number that is in base of 2 (either a zero or one). Bandwidth
usage is measured in bits per second.

bits per second (BPS)
The universal measurement of how quickly data is transferred from place to
place.

OpenStack Ops Guide September 12, 2014

304

block device
A device that moves data in the form of blocks. These device nodes interface the
devices, such as hard disks, CD-ROM drives, flash drives, and other addressable re-
gions of memory.

block migration
A method of VM live migration used by KVM to evacuate instances from one
host to another with very little downtime during a user-initiated switchover. Does
not require shared storage. Supported by Compute.

Block Storage
The OpenStack core project that enables management of volumes, volume snap-
shots, and volume types. The project name of Block Storage is cinder.

Block Storage API
An API on a separate endpoint for attaching, detaching, and creating block stor-
age for compute VMs.

BMC
Baseboard Management Controller. The intelligence in the IPMI architecture,
which is a specialized micro-controller that is embedded on the motherboard of
a computer and acts as a server. Manages the interface between system manage-
ment software and platform hardware.

bootable disk image
A type of VM image that exists as a single, bootable file.

Bootstrap Protocol (BOOTP)
A network protocol used by a network client to obtain an IP address from a con-
figuration server. Provided in Compute through the dnsmasq daemon when us-
ing either the FlatDHCP manager or VLAN manager network manager.

Border Gateway Protocol (BGP)
The Border Gateway Protocol is a dynamic routing protocol that connects au-
tonomous systems. Considered the backbone of the Internet, this protocol con-
nects disparate networks to form a larger network.

browser
Any client software that enables a computer or device to access the Internet.

builder file
Contains configuration information that Object Storage uses to reconfigure a
ring or to re-create it from scratch after a serious failure.

bursting
The practice of utilizing a secondary environment to elastically build instances on-
demand when the primary environment is resource constrained.

OpenStack Ops Guide September 12, 2014

305

button class
A group of related button types within horizon. Buttons to start, stop, and sus-
pend VMs are in one class. Buttons to associate and disassociate floating IP ad-
dresses are in another class, and so on.

byte
Set of bits that make up a single character; there are usually 8 bits to a byte.

C
CA

Certificate Authority or Certification Authority. In cryptography, an entity that is-
sues digital certificates. The digital certificate certifies the ownership of a public
key by the named subject of the certificate. This enables others (relying parties)
to rely upon signatures or assertions made by the private key that corresponds
to the certified public key. In this model of trust relationships, a CA is a trusted
third party for both the subject (owner) of the certificate and the party relying
upon the certificate. CAs are characteristic of many public key infrastructure (PKI)
schemes.

cache pruner
A program that keeps the Image Service VM image cache at or below its config-
ured maximum size.

Cactus
An OpenStack grouped release of projects that came out in the spring of 2011. It
included Compute (nova), Object Storage (swift), and the Image Service (glance).

Cactus is a city in Texas, US and is the code name for the third release of Open-
Stack. When OpenStack releases went from three to six months long, the code
name of the release changed to match a geography nearest the previous summit.

CADF
Cloud Auditing Data Federation (CADF) is a specification for audit event data.
CADF is supported by OpenStack Identity.

CALL
One of the RPC primitives used by the OpenStack message queue software. Sends
a message and waits for a response.

capability
Defines resources for a cell, including CPU, storage, and networking. Can apply to
the specific services within a cell or a whole cell.

OpenStack Ops Guide September 12, 2014

306

capacity cache
A Compute back-end database table that contains the current workload, amount
of free RAM, and number of VMs running on each host. Used to determine on
which VM a host starts.

capacity updater
A notification driver that monitors VM instances and updates the capacity cache
as needed.

CAST
One of the RPC primitives used by the OpenStack message queue software. Sends
a message and does not wait for a response.

catalog
A list of API endpoints that are available to a user after authentication with the
Identity Service.

catalog service
An Identity Service that lists API endpoints that are available to a user after au-
thentication with the Identity Service.

ceilometer
The project name for the Telemetry service, which is an integrated project that
provides metering and measuring facilities for OpenStack.

cell
Provides logical partitioning of Compute resources in a child and parent relation-
ship. Requests are passed from parent cells to child cells if the parent cannot pro-
vide the requested resource.

cell forwarding
A Compute option that enables parent cells to pass resource requests to child
cells if the parent cannot provide the requested resource.

cell manager
The Compute component that contains a list of the current capabilities of each
host within the cell and routes requests as appropriate.

CentOS
A Linux distribution that is compatible with OpenStack.

Ceph
Massively scalable distributed storage system that consists of an object store,
block store, and POSIX-compatible distributed file system. Compatible with Open-
Stack.

OpenStack Ops Guide September 12, 2014

307

CephFS
The POSIX-compliant file system provided by Ceph.

certificate authority
A simple certificate authority provided by Compute for cloudpipe VPNs and VM
image decryption.

Challenge-Handshake Authentication Protocol (CHAP)
An iSCSI authentication method supported by Compute.

chance scheduler
A scheduling method used by Compute that randomly chooses an available host
from the pool.

changes since
A Compute API parameter that downloads changes to the requested item since
your last request, instead of downloading a new, fresh set of data and compar-
ing it against the old data.

Chef
An operating system configuration management tool supporting OpenStack de-
ployments.

child cell
If a requested resource such as CPU time, disk storage, or memory is not available
in the parent cell, the request is forwarded to its associated child cells. If the child
cell can fulfill the request, it does. Otherwise, it attempts to pass the request to
any of its children.

cinder
A core OpenStack project that provides block storage services for VMs.

CirrOS
A minimal Linux distribution designed for use as a test image on clouds such as
OpenStack.

Cisco neutron plug-in
A Networking plug-in for Cisco devices and technologies, including UCS and
Nexus.

cloud architect
A person who plans, designs, and oversees the creation of clouds.

cloud computing
A model that enables access to a shared pool of configurable computing re-
sources, such as networks, servers, storage, applications, and services, that can

OpenStack Ops Guide September 12, 2014

308

be rapidly provisioned and released with minimal management effort or service
provider interaction.

cloud controller
Collection of Compute components that represent the global state of the cloud;
talks to services, such as Identity Service authentication, Object Storage, and
node/storage workers through a queue.

cloud controller node
A node that runs network, volume, API, scheduler, and image services. Each ser-
vice may be broken out into separate nodes for scalability or availability.

Cloud Data Management Interface (CDMI)
SINA standard that defines a RESTful API for managing objects in the cloud, cur-
rently unsupported in OpenStack.

Cloud Infrastructure Management Interface (CIMI)
An in-progress specification for cloud management. Currently unsupported in
OpenStack.

cloud-init
A package commonly installed in VM images that performs initialization of an in-
stance after boot using information that it retrieves from the metadata service,
such as the SSH public key and user data.

cloudadmin
One of the default roles in the Compute RBAC system. Grants complete system
access.

Cloudbase-Init
A Windows port of cloud-init.

cloudpipe
A compute service that creates VPNs on a per-project basis.

cloudpipe image
A pre-made VM image that serves as a cloudpipe server. Essentially, OpenVPN
running on Linux.

CMDB
Configuration Management Database.

command filter
Lists allowed commands within the Compute rootwrap facility.

OpenStack Ops Guide September 12, 2014

309

community project
A project that is not officially endorsed by the OpenStack Foundation. If the
project is successful enough, it might be elevated to an incubated project and
then to a core project, or it might be merged with the main code trunk.

compression
Reducing the size of files by special encoding, the file can be decompressed again
to its original content. OpenStack supports compression at the Linux file system
level but does not support compression for things such as Object Storage objects
or Image Service VM images.

Compute
The OpenStack core project that provides compute services. The project name of
Compute service is nova.

Compute API
The nova-api daemon provides access to nova services. Can communicate with
other APIs, such as the Amazon EC2 API.

compute controller
The Compute component that chooses suitable hosts on which to start VM in-
stances.

compute host
Physical host dedicated to running compute nodes.

compute node
A node that runs the nova-compute daemon that manages VM instances that
provide a wide range of services, such as web applications and analytics.

Compute service
Name for the Compute component that manages VMs.

compute worker
The Compute component that runs on each compute node and manages the VM
instance life cycle, including run, reboot, terminate, attach/detach volumes, and
so on. Provided by the nova-compute daemon.

concatenated object
A set of segment objects that Object Storage combines and sends to the client.

conductor
In Compute, conductor is the process that proxies database requests from the
compute process. Using conductor improves security because compute nodes do
not need direct access to the database.

OpenStack Ops Guide September 12, 2014

310

consistency window
The amount of time it takes for a new Object Storage object to become accessi-
ble to all clients.

console log
Contains the output from a Linux VM console in Compute.

container
Organizes and stores objects in Object Storage. Similar to the concept of a Linux
directory but cannot be nested. Alternative term for an Image Service container
format.

container auditor
Checks for missing replicas or incorrect objects in specified Object Storage con-
tainers through queries to the SQLite back-end database.

container database
A SQLite database that stores Object Storage containers and container metada-
ta. The container server accesses this database.

container format
A wrapper used by the Image Service that contains a VM image and its associat-
ed metadata, such as machine state, OS disk size, and so on.

container server
An Object Storage server that manages containers.

container service
The Object Storage component that provides container services, such as create,
delete, list, and so on.

content delivery network (CDN)
A content delivery network is a specialized network that is used to distribute con-
tent to clients, typically located close to the client for increased performance.

controller node
Alternative term for a cloud controller node.

core API
Depending on context, the core API is either the OpenStack API or the main API
of a specific core project, such as Compute, Networking, Image Service, and so
on.

core project
An official OpenStack project. Currently consists of Compute (nova), Object
Storage (swift), Image Service (glance), Identity (keystone), Dashboard (hori-

OpenStack Ops Guide September 12, 2014

311

zon), Networking (neutron), and Block Storage (cinder). The Telemetry module
(ceilometer) and Orchestration module (heat) are integrated projects as of the
Havana release. In the Icehouse release, the Database module (trove) gains inte-
grated project status.

cost
Under the Compute distributed scheduler, this is calculated by looking at the ca-
pabilities of each host relative to the flavor of the VM instance being requested.

credentials
Data that is only known to or accessible by a user and used to verify that the us-
er is who he says he is. Credentials are presented to the server during authentica-
tion. Examples include a password, secret key, digital certificate, and fingerprint.

Crowbar
An open source community project by Dell that aims to provide all necessary ser-
vices to quickly deploy clouds.

current workload
An element of the Compute capacity cache that is calculated based on the num-
ber of build, snapshot, migrate, and resize operations currently in progress on a
given host.

customer
Alternative term for tenant.

customization module
A user-created Python module that is loaded by horizon to change the look and
feel of the dashboard.

D
daemon

A process that runs in the background and waits for requests. May or may not lis-
ten on a TCP or UDP port. Do not confuse with a worker.

DAC
Discretionary access control. Governs the ability of subjects to access objects,
while enabling users to make policy decisions and assign security attributes. The
traditional UNIX system of users, groups, and read-write-execute permissions is
an example of DAC.

dashboard
The web-based management interface for OpenStack. An alternative name for
horizon.

OpenStack Ops Guide September 12, 2014

312

data encryption
Both Image Service and Compute support encrypted virtual machine (VM) im-
ages (but not instances). In-transit data encryption is supported in OpenStack us-
ing technologies such as HTTPS, SSL, TLS, and SSH. Object Storage does not sup-
port object encryption at the application level but may support storage that uses
disk encryption.

database ID
A unique ID given to each replica of an Object Storage database.

database replicator
An Object Storage component that copies changes in the account, container, and
object databases to other nodes.

Database Service
An integrated project that provide scalable and reliable Cloud Database-as-a-Ser-
vice functionality for both relational and non-relational database engines. The
project name of Database Service is trove.

deallocate
The process of removing the association between a floating IP address and a
fixed IP address. Once this association is removed, the floating IP returns to the
address pool.

Debian
A Linux distribution that is compatible with OpenStack.

deduplication
The process of finding duplicate data at the disk block, file, and/or object level to
minimize storage use—currently unsupported within OpenStack.

default panel
The default panel that is displayed when a user accesses the horizon dashboard.

default tenant
New users are assigned to this tenant if no tenant is specified when a user is cre-
ated.

default token
An Identity Service token that is not associated with a specific tenant and is ex-
changed for a scoped token.

delayed delete
An option within Image Service so that an image is deleted after a predefined
number of seconds instead of immediately.

OpenStack Ops Guide September 12, 2014

313

delivery mode
Setting for the Compute RabbitMQ message delivery mode; can be set to either
transient or persistent.

denial of service (DoS)
Denial of service (DoS) is a short form for denial-of-service attack. This is a mali-
cious attempt to prevent legitimate users from using a service.

deprecated auth
An option within Compute that enables administrators to create and manage
users through the nova-manage command as opposed to using the Identity Ser-
vice.

Desktop-as-a-Service
A platform that provides a suite of desktop environments that users may log in to
receive a desktop experience from any location. This may provide general use, de-
velopment, or even homogeneous testing environments.

developer
One of the default roles in the Compute RBAC system and the default role as-
signed to a new user.

device ID
Maps Object Storage partitions to physical storage devices.

device weight
Distributes partitions proportionately across Object Storage devices based on the
storage capacity of each device.

DevStack
Community project that uses shell scripts to quickly build complete OpenStack de-
velopment environments.

DHCP
Dynamic Host Configuration Protocol. A network protocol that configures de-
vices that are connected to a network so that they can communicate on that net-
work by using the Internet Protocol (IP). The protocol is implemented in a client-
server model where DHCP clients request configuration data, such as an IP ad-
dress, a default route, and one or more DNS server addresses from a DHCP serv-
er.

DHCP agent
OpenStack Networking agent that provides DHCP services for virtual networks.

OpenStack Ops Guide September 12, 2014

314

Diablo
A grouped release of projects related to OpenStack that came out in the fall of
2011, the fourth release of OpenStack. It included Compute (nova 2011.3), Ob-
ject Storage (swift 1.4.3), and the Image Service (glance).

Diablo is the code name for the fourth release of OpenStack. The design summit
took place in in the Bay Area near Santa Clara, California, US and Diablo is a near-
by city.

direct consumer
An element of the Compute RabbitMQ that comes to life when a RPC call is exe-
cuted. It connects to a direct exchange through a unique exclusive queue, sends
the message, and terminates.

direct exchange
A routing table that is created within the Compute RabbitMQ during RPC calls;
one is created for each RPC call that is invoked.

direct publisher
Element of RabbitMQ that provides a response to an incoming MQ message.

disassociate
The process of removing the association between a floating IP address and fixed
IP and thus returning the floating IP address to the address pool.

disk encryption
The ability to encrypt data at the file system, disk partition, or whole-disk level.
Supported within Compute VMs.

disk format
The underlying format that a disk image for a VM is stored as within the Image
Service back-end store. For example, AMI, ISO, QCOW2, VMDK, and so on.

dispersion
In Object Storage, tools to test and ensure dispersion of objects and containers to
ensure fault tolerance.

distributed virtual router (DVR)
Mechanism for highly-available multi-host routing when using OpenStack Net-
working (neutron).

Django
A web framework used extensively in horizon.

OpenStack Ops Guide September 12, 2014

315

DNS
Domain Name Server. A hierarchical and distributed naming system for comput-
ers, services, and resources connected to the Internet or a private network. Asso-
ciates a human-friendly names to IP addresses.

DNS record
A record that specifies information about a particular domain and belongs to the
domain.

dnsmasq
Daemon that provides DNS, DHCP, BOOTP, and TFTP services, used by the Com-
pute VLAN manager and FlatDHCP manager.

domain
Separates a website from other sites. Often, the domain name has two or more
parts that are separated by dots. For example, yahoo.com, usa.gov, harvard.edu,
or mail.yahoo.com.

A domain is an entity or container of all DNS-related information containing one
or more records.

Domain Name Service (DNS)
In Compute, the support that enables associating DNS entries with floating IP ad-
dresses, nodes, or cells so that hostnames are consistent across reboots.

Domain Name System (DNS)
A system by which Internet domain name-to-address and address-to-name resolu-
tions are determined.

DNS helps navigate the Internet by translating the IP address into an ad-
dress that is easier to remember For example, translating 111.111.111.1 into
www.yahoo.com.

All domains and their components, such as mail servers, utilize DNS to resolve to
the appropriate locations. DNS servers are usually set up in a master-slave rela-
tionship such that failure of the master invokes the slave. DNS servers might al-
so be clustered or replicated such that changes made to one DNS server are auto-
matically propagated to other active servers.

download
The transfer of data, usually in the form of files, from one computer to another.

DRTM
Dynamic root of trust measurement.

OpenStack Ops Guide September 12, 2014

316

durable exchange
The Compute RabbitMQ message exchange that remains active when the server
restarts.

durable queue
A Compute RabbitMQ message queue that remains active when the server
restarts.

Dynamic Host Configuration Protocol (DHCP)
A method to automatically configure networking for a host at boot time. Provid-
ed by both Networking and Compute.

Dynamic HyperText Markup Language (DHTML)
Pages that use HTML, JavaScript, and Cascading Style Sheets to enable users to
interact with a web page or show simple animation.

E
east-west traffic

Network traffic between servers in the same cloud or data center. See also north-
south traffic.

EBS boot volume
An Amazon EBS storage volume that contains a bootable VM image, currently
unsupported in OpenStack.

ebtables
Used in Compute along with arptables, iptables, and ip6tables to create firewalls
and to ensure isolation of network communications.

EC2
The Amazon commercial compute product, similar to Compute.

EC2 access key
Used along with an EC2 secret key to access the Compute EC2 API.

EC2 API
OpenStack supports accessing the Amazon EC2 API through Compute.

EC2 Compatibility API
A Compute component that enables OpenStack to communicate with Amazon
EC2.

EC2 secret key
Used along with an EC2 access key when communicating with the Compute EC2
API; used to digitally sign each request.

OpenStack Ops Guide September 12, 2014

317

Elastic Block Storage (EBS)
The Amazon commercial block storage product.

encryption
OpenStack supports encryption technologies such as HTTPS, SSH, SSL, TLS, digital
certificates, and data encryption.

endpoint
See API endpoint.

endpoint registry
Alternative term for an Identity Service catalog.

encapsulation
The practice of placing one packet type within another for the purposes of ab-
stracting or securing data. Examples include GRE, MPLS, or IPsec.

endpoint template
A list of URL and port number endpoints that indicate where a service, such as
Object Storage, Compute, Identity, and so on, can be accessed.

entity
Any piece of hardware or software that wants to connect to the network services
provided by Networking, the network connectivity service. An entity can make
use of Networking by implementing a VIF.

ephemeral image
A VM image that does not save changes made to its volumes and reverts them to
their original state after the instance is terminated.

ephemeral volume
Volume that does not save the changes made to it and reverts to its original state
when the current user relinquishes control.

Essex
A grouped release of projects related to OpenStack that came out in April 2012,
the fifth release of OpenStack. It included Compute (nova 2012.1), Object Stor-
age (swift 1.4.8), Image (glance), Identity (keystone), and Dashboard (horizon).

Essex is the code name for the fifth release of OpenStack. The design summit
took place in Boston, Massachusetts, US and Essex is a nearby city.

ESX
An OpenStack-supported hypervisor.

OpenStack Ops Guide September 12, 2014

318

ESXi
An OpenStack-supported hypervisor.

ebtables
Filtering tool for a Linux bridging firewall, enabling filtering of network traf-
fic passing through a Linux bridge. Used to restrict communications between
hosts and/or nodes in OpenStack Compute along with iptables, arptables, and
ip6tables.

ETag
MD5 hash of an object within Object Storage, used to ensure data integrity.

euca2ools
A collection of command-line tools for administering VMs; most are compatible
with OpenStack.

Eucalyptus Kernel Image (EKI)
Used along with an ERI to create an EMI.

Eucalyptus Machine Image (EMI)
VM image container format supported by Image Service.

Eucalyptus Ramdisk Image (ERI)
Used along with an EKI to create an EMI.

evacuate
The process of migrating one or all virtual machine (VM) instances from one host
to another, compatible with both shared storage live migration and block migra-
tion.

exchange
Alternative term for a RabbitMQ message exchange.

exchange type
A routing algorithm in the Compute RabbitMQ.

exclusive queue
Connected to by a direct consumer in RabbitMQ—Compute, the message can be
consumed only by the current connection.

extended attributes (xattrs)
File system option that enables storage of additional information beyond owner,
group, permissions, modification time, and so on. The underlying Object Storage
file system must support extended attributes.

OpenStack Ops Guide September 12, 2014

319

extension
Alternative term for an API extension or plug-in. In the context of Identity Ser-
vice, this is a call that is specific to the implementation, such as adding support
for OpenID.

external network
A network segment typically used for instance Internet access.

extra specs
Specifies additional requirements when Compute determines where to start a
new instance. Examples include a minimum amount of network bandwidth or a
GPU.

F
FakeLDAP

An easy method to create a local LDAP directory for testing Identity Service and
Compute. Requires Redis.

fan-out exchange
Within RabbitMQ and Compute, it is the messaging interface that is used by the
scheduler service to receive capability messages from the compute, volume, and
network nodes.

Fedora
A Linux distribution compatible with OpenStack.

Fibre Channel
Storage protocol similar in concept to TCP/IP; encapsulates SCSI commands and
data.

Fibre Channel over Ethernet (FCoE)
The fibre channel protocol tunneled within Ethernet.

fill-first scheduler
The Compute scheduling method that attempts to fill a host with VMs rather
than starting new VMs on a variety of hosts.

filter
The step in the Compute scheduling process when hosts that cannot run VMs are
eliminated and not chosen.

firewall
Used to restrict communications between hosts and/or nodes, implemented in
Compute using iptables, arptables, ip6tables, and etables.

OpenStack Ops Guide September 12, 2014

320

Firewall-as-a-Service (FWaaS)
A Networking extension that provides perimeter firewall functionality.

fixed IP address
An IP address that is associated with the same instance each time that instance
boots, is generally not accessible to end users or the public Internet, and is used
for management of the instance.

Flat Manager
The Compute component that gives IP addresses to authorized nodes and as-
sumes DHCP, DNS, and routing configuration and services are provided by some-
thing else.

flat mode injection
A Compute networking method where the OS network configuration informa-
tion is injected into the VM image before the instance starts.

flat network
The Network Controller provides virtual networks to enable compute servers to
interact with each other and with the public network. All machines must have a
public and private network interface. A flat network is a private network inter-
face, which is controlled by the flat_interface option with flat managers.

FlatDHCP Manager
The Compute component that provides dnsmasq (DHCP, DNS, BOOTP, TFTP) and
radvd (routing) services.

flavor
Alternative term for a VM instance type.

flavor ID
UUID for each Compute or Image Service VM flavor or instance type.

floating IP address
An IP address that a project can associate with a VM so that the instance has the
same public IP address each time that it boots. You create a pool of floating IP
addresses and assign them to instances as they are launched to maintain a consis-
tent IP address for maintaining DNS assignment.

Folsom
A grouped release of projects related to OpenStack that came out in the fall of
2012, the sixth release of OpenStack. It includes Compute (nova), Object Storage
(swift), Identity (keystone), Networking (neutron), Image Service (glance), and
Volumes or Block Storage (cinder).

OpenStack Ops Guide September 12, 2014

321

Folsom is the code name for the sixth release of OpenStack. The design summit
took place in San Francisco, California, US and Folsom is a nearby city.

FormPost
Object Storage middleware that uploads (posts) an image through a form on a
web page.

front end
The point where a user interacts with a service; can be an API endpoint, the hori-
zon dashboard, or a command-line tool.

G
gateway

An IP address, typically assigned to a router, that passes network traffic between
different networks.

Generic Receive Offload (GRO)
Feature of certain network interface drivers that combines many smaller received
packets into a large packet before delivery to the kernel IP stack.

generic routing encapsulation (GRE)
Protocol that encapsulates a wide variety of network layer protocols inside virtual
point-to-point links.

glance
A core project that provides the OpenStack Image Service.

glance API server
Processes client requests for VMs, updates Image Service metadata on the reg-
istry server, and communicates with the store adapter to upload VM images from
the back-end store.

glance registry
Alternative term for the Image Service image registry.

global endpoint template
The Identity Service endpoint template that contains services available to all ten-
ants.

GlusterFS
A file system designed to aggregate NAS hosts, compatible with OpenStack.

golden image
A method of operating system installation where a finalized disk image is created
and then used by all nodes without modification.

OpenStack Ops Guide September 12, 2014

322

Graphic Interchange Format (GIF)
A type of image file that is commonly used for animated images on web pages.

Graphics Processing Unit (GPU)
Choosing a host based on the existence of a GPU is currently unsupported in
OpenStack.

Green Threads
The cooperative threading model used by Python; reduces race conditions and
only context switches when specific library calls are made. Each OpenStack service
is its own thread.

Grizzly
The code name for the seventh release of OpenStack. The design summit took
place in San Diego, California, US and Grizzly is an element of the state flag of
California.

guest OS
An operating system instance running under the control of a hypervisor.

H
Hadoop

Apache Hadoop is an open source software framework that supports data-inten-
sive distributed applications.

handover
An object state in Object Storage where a new replica of the object is automati-
cally created due to a drive failure.

hard reboot
A type of reboot where a physical or virtual power button is pressed as opposed
to a graceful, proper shutdown of the operating system.

Havana
The code name for the eighth release of OpenStack. The design summit took
place in Portland, Oregon, US and Havana is an unincorporated community in
Oregon.

heat
An integrated project that aims to orchestrate multiple cloud applications for
OpenStack.

Heat Orchestration Template (HOT)
Heat input in the format native to OpenStack.

OpenStack Ops Guide September 12, 2014

323

health monitor
Determines whether back-end members of a VIP pool can process a request. A
pool can have several health monitors associated with it. When a pool has several
monitors associated with it, all monitors check each member of the pool. All mon-
itors must declare a member to be healthy for it to stay active.

high availability (HA)
A high availability system design approach and associated service implementation
ensures that a prearranged level of operational performance will be met during a
contractual measurement period. High availability systems seeks to minimize sys-
tem downtime and data loss.

horizon
OpenStack project that provides a dashboard, which is a web interface.

horizon plug-in
A plug-in for the OpenStack dashboard (horizon).

host
A physical computer, not a VM instance (node).

host aggregate
A method to further subdivide availability zones into hypervisor pools, a collec-
tion of common hosts.

Host Bus Adapter (HBA)
Device plugged into a PCI slot, such as a fibre channel or network card.

HTTP
Hypertext Transfer Protocol. HTTP is an application protocol for distributed, col-
laborative, hypermedia information systems. It is the foundation of data com-
munication for the World Wide Web. Hypertext is structured text that uses logi-
cal links (hyperlinks) between nodes containing text. HTTP is the protocol to ex-
change or transfer hypertext.

HTTPS
Hypertext Transfer Protocol Secure (HTTPS) is a communications protocol for se-
cure communication over a computer network, with especially wide deployment
on the Internet. Technically, it is not a protocol in and of itself; rather, it is the re-
sult of simply layering the Hypertext Transfer Protocol (HTTP) on top of the SSL/
TLS protocol, thus adding the security capabilities of SSL/TLS to standard HTTP
communications.

hybrid cloud
A hybrid cloud is a composition of two or more clouds (private, community or
public) that remain distinct entities but are bound together, offering the benefits

OpenStack Ops Guide September 12, 2014

324

of multiple deployment models. Hybrid cloud can also mean the ability to con-
nect colocation, managed and/or dedicated services with cloud resources.

Hyper-V
One of the hypervisors supported by OpenStack.

hyperlink
Any kind of text that contains a link to some other site, commonly found in docu-
ments where clicking on a word or words opens up a different website.

Hypertext Transfer Protocol (HTTP)
The protocol that tells browsers where to go to find information.

Hypertext Transfer Protocol Secure (HTTPS)
Encrypted HTTP communications using SSL or TLS; most OpenStack API endpoints
and many inter-component communications support HTTPS communication.

hypervisor
Software that arbitrates and controls VM access to the actual underlying hard-
ware.

hypervisor pool
A collection of hypervisors grouped together through host aggregates.

I
IaaS

Infrastructure-as-a-Service. IaaS is a provisioning model in which an organization
outsources physical components of a data center, such as storage, hardware,
servers, and networking components. A service provider owns the equipment
and is responsible for housing, operating and maintaining it. The client typically
pays on a per-use basis. IaaS is a model for providing cloud services.

Icehouse
The code name for the ninth release of OpenStack. The design summit took place
in Hong Kong and Ice House is a street in that city.

ICMP
Internet Control Message Protocol, used by network devices for control mes-
sages. For example, ping uses ICMP to test connectivity.

ID number
Unique numeric ID associated with each user in Identity Service, conceptually sim-
ilar to a Linux or LDAP UID.

OpenStack Ops Guide September 12, 2014

325

Identity API
Alternative term for the Identity Service API.

Identity back end
The source used by Identity Service to retrieve user information; an OpenLDAP
server, for example.

Identity Service
The OpenStack core project that provides a central directory of users mapped
to the OpenStack services they can access. It also registers endpoints for Open-
Stack services. It acts as a common authentication system. The project name of
the Identity Service is keystone.

Identity Service API
The API used to access the OpenStack Identity Service provided through key-
stone.

IDS
Intrusion Detection System.

image
A collection of files for a specific operating system (OS) that you use to create or
rebuild a server. OpenStack provides pre-built images. You can also create custom
images, or snapshots, from servers that you have launched. Custom images can
be used for data backups or as "gold" images for additional servers.

Image API
The Image Service API endpoint for management of VM images.

image cache
Used by Image Service to obtain images on the local host rather than re-down-
loading them from the image server each time one is requested.

image ID
Combination of a URI and UUID used to access Image Service VM images through
the image API.

image membership
A list of tenants that can access a given VM image within Image Service.

image owner
The tenant who owns an Image Service virtual machine image.

image registry
A list of VM images that are available through Image Service.

OpenStack Ops Guide September 12, 2014

326

Image Service
An OpenStack core project that provides discovery, registration, and delivery ser-
vices for disk and server images. The project name of the Image Service is glance.

Image Service API
Alternative name for the glance image API.

image status
The current status of a VM image in Image Service, not to be confused with the
status of a running instance.

image store
The back-end store used by Image Service to store VM images, options include
Object Storage, local file system, S3, or HTTP.

image UUID
UUID used by Image Service to uniquely identify each VM image.

incubated project
A community project may be elevated to this status and is then promoted to a
core project.

ingress filtering
The process of filtering incoming network traffic. Supported by Compute.

INI
The OpenStack configuration files use an INI format to describe options and their
values. It consists of sections and key value pairs.

injection
The process of putting a file into a virtual machine image before the instance is
started.

instance
A running VM, or a VM in a known state such as suspended, that can be used like
a hardware server.

instance ID
Alternative term for instance UUID.

instance state
The current state of a guest VM image.

instance tunnels network
A network segment used for instance traffic tunnels between compute nodes
and the network node.

OpenStack Ops Guide September 12, 2014

327

instance type
Describes the parameters of the various virtual machine images that are avail-
able to users; includes parameters such as CPU, storage, and memory. Alternative
term for flavor.

instance type ID
Alternative term for a flavor ID.

instance UUID
Unique ID assigned to each guest VM instance.

interface
A physical or virtual device that provides connectivity to another device or medi-
um.

interface ID
Unique ID for a Networking VIF or vNIC in the form of a UUID.

internet protocol (IP)
Principal communications protocol in the internet protocol suite for relaying data-
grams across network boundaries.

Internet Service Provider (ISP)
Any business that provides Internet access to individuals or businesses.

Internet Small Computer System Interface (iSCSI)
Storage protocol that encapsulates SCSI frames for transport over IP networks.

ironic
OpenStack project that provisions bare metal, as opposed to virtual, machines.

IOPS
IOPS (Input/Output Operations Per Second) are a common performance mea-
surement used to benchmark computer storage devices like hard disk drives, solid
state drives, and storage area networks.

IP address
Number that is unique to every computer system on the Internet. Two versions of
the Internet Protocol (IP) are in use for addresses: IPv4 and IPv6.

IP Address Management (IPAM)
The process of automating IP address allocation, deallocation, and management.
Currently provided by Compute, melange, and Networking.

IPL
Initial Program Loader.

OpenStack Ops Guide September 12, 2014

328

IPMI
Intelligent Platform Management Interface. IPMI is a standardized computer
system interface used by system administrators for out-of-band management
of computer systems and monitoring of their operation. In layman's terms, it is
a way to manage a computer using a direct network connection, whether it is
turned on or not; connecting to the hardware rather than an operating system
or login shell.

ip6tables
Tool used to set up, maintain, and inspect the tables of IPv6 packet filter rules in
the Linux kernel. In OpenStack Compute, ip6tables is used along with arptables,
ebtables, and iptables to create firewalls for both nodes and VMs.

iptables
Used along with arptables and ebtables, iptables create firewalls in Compute. ipt-
ables are the tables provided by the Linux kernel firewall (implemented as differ-
ent Netfilter modules) and the chains and rules it stores. Different kernel modules
and programs are currently used for different protocols: iptables applies to IPv4,
ip6tables to IPv6, arptables to ARP, and ebtables to Ethernet frames. Requires
root privilege to manipulate.

iSCSI
The SCSI disk protocol tunneled within Ethernet, supported by Compute, Object
Storage, and Image Service.

ISO9960
One of the VM image disk formats supported by Image Service.

itsec
A default role in the Compute RBAC system that can quarantine an instance in
any project.

J
Java

A programming language that is used to create systems that involve more than
one computer by way of a network.

JavaScript
A scripting language that is used to build web pages.

JavaScript Object Notation (JSON)
One of the supported response formats in OpenStack.

Jenkins
Tool used to run jobs automatically for OpenStack development.

OpenStack Ops Guide September 12, 2014

329

jumbo frame
Feature in modern Ethernet networks that supports frames up to approximately
9000 bytes.

Juno
The code name for the tenth release of OpenStack. The design summit took
place in Atlanta, Georgia, US and Juno is an unincorporated community in Geor-
gia.

K
kernel-based VM (KVM)

An OpenStack-supported hypervisor. KVM is a full virtualization solution for Linux
on x86 hardware containing virtualization extensions (Intel VT or AMD-V), ARM,
IBM Power, and IBM zSeries. It consists of a loadable kernel module, that pro-
vides the core virtualization infrastructure and a processor specific module.

keystone
The project that provides OpenStack Identity services.

Kickstart
A tool to automate system configuration and installation on Red Hat, Fedora,
and CentOS-based Linux distributions.

Kilo
The code name for the eleventh release of OpenStack. The design summit took
place in Paris, France. Due to delays in the name selection, the release was known
only as K. Because k is the unit symbol for kilo and the reference artifact is stored
near Paris in the Pavillon de Breteuil in Sèvres, the community chose Kilo as the
release name.

L
large object

An object within Object Storage that is larger than 5 GB.

Launchpad
The collaboration site for OpenStack.

Layer-2 network
Term used in the OSI network architecture for the data link layer. The data link
layer is responsible for media access control, flow control and detecting and pos-
sibly correcting erros that may occur in the physical layer.

OpenStack Ops Guide September 12, 2014

330

Layer-3 network
Term used in the OSI network architecture for the network layer. The network
layer is responsible for packet forwarding including routing from one node to an-
other.

Layer-2 (L2) agent
OpenStack Networking agent that provides layer-2 connectivity for virtual net-
works.

Layer-3 (L3) agent
OpenStack Networking agent that provides layer-3 (routing) services for virtual
networks.

libvirt
Virtualization API library used by OpenStack to interact with many of its support-
ed hypervisors.

Linux bridge
Software that enables multiple VMs to share a single physical NIC within Com-
pute.

Linux Bridge neutron plug-in
Enables a Linux bridge to understand a Networking port, interface attachment,
and other abstractions.

Linux containers (LXC)
An OpenStack-supported hypervisor.

live migration
The ability within Compute to move running virtual machine instances from one
host to another with only a small service interruption during switchover.

load balancer
A load balancer is a logical device that belongs to a cloud account. It is used to
distribute workloads between multiple back-end systems or services, based on
the criteria defined as part of its configuration.

load balancing
The process of spreading client requests between two or more nodes to improve
performance and availability.

Load-Balancer-as-a-Service (LBaaS)
Enables Networking to distribute incoming requests evenly between designated
instances.

OpenStack Ops Guide September 12, 2014

331

Logical Volume Manager (LVM)
Provides a method of allocating space on mass-storage devices that is more flexi-
ble than conventional partitioning schemes.

M
management API

Alternative term for an admin API.

management network
A network segment used for administration, not accessible to the public Internet.

manager
Logical groupings of related code, such as the Block Storage volume manager or
network manager.

manifest
Used to track segments of a large object within Object Storage.

manifest object
A special Object Storage object that contains the manifest for a large object.

marconi
OpenStack project that provides a queue service to applications.

maximum transmission unit (MTU)
Maximum frame or packet size for a particular network medium. Typically 1500
bytes for Ethernet networks.

mechanism driver
A driver for the Modular Layer 2 (ML2) neutron plug-in that provides layer-2 con-
nectivity for virtual instances. A single OpenStack installation can use multiple
mechanism drivers.

melange
Project name for OpenStack Network Information Service. To be merged with
Networking.

membership
The association between an Image Service VM image and a tenant. Enables im-
ages to be shared with specified tenants.

membership list
A list of tenants that can access a given VM image within Image Service.

OpenStack Ops Guide September 12, 2014

332

memcached
A distributed memory object caching system that is used by Object Storage for
caching.

memory overcommit
The ability to start new VM instances based on the actual memory usage of a
host, as opposed to basing the decision on the amount of RAM each running in-
stance thinks it has available. Also known as RAM overcommit.

message broker
The software package used to provide AMQP messaging capabilities within Com-
pute. Default package is RabbitMQ.

message bus
The main virtual communication line used by all AMQP messages for inter-cloud
communications within Compute.

message queue
Passes requests from clients to the appropriate workers and returns the output
to the client after the job completes.

Metadata agent
OpenStack Networking agent that provides metadata services for instances.

Meta-Data Server (MDS)
Stores CephFS metadata.

migration
The process of moving a VM instance from one host to another.

multi-host
High-availability mode for legacy (nova) networking. Each compute node handles
NAT and DHCP and acts as a gateway for all of the VMs on it. A networking fail-
ure on one compute node doesn't affect VMs on other compute nodes.

multinic
Facility in Compute that allows each virtual machine instance to have more than
one VIF connected to it.

Modular Layer 2 (ML2) neutron plug-in
Can concurrently use multiple layer-2 networking technologies, such as 802.1Q
and VXLAN, in Networking.

Monitor (LBaaS)
LBaaS feature that provides availability monitoring using the ping command,
TCP, and HTTP/HTTPS GET.

OpenStack Ops Guide September 12, 2014

333

Monitor (Mon)
A Ceph component that communicates with external clients, checks data state
and consistency, and performs quorum functions.

multi-factor authentication
Authentication method that uses two or more credentials, such as a password
and a private key. Currently not supported in Identity Service.

MultiNic
Facility in Compute that enables a virtual machine instance to have more than
one VIF connected to it.

N
Nebula

Released as open source by NASA in 2010 and is the basis for Compute.

netadmin
One of the default roles in the Compute RBAC system. Enables the user to allo-
cate publicly accessible IP addresses to instances and change firewall rules.

NetApp volume driver
Enables Compute to communicate with NetApp storage devices through the Ne-
tApp OnCommand Provisioning Manager.

network
A virtual network that provides connectivity between entities. For example, a col-
lection of virtual ports that share network connectivity. In Networking terminolo-
gy, a network is always a layer-2 network.

Network Address Translation (NAT)
The process of modifying IP address information while in transit. Supported by
Compute and Networking.

network controller
A Compute daemon that orchestrates the network configuration of nodes, in-
cluding IP addresses, VLANs, and bridging. Also manages routing for both public
and private networks.

Network File System (NFS)
A method for making file systems available over the network. Supported by
OpenStack.

network ID
Unique ID assigned to each network segment within Networking. Same as net-
work UUID.

OpenStack Ops Guide September 12, 2014

334

network manager
The Compute component that manages various network components, such as
firewall rules, IP address allocation, and so on.

network node
Any compute node that runs the network worker daemon.

network segment
Represents a virtual, isolated OSI layer-2 subnet in Networking.

Network Time Protocol (NTP)
A method of keeping a clock for a host or node correct through communications
with a trusted, accurate time source.

network UUID
Unique ID for a Networking network segment.

network worker
The nova-network worker daemon; provides services such as giving an IP ad-
dress to a booting nova instance.

Networking
A core OpenStack project that provides a network connectivity abstraction layer
to OpenStack Compute. The project name of Networking is neutron.

Networking API
API used to access OpenStack Networking. Provides an extensible architecture to
enable custom plug-in creation.

neutron
A core OpenStack project that provides a network connectivity abstraction layer
to OpenStack Compute.

neutron API
An alternative name for Networking API.

neutron manager
Enables Compute and Networking integration, which enables Networking to per-
form network management for guest VMs.

neutron plug-in
Interface within Networking that enables organizations to create custom plug-ins
for advanced features, such as QoS, ACLs, or IDS.

Nexenta volume driver
Provides support for NexentaStor devices in Compute.

OpenStack Ops Guide September 12, 2014

335

No ACK
Disables server-side message acknowledgment in the Compute RabbitMQ. In-
creases performance but decreases reliability.

node
A VM instance that runs on a host.

non-durable exchange
Message exchange that is cleared when the service restarts. Its data is not written
to persistent storage.

non-durable queue
Message queue that is cleared when the service restarts. Its data is not written to
persistent storage.

non-persistent volume
Alternative term for an ephemeral volume.

north-south traffic
Network traffic between a user or client (north) and a server (south), or traffic in-
to the cloud (south) and out of the cloud (north). See also east-west traffic.

nova
OpenStack project that provides compute services.

Nova API
Alternative term for the Compute API.

nova-network
A Compute component that manages IP address allocation, firewalls, and other
network-related tasks. This is the legacy networking option and an alternative to
Networking.

O
object

A BLOB of data held by Object Storage; can be in any format.

object auditor
Opens all objects for an object server and verifies the MD5 hash, size, and meta-
data for each object.

object expiration
A configurable option within Object Storage to automatically delete objects after
a specified amount of time has passed or a certain date is reached.

OpenStack Ops Guide September 12, 2014

336

object hash
Uniquely ID for an Object Storage object.

object path hash
Used by Object Storage to determine the location of an object in the ring. Maps
objects to partitions.

object replicator
An Object Storage component that copies an object to remote partitions for
fault tolerance.

object server
An Object Storage component that is responsible for managing objects.

Object Storage
The OpenStack core project that provides eventually consistent and redundant
storage and retrieval of fixed digital content. The project name of OpenStack Ob-
ject Storage is swift.

Object Storage API
API used to access OpenStack Object Storage.

Object Storage Device (OSD)
The Ceph storage daemon.

object versioning
Allows a user to set a flag on an Object Storage container so that all objects with-
in the container are versioned.

Oldie
Term for an Object Storage process that runs for a long time. Can indicate a hung
process.

Open Cloud Computing Interface (OCCI)
A standardized interface for managing compute, data, and network resources,
currently unsupported in OpenStack.

Open Virtualization Format (OVF)
Standard for packaging VM images. Supported in OpenStack.

Open vSwitch
Open vSwitch is a production quality, multilayer virtual switch licensed under
the open source Apache 2.0 license. It is designed to enable massive network au-
tomation through programmatic extension, while still supporting standard man-
agement interfaces and protocols (for example NetFlow, sFlow, SPAN, RSPAN,
CLI, LACP, 802.1ag).

OpenStack Ops Guide September 12, 2014

337

Open vSwitch neutron plug-in
Provides support for Open vSwitch in Networking.

OpenLDAP
An open source LDAP server. Supported by both Compute and Identity Service.

OpenStack
OpenStack is a cloud operating system that controls large pools of compute, stor-
age, and networking resources throughout a data center, all managed through a
dashboard that gives administrators control while empowering their users to pro-
vision resources through a web interface. OpenStack is an open source project li-
censed under the Apache License 2.0.

OpenStack code name
Each OpenStack release has a code name. Code names ascend in alphabetical or-
der: Austin, Bexar, Cactus, Diablo, Essex, Folsom, Grizzly, Havana, Icehouse, Juno,
and Kilo. Code names are cities or counties near where the corresponding Open-
Stack design summit took place. An exception, called the Waldon exception, is
granted to elements of the state flag that sound especially cool. Code names are
chosen by popular vote.

openSUSE
A Linux distribution that is compatible with OpenStack.

operator
The person responsible for planning and maintaining an OpenStack installation.

Orchestration
An integrated project that orchestrates multiple cloud applications for Open-
Stack. The project name of Orchestration is heat.

orphan
In the context of Object Storage, this is a process that is not terminated after an
upgrade, restart, or reload of the service.

P
parent cell

If a requested resource, such as CPU time, disk storage, or memory, is not avail-
able in the parent cell, the request is forwarded to associated child cells.

partition
A unit of storage within Object Storage used to store objects. It exists on top of
devices and is replicated for fault tolerance.

OpenStack Ops Guide September 12, 2014

338

partition index
Contains the locations of all Object Storage partitions within the ring.

partition shift value
Used by Object Storage to determine which partition data should reside on.

path MTU discovery (PMTUD)
Mechanism in IP networks to detect end-to-end MTU and adjust packet size ac-
cordingly.

pause
A VM state where no changes occur (no changes in memory, network communi-
cations stop, etc); the VM is frozen but not shut down.

PCI passthrough
Gives guest VMs exclusive access to a PCI device. Currently supported in Open-
Stack Havana and later releases.

persistent message
A message that is stored both in memory and on disk. The message is not lost af-
ter a failure or restart.

persistent volume
Changes to these types of disk volumes are saved.

personality file
A file used to customize a Compute instance. It can be used to inject SSH keys or
a specific network configuration.

Platform-as-a-Service (PaaS)
Provides to the consumer the ability to deploy applications through a program-
ming language or tools supported by the cloud platform provider. An example of
Platform-as-a-Service is an Eclipse/Java programming platform provided with no
downloads required.

plug-in
Software component providing the actual implementation for Networking APIs,
or for Compute APIs, depending on the context.

policy service
Component of Identity Service that provides a rule-management interface and a
rule-based authorization engine.

pool
A logical set of devices, such as web servers, that you group together to receive
and process traffic. The load balancing function chooses which member of the

OpenStack Ops Guide September 12, 2014

339

pool handles the new requests or connections received on the VIP address. Each
VIP has one pool.

pool member
An application that runs on the back-end server in a load-balancing system.

port
A virtual network port within Networking; VIFs / vNICs are connected to a port.

port UUID
Unique ID for a Networking port.

preseed
A tool to automate system configuration and installation on Debian-based Linux
distributions.

private image
An Image Service VM image that is only available to specified tenants.

private IP address
An IP address used for management and administration, not available to the
public Internet.

private network
The Network Controller provides virtual networks to enable compute servers to
interact with each other and with the public network. All machines must have
a public and private network interface. A private network interface can be a
flat or VLAN network interface. A flat network interface is controlled by the
flat_interface with flat managers. A VLAN network interface is controlled by the
vlan_interface option with VLAN managers.

project
A logical grouping of users within Compute; defines quotas and access to VM im-
ages.

project ID
User-defined alphanumeric string in Compute; the name of a project.

project VPN
Alternative term for a cloudpipe.

promiscuous mode
Causes the network interface to pass all traffic it receives to the host rather than
passing only the frames addressed to it.

OpenStack Ops Guide September 12, 2014

340

protected property
Generally, extra properties on an Image Service image to which only cloud ad-
ministrators have access. Limits which user roles can perform CRUD operations on
that property. The cloud administrator can configure any image property as pro-
tected.

provider
An administrator who has access to all hosts and instances.

proxy node
A node that provides the Object Storage proxy service.

proxy server
Users of Object Storage interact with the service through the proxy server, which
in turn looks up the location of the requested data within the ring and returns
the results to the user.

public API
An API endpoint used for both service-to-service communication and end-user in-
teractions.

public image
An Image Service VM image that is available to all tenants.

public IP address
An IP address that is accessible to end-users.

public key authentication
Authentication method that uses keys rather than passwords.

public network
The Network Controller provides virtual networks to enable compute servers to
interact with each other and with the public network. All machines must have a
public and private network interface. The public network interface is controlled
by the public_interface option.

Puppet
An operating system configuration-management tool supported by OpenStack.

Python
Programming language used extensively in OpenStack.

Q
QEMU Copy On Write 2 (QCOW2)

One of the VM image disk formats supported by Image Service.

OpenStack Ops Guide September 12, 2014

341

Qpid
Message queue software supported by OpenStack; an alternative to RabbitMQ.

quarantine
If Object Storage finds objects, containers, or accounts that are corrupt, they are
placed in this state, are not replicated, cannot be read by clients, and a correct
copy is re-replicated.

Quick EMUlator (QEMU)
QEMU is a generic and open source machine emulator and virtualizer.

One of the hypervisors supported by OpenStack, generally used for development
purposes.

quota
In Compute and Block Storage, the ability to set resource limits on a per-project
basis.

R
RabbitMQ

The default message queue software used by OpenStack.

Rackspace Cloud Files
Released as open source by Rackspace in 2010; the basis for Object Storage.

RADOS Block Device (RBD)
Ceph component that enables a Linux block device to be striped over multiple
distributed data stores.

radvd
The router advertisement daemon, used by the Compute VLAN manager and
FlatDHCP manager to provide routing services for VM instances.

RAM filter
The Compute setting that enables or disables RAM overcommitment.

RAM overcommit
The ability to start new VM instances based on the actual memory usage of a
host, as opposed to basing the decision on the amount of RAM each running in-
stance thinks it has available. Also known as memory overcommit.

rate limit
Configurable option within Object Storage to limit database writes on a per-ac-
count and/or per-container basis.

OpenStack Ops Guide September 12, 2014

342

raw
One of the VM image disk formats supported by Image Service; an unstructured
disk image.

rebalance
The process of distributing Object Storage partitions across all drives in the ring;
used during initial ring creation and after ring reconfiguration.

reboot
Either a soft or hard reboot of a server. With a soft reboot, the operating system
is signaled to restart, which enables a graceful shutdown of all processes. A hard
reboot is the equivalent of power cycling the server. The virtualization platform
should ensure that the reboot action has completed successfully, even in cases in
which the underlying domain/VM is paused or halted/stopped.

rebuild
Removes all data on the server and replaces it with the specified image. Server ID
and IP addresses remain the same.

Recon
An Object Storage component that collects metrics.

record
Belongs to a particular domain and is used to specify information about the do-
main. There are several types of DNS records. Each record type contains partic-
ular information used to describe the purpose of that record. Examples include
mail exchange (MX) records, which specify the mail server for a particular do-
main; and name server (NS) records, which specify the authoritative name servers
for a domain.

record ID
A number within a database that is incremented each time a change is made.
Used by Object Storage when replicating.

Red Hat Enterprise Linux (RHEL)
A Linux distribution that is compatible with OpenStack.

reference architecture
A recommended architecture for an OpenStack cloud.

region
A discrete OpenStack environment with dedicated API endpoints that typically
shares only the Identity Service (keystone) with other regions.

registry
Alternative term for the Image Service registry.

OpenStack Ops Guide September 12, 2014

343

registry server
An Image Service that provides VM image metadata information to clients.

Reliable, Autonomic Distributed Object Store (RADOS)
A collection of components that provides object storage within Ceph. Similar to
OpenStack Object Storage.

Remote Procedure Call (RPC)
The method used by the Compute RabbitMQ for intra-service communications.

replica
Provides data redundancy and fault tolerance by creating copies of Object Stor-
age objects, accounts, and containers so that they are not lost when the underly-
ing storage fails.

replica count
The number of replicas of the data in an Object Storage ring.

replication
The process of copying data to a separate physical device for fault tolerance and
performance.

replicator
The Object Storage back-end process that creates and manages object replicas.

request ID
Unique ID assigned to each request sent to Compute.

rescue image
A special type of VM image that is booted when an instance is placed into rescue
mode. Allows an administrator to mount the file systems for an instance to cor-
rect the problem.

resize
Converts an existing server to a different flavor, which scales the server up or
down. The original server is saved to enable rollback if a problem occurs. All re-
sizes must be tested and explicitly confirmed, at which time the original server is
removed.

RESTful
A kind of web service API that uses REST, or Representational State Transfer.
REST is the style of architecture for hypermedia systems that is used for the World
Wide Web.

ring
An entity that maps Object Storage data to partitions. A separate ring exists for
each service, such as account, object, and container.

OpenStack Ops Guide September 12, 2014

344

ring builder
Builds and manages rings within Object Storage, assigns partitions to devices, and
pushes the configuration to other storage nodes.

Role Based Access Control (RBAC)
Provides a predefined list of actions that the user can perform, such as start or
stop VMs, reset passwords, and so on. Supported in both Identity Service and
Compute and can be configured using the horizon dashboard.

role
A personality that a user assumes to perform a specific set of operations. A role
includes a set of rights and privileges. A user assuming that role inherits those
rights and privileges.

role ID
Alphanumeric ID assigned to each Identity Service role.

rootwrap
A feature of Compute that allows the unprivileged "nova" user to run a specified
list of commands as the Linux root user.

round-robin scheduler
Type of Compute scheduler that evenly distributes instances among available
hosts.

router
A physical or virtual network device that passes network traffic between differ-
ent networks.

routing key
The Compute direct exchanges, fanout exchanges, and topic exchanges use this
key to determine how to process a message; processing varies depending on ex-
change type.

RPC driver
Modular system that allows the underlying message queue software of Compute
to be changed. For example, from RabbitMQ to ZeroMQ or Qpid.

rsync
Used by Object Storage to push object replicas.

RXTX cap
Absolute limit on the amount of network traffic a Compute VM instance can
send and receive.

OpenStack Ops Guide September 12, 2014

345

RXTX quota
Soft limit on the amount of network traffic a Compute VM instance can send and
receive.

Ryu neutron plug-in
Enables the Ryu network operating system to function as a Networking Open-
Flow controller.

S
S3

Object storage service by Amazon; similar in function to Object Storage, it can act
as a back-end store for Image Service VM images.

sahara
OpenStack project that provides a scalable data-processing stack and associated
management interfaces.

scheduler manager
A Compute component that determines where VM instances should start. Uses
modular design to support a variety of scheduler types.

scoped token
An Identity Service API access token that is associated with a specific tenant.

scrubber
Checks for and deletes unused VMs; the component of Image Service that imple-
ments delayed delete.

secret key
String of text known only by the user; used along with an access key to make re-
quests to the Compute API.

secure shell (SSH)
Open source tool used to access remote hosts through an encrypted communica-
tions channel, SSH key injection is supported by Compute.

security group
A set of network traffic filtering rules that are applied to a Compute instance.

segmented object
An Object Storage large object that has been broken up into pieces. The re-as-
sembled object is called a concatenated object.

OpenStack Ops Guide September 12, 2014

346

server
Computer that provides explicit services to the client software running on that
system, often managing a variety of computer operations.

A server is a VM instance in the Compute system. Flavor and image are requisite
elements when creating a server.

server image
Alternative term for a VM image.

server UUID
Unique ID assigned to each guest VM instance.

service
An OpenStack service, such as Compute, Object Storage, or Image Service. Pro-
vides one or more endpoints through which users can access resources and per-
form operations.

service catalog
Alternative term for the Identity Service catalog.

service ID
Unique ID assigned to each service that is available in the Identity Service catalog.

service registration
An Identity Service feature that enables services, such as Compute, to automati-
cally register with the catalog.

service tenant
Special tenant that contains all services that are listed in the catalog.

service token
An administrator-defined token used by Compute to communicate securely with
the Identity Service.

session back end
The method of storage used by horizon to track client sessions, such as local
memory, cookies, a database, or memcached.

session persistence
A feature of the load-balancing service. It attempts to force subsequent connec-
tions to a service to be redirected to the same node as long as it is online.

session storage
A horizon component that stores and tracks client session information. Imple-
mented through the Django sessions framework.

OpenStack Ops Guide September 12, 2014

347

shared IP address
An IP address that can be assigned to a VM instance within the shared IP group.
Public IP addresses can be shared across multiple servers for use in various high-
availability scenarios. When an IP address is shared to another server, the cloud
network restrictions are modified to enable each server to listen to and respond
on that IP address. You can optionally specify that the target server network con-
figuration be modified. Shared IP addresses can be used with many standard
heartbeat facilities, such as keepalive, that monitor for failure and manage IP
failover.

shared IP group
A collection of servers that can share IPs with other members of the group. Any
server in a group can share one or more public IPs with any other server in the
group. With the exception of the first server in a shared IP group, servers must be
launched into shared IP groups. A server may be a member of only one shared IP
group.

shared storage
Block storage that is simultaneously accessible by multiple clients, for example,
NFS.

Sheepdog
Distributed block storage system for QEMU, supported by OpenStack.

Simple Cloud Identity Management (SCIM)
Specification for managing identity in the cloud, currently unsupported by Open-
Stack.

Single-root I/O Virtualization (SR-IOV)
A specification that, when implemented by a physical PCIe device, enables it to
appear as multiple separate PCIe devices. This enables multiple virtualized guests
to share direct access to the physical device, offering improved performance over
an equivalent virtual device. Currently supported in OpenStack Havana and later
releases.

SmokeStack
Runs automated tests against the core OpenStack API; written in Rails.

snapshot
A point-in-time copy of an OpenStack storage volume or image. Use storage vol-
ume snapshots to back up volumes. Use image snapshots to back up data, or as
"gold" images for additional servers.

soft reboot
A controlled reboot where a VM instance is properly restarted through operating
system commands.

OpenStack Ops Guide September 12, 2014

348

SolidFire Volume Driver
The Block Storage driver for the SolidFire iSCSI storage appliance.

SPICE
The Simple Protocol for Independent Computing Environments (SPICE) provides
remote desktop access to guest virtual machines. It is an alternative to VNC.
SPICE is supported by OpenStack.

spread-first scheduler
The Compute VM scheduling algorithm that attempts to start a new VM on the
host with the least amount of load.

SQL-Alchemy
An open source SQL toolkit for Python, used in OpenStack.

SQLite
A lightweight SQL database, used as the default persistent storage method in
many OpenStack services.

stack
A set of OpenStack resources created and managed by the Orchestration ser-
vice according to a given template (either an AWS CloudFormation template or a
Heat Orchestration Template (HOT)).

StackTach
Community project that captures Compute AMQP communications; useful for de-
bugging.

static IP address
Alternative term for a fixed IP address.

StaticWeb
WSGI middleware component of Object Storage that serves container data as a
static web page.

storage back end
The method that a service uses for persistent storage, such as iSCSI, NFS, or local
disk.

storage node
An Object Storage node that provides container services, account services, and
object services; controls the account databases, container databases, and object
storage.

storage manager
A XenAPI component that provides a pluggable interface to support a wide vari-
ety of persistent storage back ends.

OpenStack Ops Guide September 12, 2014

349

storage manager back end
A persistent storage method supported by XenAPI, such as iSCSI or NFS.

storage services
Collective name for the Object Storage object services, container services, and ac-
count services.

strategy
Specifies the authentication source used by Image Service or Identity Service.

subdomain
A domain within a parent domain. Subdomains cannot be registered. Subdo-
mains enable you to delegate domains. Subdomains can themselves have subdo-
mains, so third-level, fourth-level, fifth-level, and deeper levels of nesting are pos-
sible.

subnet
Logical subdivision of an IP network.

SUSE Linux Enterprise Server (SLES)
A Linux distribution that is compatible with OpenStack.

suspend
Alternative term for a paused VM instance.

swap
Disk-based virtual memory used by operating systems to provide more memory
than is actually available on the system.

swawth
An authentication and authorization service for Object Storage, implemented
through WSGI middleware; uses Object Storage itself as the persistent backing
store.

swift
An OpenStack core project that provides object storage services.

swift All in One (SAIO)
Creates a full Object Storage development environment within a single VM.

swift middleware
Collective term for Object Storage components that provide additional function-
ality.

swift proxy server
Acts as the gatekeeper to Object Storage and is responsible for authenticating
the user.

OpenStack Ops Guide September 12, 2014

350

swift storage node
A node that runs Object Storage account, container, and object services.

sync point
Point in time since the last container and accounts database sync among nodes
within Object Storage.

sysadmin
One of the default roles in the Compute RBAC system. Enables a user to add
other users to a project, interact with VM images that are associated with the
project, and start and stop VM instances.

system usage
A Compute component that, along with the notification system, collects metrics
and usage information. This information can be used for billing.

T
Telemetry

An integrated project that provides metering and measuring facilities for Open-
Stack. The project name of Telemetry is ceilometer.

TempAuth
An authentication facility within Object Storage that enables Object Storage itself
to perform authentication and authorization. Frequently used in testing and de-
velopment.

Tempest
Automated software test suite designed to run against the trunk of the Open-
Stack core project.

TempURL
An Object Storage middleware component that enables creation of URLs for tem-
porary object access.

tenant
A group of users; used to isolate access to Compute resources. An alternative
term for a project.

Tenant API
An API that is accessible to tenants.

tenant endpoint
An Identity Service API endpoint that is associated with one or more tenants.

OpenStack Ops Guide September 12, 2014

351

tenant ID
Unique ID assigned to each tenant within the Identity Service. The project IDs
map to the tenant IDs.

token
An alpha-numeric string of text used to access OpenStack APIs and resources.

token services
An Identity Service component that manages and validates tokens after a user or
tenant has been authenticated.

tombstone
Used to mark Object Storage objects that have been deleted; ensures that the
object is not updated on another node after it has been deleted.

topic publisher
A process that is created when a RPC call is executed; used to push the message
to the topic exchange.

Torpedo
Community project used to run automated tests against the OpenStack API.

transaction ID
Unique ID assigned to each Object Storage request; used for debugging and trac-
ing.

transient
Alternative term for non-durable.

transient exchange
Alternative term for a non-durable exchange.

transient message
A message that is stored in memory and is lost after the server is restarted.

transient queue
Alternative term for a non-durable queue.

TripleO
OpenStack-on-OpenStack program. The code name for the OpenStack Deploy-
ment program.

trove
OpenStack project that provides database services to applications.

OpenStack Ops Guide September 12, 2014

352

U
Ubuntu

A Debian-based Linux distribution.

unscoped token
Alternative term for an Identity Service default token.

updater
Collective term for a group of Object Storage components that processes queued
and failed updates for containers and objects.

user
In Identity Service, each user is associated with one or more tenants, and in Com-
pute can be associated with roles, projects, or both.

user data
A blob of data that the user can specify when they launch an instance. The in-
stance can access this data through the metadata service or config drive. Com-
monly used to pass a shell script that the instance runs on boot.

User Mode Linux (UML)
An OpenStack-supported hypervisor.

V
VIF UUID

Unique ID assigned to each Networking VIF.

VIP
The primary load balancing configuration object. Specifies the virtual IP address
and port where client traffic is received. Also defines other details such as the
load balancing method to be used, protocol, and so on. This entity is sometimes
known in load-balancing products as a virtual server, vserver, or listener.

Virtual Central Processing Unit (vCPU)
Subdivides physical CPUs. Instances can then use those divisions.

Virtual Disk Image (VDI)
One of the VM image disk formats supported by Image Service.

Virtual Hard Disk (VHD)
One of the VM image disk formats supported by Image Service.

OpenStack Ops Guide September 12, 2014

353

virtual IP
An Internet Protocol (IP) address configured on the load balancer for use by
clients connecting to a service that is load balanced. Incoming connections are
distributed to back-end nodes based on the configuration of the load balancer.

virtual machine (VM)
An operating system instance that runs on top of a hypervisor. Multiple VMs can
run at the same time on the same physical host.

virtual network
An L2 network segment within Networking.

virtual networking
A generic term for virtualization of network functions such as switching, routing,
load balancing, and security using a combination of VMs and overlays on physical
network infrastructure.

Virtual Network Computing (VNC)
Open source GUI and CLI tools used for remote console access to VMs. Supported
by Compute.

Virtual Network InterFace (VIF)
An interface that is plugged into a port in a Networking network. Typically a vir-
tual network interface belonging to a VM.

virtual port
Attachment point where a virtual interface connects to a virtual network.

virtual private network (VPN)
Provided by Compute in the form of cloudpipes, specialized instances that are
used to create VPNs on a per-project basis.

virtual server
Alternative term for a VM or guest.

virtual switch (vSwitch)
Software that runs on a host or node and provides the features and functions of
a hardware-based network switch.

virtual VLAN
Alternative term for a virtual network.

VirtualBox
An OpenStack-supported hypervisor.

OpenStack Ops Guide September 12, 2014

354

VLAN manager
A Compute component that provides dnsmasq and radvd and sets up forwarding
to and from cloudpipe instances.

VLAN network
The Network Controller provides virtual networks to enable compute servers to
interact with each other and with the public network. All machines must have a
public and private network interface. A VLAN network is a private network inter-
face, which is controlled by the vlan_interface option with VLAN managers.

VM disk (VMDK)
One of the VM image disk formats supported by Image Service.

VM image
Alternative term for an image.

VM Remote Control (VMRC)
Method to access VM instance consoles using a web browser. Supported by Com-
pute.

VMware API
Supports interaction with VMware products in Compute.

VMware NSX Neutron plug-in
Provides support for VMware NSX in Neutron.

VNC proxy
A Compute component that provides users access to the consoles of their VM in-
stances through VNC or VMRC.

volume
Disk-based data storage generally represented as an iSCSI target with a file sys-
tem that supports extended attributes; can be persistent or ephemeral.

Volume API
Alternative name for the Block Storage API.

volume controller
A Block Storage component that oversees and coordinates storage volume ac-
tions.

volume driver
Alternative term for a volume plug-in.

volume ID
Unique ID applied to each storage volume under the Block Storage control.

OpenStack Ops Guide September 12, 2014

355

volume manager
A Block Storage component that creates, attaches, and detaches persistent stor-
age volumes.

volume node
A Block Storage node that runs the cinder-volume daemon.

volume plug-in
Provides support for new and specialized types of back-end storage for the Block
Storage volume manager.

volume worker
A cinder component that interacts with back-end storage to manage the creation
and deletion of volumes and the creation of compute volumes, provided by the
cinder-volume daemon.

vSphere
An OpenStack-supported hypervisor.

W
weighting

A Compute process that determines the suitability of the VM instances for a job
for a particular host. For example, not enough RAM on the host, too many CPUs
on the host, and so on.

weight
Used by Object Storage devices to determine which storage devices are suitable
for the job. Devices are weighted by size.

weighted cost
The sum of each cost used when deciding where to start a new VM instance in
Compute.

worker
A daemon that listens to a queue and carries out tasks in response to messages.
For example, the cinder-volume worker manages volume creation and dele-
tion on storage arrays.

X
Xen

Xen is a hypervisor using a microkernel design, providing services that allow mul-
tiple computer operating systems to execute on the same computer hardware
concurrently.

OpenStack Ops Guide September 12, 2014

356

Xen API
The Xen administrative API, which is supported by Compute.

Xen Cloud Platform (XCP)
An OpenStack-supported hypervisor.

Xen Storage Manager Volume Driver
A Block Storage volume plug-in that enables communication with the Xen Stor-
age Manager API.

XenServer
An OpenStack-supported hypervisor.

Z
ZeroMQ

Message queue software supported by OpenStack. An alternative to RabbitMQ.
Also spelled 0MQ.

Zuul
Tool used in OpenStack development to ensure correctly ordered testing of
changes in parallel.

OpenStack Ops Guide September 12, 2014

357

Index
Symbols
*-manage command-line tools, 80
/var/lib/nova/instances directory, 141
0mq, 37
6to4,

A
absolute limit,
access control list (ACL), 138,
access key, 82,
account auditor,
account database,
account quotas, 98
account reaper,
account server, 62, 73,
account service,
accounting,
accounts, 67, 105,
ACL (see access control list)
Active Directory, 35,
active/active configuration,
active/passive configuration,
address pool, 125,
Address Resolution Protocol (ARP),

admin API, 107,
admin server,
advanced configuration (see configura-
tion options)
Advanced Message Queuing Protocol
(AMQP), 6, 34, 54,
Advanced RISC Machine (ARM),
alerts

definition of,
intelligent, 185

(see also logging/monitoring)
resource, 182

allocate, definition of,
Amazon Kernel Image (AKI),
Amazon Machine Image (AMI),

Amazon Ramdisk Image (ARI),
AMD Virtualization, 43
Anvil,
Apache, 40,
Apache License 2.0,
Apache Web Server,
API (application programming interface)

API calls, inspecting, 82
API endpoint, 81,
API extension,
API extension plug-in,
API key,
API server, 38,
API token,
API version,
design considerations, 38
public APIs,

applet,
application server,
Application Service Provider (ASP),
arptables,
associate, definition of,
Asynchronous JavaScript and XML
(AJAX),
ATA over Ethernet (AoE),
attach, definition of,
attachment (network),
auditing,
auditor,
Austin,
auth node,
authentication, 34, 40, 81,
authentication tokens, 83,
AuthN,
authorization, 40, 105,
authorization node,
AuthZ,
Auto ACK,
auto declare,
automated configuration, 30
availability zone, 56,
AWS (Amazon Web Services),
AWS CloudFormation template,

OpenStack Ops Guide September 12, 2014

358

B
back-end interactions

catalog,
definition of,
store,

backend interactions
store, 65

backup/recovery
considerations, 189
databases, 190
file systems, 190
items included, 189
recovering backups, 192

bandwidth
capping, 113
definition of,
design considerations for, 41
hardware specifications and, 53
obtaining maximum performance, 16
private vs. public network recommen-
dations, 63
recognizing DDOS attacks, 108

bare, definition of,
base image, 113, 127,
Bell-LaPadula model,
Bexar,
binary

binary objects, 61
binary results in trending, 187
definition of,

bits per second (BPS),
bits, definition of,
block device, 64, 126,
block migration, 49,
block storage, 4, 63, 118, 125
Block Storage, 100, 191,
Block Storage API,
BMC (Baseboard Management Con-
troller),
bootable disk image,
Bootstrap Protocol (BOOTP),
Border Gateway Protocol (BGP),
browsers, definition of,

bugs, reporting, 212
builder files, 191,
burn-in testing, 59
bursting,
button classes,
bytes, definition of,

C
CA (Certificate/Certification Authority),

cache pruners,
Cactus,
CALL,
capability

definition of,
scaling and, 59

capacity cache,
capacity planning, 59
capacity updater,
CAST (RPC primitive),
catalog, 83,
catalog service,
ceilometer, 183,
cells

cell forwarding,
cell managers,
child cells,
cloud segregation, 55
definition of,
parent cells,

CentOS, 4,
Ceph, 67,
CephFS,
CERN (European Organization for Nucle-
ar Research), 272
certificate authority (Compute),
Challenge-Handshake Authentication
Protocol (CHAP),
chance scheduler,
changes since,
Chef, 27, 77,
child cells,
cinder, 80,

OpenStack Ops Guide September 12, 2014

359

CirrOS,
Cisco neutron plug-in,
cloud architect,
cloud computing

cloud controller nodes,
cloud controllers,
cloud overview, 84
definition of,
minimizing costs of, 27
vs. traditional deployments, 71

cloud controller nodes
adding, 53
command-line tools and, 81

cloud controllers
concept of, 33
duties of, 8
enabling RabbitMQ, 177
file system backups and, 190
hardware sizing considerations, 35
log information, 173
network traffic and, 41
new compute nodes and, 144
planned maintenance of, 133
process monitoring and, 180
rebooting, 134
scalability and, 52, 224
services managed by, 33
total failure of, 134

Cloud Data Management Interface (CD-
MI),
Cloud Infrastructure Management Inter-
face (CIMI),
cloud-init,
cloudadmin,
Cloudbase-Init (see cloud-init)
cloudpipe

cloudpipe image,
definition of,

CMDB (Configuration Management
Database),
command filters,
Command-line interface (CLI), 1, 148
command-line tools

administrative, 80
compute node diagnostics, 86
getting credentials, 81
inspecting API calls, 82
installing, 80
Python Package Index (PyPI), 79
servers and services, 84

community projects,
compression,
Compute

Compute API,
compute controller,
compute host,
Compute Service, 94
Compute service,
compute worker,
definition of,
simplest architecture for, 4

compute nodes
adding, 53, 144
backup/recovery of, 190
CPU choice, 43
definition of,
diagnosing, 86
failures, 140
file system choice, 49
hypervisor choice, 44
instance storage solutions, 45
live migration, 48
logging, 50
maintenance, 135
networking, 50
overcommitting, 49

concatenated objects,
conductors, 37,
config drive, 89, 121,
configuration management, 144
configuration options

geographical storage considerations,
222
high availability, 53, 221
IPv6 support, 221
periodic task frequency, 222

OpenStack Ops Guide September 12, 2014

360

periodic task implementation, 220
security, 221
wide availability of, 219

consistency window,
console logs,
containers

container auditors,
container databases,
container format,
container servers, 73,
container service,
definition of,
quota setting, 98
storage decisions and, 62

content delivery network (CDN),
controller nodes (see under cloud com-
puting)
cooperative threading, 220
core API,
core project,
cores, 43
cost,
CPUs (central processing units)

choosing, 43
enabling hyperthreading on, 44
overcommitting, 49

credentials, 40, 81,
Crowbar,
CSAIL (Computer Science and Artificial
Intelligence Lab), 270
cURL, 83
current workload,
customers (see tenants)
customization

custom log statements, 176
dashboard, 210
development environment creation
for, 195
Object Storage, 198
OpenStack Compute (nova) Scheduler,
205
paths available, 195

customization module,

D
DAC (discretionary access control), 112,

daemons
basics of, 1
definition of,
running on CLI, 148

DAIR, 271
dashboard, 4, 35, 40, 79, 210,
data

data encryption,
inspecting/recovering failed instances,
137
preventing loss of, 189

Database Service,
databases

backup/recovery of, 190
database ID,
database replicators,
design considerations, 36
Image Service, 111
instance information in, 130
maintenance/debugging, 145
nova-network troubleshooting, 162

deallocate, definition of,
Debian,
debugging (see logging/monitoring;
maintenance/debugging)
deduplication,
default panels,
default tenants,
default tokens,
delayed delete,
delivery mode,
denial of service (DoS),
deployment (see provisioning/deploy-
ment)
deprecated auth,
design considerations

API support, 38
authentication/authorization, 40
cloud controller services, 33
conductor services, 37

OpenStack Ops Guide September 12, 2014

361

dashboard, 40
database choice, 36
extensions, 38
hardware considerations, 35
images, 39
message queues, 36
network design, 71
networks, 41
scheduling, 39
separation of services, 35

Desktop-as-a-Service,
developer,
development environments, creating,
195
device ID,
device weight,
DevStack

customizing dashboard, 210
customizing Object Storage (swift),
198
customizing OpenStack Compute (no-
va) scheduler, 205
definition of,
development environment creation,
195

DHCP (Dynamic Host Configuration Pro-
tocol)

basics of,
debugging, 164

DHCP agent,
DHTML (Dynamic HyperText Markup
Language),
Diablo,
direct consumers,
direct exchanges,
direct publishers,
disassociate,
disk encryption,
disk format,
disk partitioning, 28
dispersion,
distributed virtual router (DVR),
Django, 210,

DNS (Domain Name Server, Service or
System)

debugging, 168
definitions of,
DNS aliases, 38
DNS records,
DNS service choices, 76

dnsmasq,
Docker, 44
domain, definition of,
download, definition of,
drivers

differences between, 219
RPC drivers,

DRTM (dynamic root of trust measure-
ment),
durable exchange,
durable queue,

E
east-west traffic,
EBS boot volume,
ebtables, ,
EC2

EC2 access key,
EC2 API,
EC2 compatibility API,
EC2 secret key,

Elastic Block Storage (EBS),
encapsulation,
encryption, definition of,
endpoints

API endpoint, 54, 81,
endpoint registry,
endpoint templates,
global endpoint template,
tenant endpoint,

entity, definition of,
ephemeral images,
ephemeral volume,
Essex,
ESX hypervisor, 44,
ESXi hypervisor, 44,

OpenStack Ops Guide September 12, 2014

362

ETag,
euca2ools,
Eucalyptus Kernel Image (EKI),
Eucalyptus Machine Image (EMI),
Eucalyptus Ramdisk Image (ERI),
evacuation, definition of,
example architectures (see legacy net-
working; OpenStack networking)
exchange,
exchange types,
exclusive queues,
extended attributes (xattrs),
extensions

definition of,
design considerations, 38

external network, definition of,
extra specs, definition of,

F
FakeLDAP,
fan-out exchange,
Fedora,
Fibre Channel,
Fibre Channel over Ethernet (FCoE),

file injection, 124
file systems

backup/recovery of, 190
choice of, 49
nonshared, 48
shared, 47

fill-first scheduler,
filtering

definition of,
ingress filtering,

Firewall-as-a-Service (FWaaS),
firewalls,
fixed IP addresses, 72,
Flat Manager,
flat mode injection,
flat network,
FlatDHCP Manager,
flavor, 51, 112,

flavor ID,
floating IP address, 4, 163,
Folsom,
FormPost,
front end, definition of,
Fully Automatic Installation (FAI), 29
functional testing, 204

G
gateway,
Generic Receive Offload (GRO),
generic routing encapsulation (GRE),

glance
glance API server, 39,
glance registry, 39,
python-glanceclient, 80

global endpoint template,
GlusterFS, 68,
golden image,
Graphic Interchange Format (GIF),
Graphics Processing Unit (GPU),
Green Threads,
Grizzly, 3,
guest OS,

H
Hadoop,
handover,
hard drives, replacing, 142
hard reboot,
hardware

design considerations, 35
maintenance/debugging, 144
scalability planning, 58
virtual hardware, 51

Havana, 3,
health monitor,
heat,
Heat Orchestration Template (HOT),

help, resources for, 211
high availability, 53, 221

OpenStack Ops Guide September 12, 2014

363

high availability (HA),
horizon plug-ins,
host aggregate, 56,
Host Bus Adapter (HBA),
hosts, definition of,
HTTP (Hypertext Transfer Protocol)

basics of,
HTTPS (Hypertext Transfer Protocol Se-
cure),
hybrid cloud,
Hyper-V, 44,
hyperlink,
hyperthreading, 43
hypervisors

choosing, 44
compute node diagnosis and, 86
definition of,
differences between, 219
hypervisor pools,
KVM, 5
running multiple, 45

I
IaaS (Infrastructure-as-a-Service)

basics of,
Icehouse

Compute bare-metal deployment, 292
Compute V3 API, 292
database-as-a-service tool, 293
definition of,
image quotas, 94
IPv6 support, 221
migration to Ubuntu, 269
nova network deprecation, 291
scheduler improvements, 293
upcoming release of, 287
upgrades in, 290

ID number,
Identity Service

authentication decisions, 40
backup/recovery, 191
basics of,

displaying services and endpoints with,
85
Identity back end,
Identity Service API, 91,
image ID,
plug-in support, 40

IDS (Intrusion Detection System),
Image Service

backup/recovery of, 191
database queries, 111
database tables, 111
design considerations, 39
image cache,
image membership,
image owner,
image registry,
Image Service API,
image status,
image store,
image UUID,
public images,
quota setting, 94

images
adding, 109
CLI options for, 111
definition of,
deleting, 111
sharing between projects, 110

incubated projects,
ingress filtering,
INI,
injection,
instance tunnels network,
instances

boot failures, 120
database information, 130
definition of,
instance ID,
instance state,
instance type,
instance type ID,
instance UUID,
instance-specific data, 121

OpenStack Ops Guide September 12, 2014

364

list of running, 88
maintenance/debugging, 136
starting, 120
storage solutions, 45
tracing instance requests, 176

Intel Virtualization Technology, 43
intelligent alerting, 185
interface,
interface ID,
interface states, checking, 151
Internet Control Message Protocol
(ICMP),
internet protocol (IP),
Internet Service Provider (ISP),
Internet Small Computer System Inter-
face (iSCSI),
IOPS

definition of,
ip a command, 151
IP Address Management (IPAM),
IP addresses

address planning, 72
definition of,
fixed, 72,
floating, 4, 125, 163,
private,
public,
public addressing options, 72
sections of, 72
shared,
static, 72,

ip6tables,
IPL (Initial Program Loader),
IPMI (Intelligent Platform Management
Interface),
iptables, 162,
IPv6, enabling support for, 221
ironic,
iSCSI protocol,
ISO9960 format,
itsec,

J
Java,
JavaScript,
JavaScript Object Notation (JSON),

Jenkins,
jumbo frame,
Juno,

K
kernel-based VM (KVM) hypervisor, 5,
44,
Keyring Support, 83
keystone, 80,
Kickstart,
Kilo,

L
large object,
Launchpad,
Layer-2 (L2) agent,
Layer-2 network,
Layer-3 (L3) agent,
Layer-3 network,
legacy networking (nova)

benefits of multi-host networking, 7
component overview, 4
detailed description, 7
features supported by, 4
optional extensions, 9
rationale for choice of, 5
vs. OpenStack Network Service (neu-
tron), 7

libvirt,
Linux Bridge

neutron plug-in for,
troubleshooting, 151

Linux containers (LXC), 44,
live migration, 4, 48, 64,
live snapshots, 128
load balancing,
Load-Balancer-as-a-Service (LBaaS),

OpenStack Ops Guide September 12, 2014

365

logging/monitoring
adding custom log statements, 176
ceilometer project, 183
central log management, 178
compute nodes and, 50
intelligent alerting, 185
log location, 173
logging levels, 174
OpenStack-specific resources, 183
process monitoring, 181
RabbitMQ web management inter-
face, 177
reading log messages, 174
resource alerting, 182
StackTack tool, 180
tailing logs, 147
tracing instance requests, 176
trending, 186

Logical Volume Manager (LVM),
LVM (Logical Volume Manager), 68

M
mailing lists, 211
maintenance/debugging, 133-150

(see also troubleshooting)
/var/lib/nova/instances, 141
cloud controller planned maintenance,
133
cloud controller total failure, 134
complete failures, 143
compute node planned maintenance,
135
compute node reboot, 136
compute node total failures, 140
configuration management, 144
databases, 145
determining component affected, 147
hardware, 144
instances, 136
rebooting following, 134
reporting bugs, 212
schedule of tasks, 146
storage node reboot, 141

storage node shut down, 141
swift disk replacement, 142
uninstalling, 150
volumes, 139

management API (see admin API)
management network, 71,
manager,
manifests

definition of,
manifest objects,

marconi,
maximum transmission unit (MTU),

mechanism driver,
melange,
membership,
membership lists,
memcached,
memory overcommit,
message brokers,
message bus,
message queue, 37,
messages

design considerations, 36
non-durable exchanges,
non-durable queues,
persistent messages,
transient messages,

Meta-Data Server (MDS),
metadata

instance metadata, 121
OpenStack Image Service and, 39

Metadata agent,
metering/telemetry, 183
migration, 4, 48, 64,
MIT CSAIL (Computer Science and Artifi-
cial Intelligence Lab), 270
Modular Layer 2 (ML2) neutron plug-in,

modules, types of, 1
Monitor (LBaaS),
Monitor (Mon),
monitoring

OpenStack Ops Guide September 12, 2014

366

intelligent alerting, 185
metering and telemetry, 183
OpenStack-specific resources, 183
process monitoring, 181
resource alerting, 182
trending, 186

(see also logging/monitoring)
multi-factor authentication,
multi-host,
multi-host networking, 7, 37, 76
MultiNic, 75,
multithreading, 43

N
Nagios, 181
namespaces, troubleshooting, 171
Nebula,
NeCTAR Research Cloud, 269
netadmin,
NetApp volume driver,
network design

first steps, 71
IP address planning, 72
management network, 71
network topology

deployment options, 74
multi- vs. single-host networking, 76
multi-NIC provisioning, 75
VLAN with OpenStack VMs, 75

public addressing options, 72
services for networking, 76

network namespaces, troubleshooting,
171
network troubleshooting (see trou-
bleshooting)
Networking API,
networks

configuration management, 144
configuration of, 30
definition of,
deployment options, 74
design considerations, 41
inspection of, 87

multi-host, 7, 76
Network Address Translation (NAT),

network controllers,
Network File System (NFS),
network IDs,
network managers, 74,
network nodes,
network segments,
Network Time Protocol (NTP), 76,

network UUID,
network workers,
private networks,
public,
virtual,
VLAN, 75,

neutron
Networking API,
neutron manager,
neutron plug-in,
python-neutronclient, 80

Nexenta volume driver,
NICs (network interface cards), 71
No ACK,
nodes

adding, 144
definition of,
proxy nodes,
storage nodes, 141,
swift storage nodes,

non-durable exchanges,
non-durable queue,
non-persistent volume (see ephemeral
volume)
north-south traffic,
nova

Compute API,
deprecation of, 291
nova-network,
python-novaclient, 80

OpenStack Ops Guide September 12, 2014

367

O
Object Storage

adding nodes, 145
backup/recovery of, 191
customization of, 198
geographical considerations, 222
Object Storage API, 61,
Object Storage Device (OSD),
quota setting, 98
simplest architecture for, 4

objects
concatenated objects,
definition of,
manifest objects,
object auditors,
object expiration,
object hash,
object path hash,
object replicators,
object servers, 73,
object storage, 4
object versioning,
persistent storage of, 61
segmented objects,
storage decisions and, 62

Oldie,
Open Cloud Computing Interface (OCCI),

Open Virtualization Format (OVF),
Open vSwitch,

neutron plug-in for,
troubleshooting, 170

OpenLDAP,
OpenStack

basics of,
code name,
documentation, 211
module types in, 1

OpenStack community
additional information, 217
contributing to, 216
customization and, 195
getting help from, 211

joining, 216
reporting bugs, 212
security information, 216
use cases

CERN, 272
DAIR, 271
MIT CSAIL, 270
NeCTAR, 269

working with roadmaps
aspects to watch, 290-293
influencing, 289
information available, 288
release cycle, 287

OpenStack Networking (neutron)
component overview, 10
detailed description of, 12
rationale for choice of, 10
third-party component configuration,
21
troubleshooting, 151

openSUSE,
operator,
Orchestration,
orphans,
overcommitting, 49

P
parent cells,
partitions

definition of,
disk partitioning, 28
partition index,
partition index value,

passwords, 82
Paste framework, 198
path failures, 160
path MTU discovery (PMTUD),
pause,
PCI passthrough,
periodic tasks, 220
persistent messages,
persistent storage, 61
persistent volume,

OpenStack Ops Guide September 12, 2014

368

personality file,
ping packets, 152
pip utility, 79
Platform-as-a-Service (PaaS),
plug-ins, definition of,
policy service,
pool,
pool member,
ports

definition of,
port UUID,
virtual,

preseed, definition of,
private image,
private IP address,
private networks,
process monitoring, 181
Project Members tab, 104
projects

definition of, 91,
obtaining list of current, 88
project ID,
project VPN,
sharing images between, 110

promiscuous mode,
protected property,
provider,
provisioning/deployment

automated configuration, 30
automated deployment, 27
deployment scenarios, 35
network deployment options, 74
remote management, 31
tips for, 32

proxy nodes,
proxy servers,
public API,
public image,
public IP address,
public key authentication,
public network,
Puppet, 27, 77,
Python, 198, 210,

Python Package Index (PyPI), 79

Q
QEMU Copy On Write 2 (QCOW2),

Qpid, 37,
quarantine,
queues

exclusive queues,
transient queues,

Quick EMUlator (QEMU), 44,
quotas, 93-102,

R
RabbitMQ, 37, 177,
Rackspace Cloud Files,
RADOS Block Device (RBD),
radvd,
RAID (redundant array of independent
disks), 28
RAM filter,
RAM overcommit, 49,
rate limits,
raw format,
RDO (Red Hat Distributed OpenStack), 4,
10
rebalancing,
reboot

cloud controller or storage proxy, 134
compute node, 136
hard vs. soft, ,

rebuilding,
Recon,
records

basics of,
record IDs,

recovery, 192
(see also backup/recovery)

Red Hat Enterprise Linux (RHEL),
reference architecture,
region, 55,
registry (see under Image Service)
registry servers,

OpenStack Ops Guide September 12, 2014

369

Reliable, Autonomic Distributed Object
Store (RADOS),
Remote Procedure Call (RPC),
replication

definition of,
replica count,
replicators,

request IDs,
rescue images,
resizing,
resources

generic vs. OpenStack-specific, 183
resource alerting, 182

RESTful web services,
rings

definition of,
ring builders, 191,

Role Based Access Control (RBAC),
roles

definition of,
role ID,

rollbacks
preparing for, 225
process for, 263

rootwrap,
round-robin scheduler,
router,
routing keys,
RPC drivers,
rsync,
rsyslog, 178
RXTX cap/quota,
Ryu neutron plug-in,

S
S3 storage service,
sahara,
scaling

adding cloud controller nodes, 53
availability zones, 55
burn-in testing, 59
capacity planning, 59
cells and regions, 55

cloud segregation, 54
file system choice, 48
hardware procurement, 58
host aggregate, 56
metrics for, 51
Object Storage and, 62
vertical vs. horizontal, 51

scheduler manager,
schedulers

customization of, 205
design considerations, 39
round-robin,
spread-first,

scoped tokens,
script modules, 1
scrubbers,
secret keys,
secure shell (SSH),
security groups, 114, 124,
security issues

configuration options, 221
failed instance data inspection, 137
middleware example, 199
passwords, 82
reporting/fixing vulnerabilities, 216
scheduler example, 205

segmented objects,
segregation methods, 54
separation of services, 35
server image,
servers

application servers,
avoiding volatility in, 58
definition of,
obtaining overview of, 84
proxy servers,
registry servers,
server UUID,
virtual,

service catalog,
service ID,
service registration,
service restoration, 143

OpenStack Ops Guide September 12, 2014

370

service tenant,
service token,
services

definition of,
obtaining overview of, 84
separation of, 35

sessions
session back end,
session persistence,
session storage,

shared IP address,
shared IP groups,
shared storage, 47,
Sheepdog,
Simple Cloud Identity Management
(SCIM),
single-host networking, 76
Single-root I/O Virtualization (SR-IOV),

SmokeStack,
snapshot, 127,
soft reboot,
SolidFire Volume Driver,
SPICE (Simple Protocol for Independent
Computing Environments),
spread-first scheduler,
SQL-Alchemy,
SQLite,
stack (see Heat Orchestration Template
(HOT))
Stackforge, 31
StackTach, 180,
static IP addresses, 72,
StaticWeb,
storage

block storage, 4, 63, 118, 125, 191
choosing backends, 65
commodity storage, 66
ephemeral, 61
file system choice, 49
file-level, 64
geographical considerations, 222
instance storage solutions, 45

live migration, 48
object storage, 4, 61
overview of concepts, 64
storage driver support, 66
storage manager,
storage manager back end,
storage proxy maintenance, 134
storage services,
storage workers, 34
swift storage nodes,

storage back end,
storage backend, 65
storage node, 141,
strategy,
subdomains,
subnet,
SUSE Linux Enterprise Server (SLES),

suspend, definition of,
swap, definition of,
swawth,
swift

Object Storage API, 61,
python-swiftclient, 80
swift middleware, 198,
swift proxy server,
swift storage nodes,

swift All in One (SAIO),
sync point,
sysadmin,
system usage,
systems administration (see user man-
agement)

T
tailing logs, 148
tcpdump, 160
Telemetry,
telemetry/metering, 183
TempAuth,
Tempest,
TempURL,
tenant

OpenStack Ops Guide September 12, 2014

371

definition of, 91
Tenant API,
tenant endpoint,
tenant ID,

testing
burn-in testing, 59
functional testing, 204

token services,
tokens,
tombstone,
topic publisher,
Torpedo,
transaction IDs,
transient exchanges (see non-durable ex-
changes)
transient messages,
transient queues,
trending

monitoring cloud performance with,
186
report examples, 187
vs. alerts, 187

TripleO,
troubleshooting

burn-in testing, 59
checking interface states, 151
detecting path failures, 160
DNS issues, 38, 168
getting help, 211
iptables, 162
network namespaces, 171
nova-network database, 162
nova-network DHCP, 164
nova-network traffic, 152
Open vSwitch, 170
OpenStack traffic, 153-160

trove,

U
Ubuntu, 4,
uninstall operation, 150
unscoped token,
updaters,

upgrading
controlling cost of, 223
final steps, 262
Grizzly to Havana (Red Hat), 235-242
Grizzly to Havana (Ubuntu), 228-235
pre-upgrade testing, 223
preparation for, 225
process overview, 225
rolling back failures, 263

use cases
CERN, 272
DAIR, 271
MIT CSAIL, 270
NeCTAR, 269

user data, 124,
user management

adding projects, 91
associating users with projects, 104
creating new users, 102
handling disruptive users, 108
listing users, 88
quotas, 93
terminology for, 91

User Mode Linux (UML),
user training

block storage, 118, 125
flavors, 112
floating IPs, 125
images, 109
instances, 120, 130
security groups, 114, 124
snapshots, 127

users, definition of,

V
VIF UUID,
VIP,
Virtual Central Processing Unit (vCPU),

Virtual Disk Image (VDI),
Virtual Hard Disk (VHD),
virtual IP,
virtual machine (VM), 51,

OpenStack Ops Guide September 12, 2014

372

virtual network,
Virtual Network Computing (VNC),

Virtual Network InterFace (VIF),
virtual networking,
virtual port,
virtual private network (VPN),
virtual servers,
virtual switch (vSwitch),
virtual VLAN,
VirtualBox,
virtualization technology, 43
VLAN manager,
VLAN network, 75,
VM disk (VMDK),
VM image,
VM Remote Control (VMRC),
VMware API, 44,
VNC proxy,
volume

maintenance/debugging, 139
Volume API,
volume controller,
volume driver,
volume ID,
volume manager,
volume node,
volume plug-in,

volume storage, 63
volume workers,
vSphere,
vulnerability tracking/management, 216

W
weight, 59,
weighted cost,
weighting,
workers, 34,
working environment

command-line tools, 79
dashboard, 79
network inspection, 87
running instances, 88

users and projects, 88

X
Xen,
Xen API

Xen Cloud Platform (XCP),
Xen Storage Manager Volume Driver,

XenServer hypervisor, 44,

Z
ZeroMQ,
ZFS, 69
Zuul,

	OpenStack Operations Guide
	Table of Contents
	Preface
	Introduction to OpenStack
	Getting Started with OpenStack
	Using OpenStack
	Plug and Play OpenStack
	Roll Your Own OpenStack

	Who This Book Is For
	Further Reading

	How This Book Is Organized
	Why and How We Wrote This Book
	How to Contribute to This Book
	Conventions Used in This Book

	Part I. Architecture
	1. Example Architectures
	Example Architecture—Legacy Networking (nova)
	Overview
	Components
	Rationale
	Why not use the OpenStack Network Service (neutron)?
	Why use multi-host networking?

	Detailed Description
	Optional Extensions

	Example Architecture—OpenStack Networking
	Overview
	Components
	Rationale

	Detailed Description
	Node types
	Networking layout
	OpenStack internal network
	Public Network
	VM traffic network

	Node connectivity
	Initial deployment
	Connectivity for maximum performance

	Node diagrams

	Example Component Configuration

	Parting Thoughts on Architectures

	2. Provisioning and Deployment
	Automated Deployment
	Disk Partitioning and RAID
	Network Configuration

	Automated Configuration
	Remote Management
	Parting Thoughts for Provisioning and Deploying OpenStack
	Conclusion

	3. Designing for Cloud Controllers and Cloud Management
	Hardware Considerations
	Separation of Services
	Database
	Message Queue
	Conductor Services
	Application Programming Interface (API)
	Extensions
	Scheduling
	Images
	Dashboard
	Authentication and Authorization
	Network Considerations

	4. Compute Nodes
	Choosing a CPU
	Choosing a Hypervisor
	Instance Storage Solutions
	Off Compute Node Storage—Shared File System
	On Compute Node Storage—Shared File System
	On Compute Node Storage—Nonshared File System
	Issues with Live Migration
	Choice of File System

	Overcommitting
	Logging
	Networking
	Conclusion

	5. Scaling
	The Starting Point
	Adding Cloud Controller Nodes
	Segregating Your Cloud
	Cells and Regions
	Availability Zones and Host Aggregates
	Availability zone
	Host aggregates zone

	Scalable Hardware
	Hardware Procurement
	Capacity Planning
	Burn-in Testing

	6. Storage Decisions
	Ephemeral Storage
	Persistent Storage
	Object Storage
	Block Storage

	OpenStack Storage Concepts
	Choosing Storage Backends
	Commodity Storage Backend Technologies

	Conclusion

	7. Network Design
	Management Network
	Public Addressing Options
	IP Address Planning
	Network Topology
	VLAN Configuration Within OpenStack VMs
	Multi-NIC Provisioning
	Multi-Host and Single-Host Networking

	Services for Networking
	NTP
	DNS

	Conclusion

	Part II. Operations
	8. Lay of the Land
	Using the OpenStack Dashboard for Administration
	Command-Line Tools
	Installing the Tools
	Administrative Command-Line Tools
	Getting Credentials
	Inspecting API Calls
	Using cURL for further inspection

	Servers and Services
	Diagnose Your Compute Nodes

	Network Inspection
	Users and Projects
	Running Instances
	Summary

	9. Managing Projects and Users
	Projects or Tenants?
	Managing Projects
	Adding Projects

	Quotas
	Set Image Quotas
	Set Compute Service Quotas
	View and update compute quotas for a tenant (project)

	Set Object Storage Quotas
	Set Block Storage Quotas
	View and update Block Storage quotas for a tenant (project)

	User Management
	Creating New Users
	Associating Users with Projects
	Customizing Authorization
	Users Who Disrupt Other Users

	Summary

	10. User-Facing Operations
	Images
	Adding Images
	Sharing Images Between Projects
	Deleting Images
	Other CLI Options
	The Image Service and the Database
	Example Image Service Database Queries

	Flavors
	Private Flavors

	Security Groups
	General Security Groups Configuration
	End-User Configuration of Security Groups

	Block Storage
	Block Storage Creation Failures

	Instances
	Starting Instances
	Instance Boot Failures
	Using Instance-Specific Data
	Instance metadata
	Instance user data
	File injection

	Associating Security Groups
	Floating IPs
	Attaching Block Storage
	Taking Snapshots
	Live Snapshots

	Instances in the Database
	Good Luck!

	11. Maintenance, Failures, and Debugging
	Cloud Controller and Storage Proxy Failures and Maintenance
	Planned Maintenance
	Rebooting a Cloud Controller or Storage Proxy
	After a Cloud Controller or Storage Proxy Reboots
	Total Cloud Controller Failure

	Compute Node Failures and Maintenance
	Planned Maintenance
	After a Compute Node Reboots
	Instances
	Inspecting and Recovering Data from Failed Instances
	Volumes
	Total Compute Node Failure
	/var/lib/nova/instances

	Storage Node Failures and Maintenance
	Rebooting a Storage Node
	Shutting Down a Storage Node
	Replacing a Swift Disk

	Handling a Complete Failure
	Configuration Management
	Working with Hardware
	Adding a Compute Node
	Adding an Object Storage Node
	Replacing Components

	Databases
	Database Connectivity
	Performance and Optimizing

	HDWMY
	Hourly
	Daily
	Weekly
	Monthly
	Quarterly
	Semiannually

	Determining Which Component Is Broken
	Tailing Logs
	Running Daemons on the CLI

	Uninstalling

	12. Network Troubleshooting
	Using "ip a" to Check Interface States
	Visualizing nova-network Traffic in the Cloud
	Visualizing OpenStack Networking Service Traffic in the Cloud
	Finding a Failure in the Path
	tcpdump
	iptables
	Network Configuration in the Database for nova-network
	Manually Deassociating a Floating IP

	Debugging DHCP Issues with nova-network
	Debugging DNS Issues
	Troubleshooting Open vSwitch
	Dealing with Network Namespaces
	Summary

	13. Logging and Monitoring
	Where Are the Logs?
	Reading the Logs
	Tracing Instance Requests
	Adding Custom Logging Statements
	RabbitMQ Web Management Interface or rabbitmqctl
	Centrally Managing Logs
	rsyslog Client Configuration
	rsyslog Server Configuration

	StackTach
	Monitoring
	Process Monitoring
	Resource Alerting
	Metering and Telemetry with Ceilometer
	OpenStack-Specific Resources
	Intelligent Alerting
	Trending

	Summary

	14. Backup and Recovery
	What to Back Up
	Database Backups
	File System Backups
	Compute
	Image Catalog and Delivery
	Identity
	Block Storage
	Object Storage

	Recovering Backups
	Summary

	15. Customization
	Create an OpenStack Development Environment
	Customizing Object Storage (Swift) Middleware
	Customizing the OpenStack Compute (nova) Scheduler
	Customizing the Dashboard (Horizon)
	Conclusion

	16. Upstream OpenStack
	Getting Help
	Reporting Bugs
	Confirming and Prioritizing
	Bug Fixing
	After the Change Is Accepted

	Join the OpenStack Community
	How to Contribute to the Documentation
	Security Information
	Finding Additional Information

	17. Advanced Configuration
	Differences Between Various Drivers
	Implementing Periodic Tasks
	Specific Configuration Topics
	Security Configuration for Compute, Networking, and Storage
	High Availability
	Enabling IPv6 Support
	Periodic Task Frequency for Compute
	Geographical Considerations for Object Storage

	18. Upgrades
	Pre-Upgrade Testing Environment
	Preparing for a Rollback
	Upgrades
	Upgrade Levels
	How to Perform an Upgrade from Grizzly to Havana—Ubuntu
	Impact on Users
	Upgrade Considerations
	Perform a Backup
	Manage Repositories
	Update Configuration Files
	Upgrade Packages on the Controller Node
	Stop Services, Update Database Schemas, and Restart Services on the Controller Node
	Upgrade Packages and Restart Services on the Compute Nodes
	Upgrade Packages and Restart Services on the Block Storage Nodes

	How to Perform an Upgrade from Grizzly to Havana—Red Hat Enterprise Linux and Derivatives
	Impact on Users
	Upgrade Considerations
	Perform a Backup
	Manage Repositories
	Update Configuration Files
	Upgrade Packages on the Controller Node
	Stop Services, Update Database Schemas, and Restart Services on the Controller Node
	Upgrade Packages and Restart Services on the Compute Nodes
	Upgrade Packages and Restart Services on the Block Storage Nodes

	How to Perform an Upgrade from Havana to Icehouse—Ubuntu
	Impact on Users
	Upgrade Considerations
	Perform a Backup
	Manage Repositories
	Upgrade Notes
	Upgrade the Controller Node
	Upgrade Each Service
	Upgrade the Network Node
	Upgrade the Compute Nodes
	Upgrade the Storage Nodes

	How to Perform an Upgrade from Havana to Icehouse—Red Hat Enterprise Linux and Derivatives
	Impact on Users
	Upgrade Considerations
	Perform a Backup
	Manage Repositories
	Upgrade Notes
	Upgrade the Controller Node
	Upgrade Each Service
	Upgrade the Network Node
	Upgrade the Compute Nodes
	Upgrade the Storage Nodes

	Cleaning Up and Final Configuration File Updates
	Rolling Back a Failed Upgrade

	Appendix A. Use Cases
	NeCTAR
	Deployment
	Resources

	MIT CSAIL
	Deployment
	Resources

	DAIR
	Deployment
	Resources

	CERN
	Deployment
	Resources

	Appendix B. Tales From the Cryp^H^H^H^H Cloud
	Double VLAN
	"The Issue"
	Disappearing Images
	The Valentine's Day Compute Node Massacre
	Down the Rabbit Hole
	Havana Haunted by the Dead

	Appendix C. Working with Roadmaps
	Information Available to You
	Influencing the Roadmap
	Aspects to Watch
	Driver Quality Improvements
	Easier Upgrades
	Deprecation of Nova Network

	Replacement of Open vSwitch Plug-in with Modular Layer 2
	Compute V3 API
	OpenStack on OpenStack (TripleO)
	Data Processing (Sahara)
	Bare-Metal Deployment (Ironic)
	Database as a Service (Trove)
	Messaging as a Service (Marconi)
	Scheduler Improvements
	Block Storage Improvements
	Toward a Python SDK

	Appendix D. Resources
	OpenStack
	Cloud (General)
	Python
	Networking
	Systems Administration
	Virtualization
	Configuration Management

	Glossary
	Index

