
28   acm Inroads   2015 March  •  Vol. 6  •  No. 1

Henry M.
Walker

CLASSROOM VIGNETTES

INSIGHTS

Weinberg’s principle—the code is simply
awful. I would be embarrassed to have
my name associated with many examples
found on the internet, but apparently
the writers of these solutions have other
perspectives. Some common difficulties
include:

■	� unnecessary memory allocation;
■	� excessive data movements;
■	� calls to procedures that perform very

little work;
■	� use of overly-generalized mechanisms

to perform specific, simple tasks.

Three examples may illustrate the wide-
spread difficulties. The first two of these
come from class notes available on the
web, and the third comes from web-based
material to support a published textbook.
In an insertion sort, instead of taking an
element out of an array, sliding elements
up, and putting the element in its place,
code on the web swaps the element down
one position at a time. As shown in Table
1, column 2 shows time required for ex-
traction, sliding up, and reinsertion of suc-
cessive items in an insertion sort. Column

YEARS AGO, when I was writing my first
books, my series editor, Gerald Weinberg,
put forward the principle that any example
for class or a textbook should be valid on its
own merits. Of course material introduced
early may be refined, but students should
not learn a technique initially, then discover
the approach was wrong. With so much for
students to learn, students should not be de-
voting time to examples that don’t work or
are not valid in any context. Students should
not have to unlearn an early example and
then learn something to replace it. Rather,
every example should be valid as present-
ed—at least in some context within current
understandings of the discipline. To illustrate,
an insertion sort is a fine choice for the first
example of a simple sorting algorithm: it is
easily understood and is extremely efficient
when the data set is almost ordered. Of
course, much better (but more complicated)
algorithms are available for random data or
data in descending order—but the insertion
sort is an algorithm of choice in at least some
situations. (In contrast, the bubble sort is
never the algorithm of choice in any context,
so should never be used or taught.)

Traditionally, sorting algorithms have
been part of introductory courses for de-
cades. Often, the pedagogy has involved
some of the following elements:

■	� trace the algorithm when applied to
one or more data sets;

■	� code the algorithm in whatever lan-
guage is used in the course;

■	� time the algorithm on data sets of dif-
ferent types (e.g., ascending, random,
descending) and different sizes (e.g.,
40,000, 80,000, or 160,000 elements).

For example, at the end of a unit on
sorting, a common assignment might be
to write code for several algorithms, run
them on various data sets to determine
execution time, and graph the run times.
In principle, this approach gives practice
working through the algorithms and
provides experimental data to support
algorithmic analysis of efficiency. For those
interested, simple Java code to time an
algorithm might have the form

Enter the Internet: Lemons
In recent years, however, numerous ver-
sions of standard sorting algorithms can
easily be found on the web. Unfortunate-
ly, many of these examples violate Gerald

Sorting Algorithms:
When the Internet Gives
You Lemons, Organize a
Course Festival

// time and check insertion sort without swapping

start_time = System.currentTimeMillis();

call_algorithm_method (data_set);

end_time = System.currentTimeMillis();

System.out.print (end_time - start_time);

TABLE 1:
TIMINGS OF TWO IMPLEMENTATIONS
OF AN INSERTION SORT

Insertion Sort

Array Size NoSwaps WithSwaps SwapFunc

Ascending Data

10000: 0 1 1

20000: 1 1 3

40000: 0 0 0

80000: 0 0 1

160000: 1 0 0

Random Data

10000: 30 30 197

20000: 116 155 779

40000: 466 702 3125

80000: 1863 2961 12490

160000: 7418 12048 49801

Descending Data

10000: 59 72 389

20000: 232 368 1557

40000: 928 1552 6228

80000: 3749 6271 24908

160000: 14886 24749 99670

2015 March  •  Vol. 6  •  No. 1   acm Inroads   29

INSIGHTS

3 swaps elements down one position at a
time, and column 4 implements the swap
by separate procedure calls. Altogether,
the swap-function version ran 7-8 times
slower than a simply-coded insertion sort.

In a merge sort, each recursive step
may involve creating subarrays, copying
data from an original array to the sub-
arrays, and then merging the subarrays
back into the original array. In some cases,
the merge may put data into a third array,
and then the results may be copied back
to the original array. In many cases, the
online code may contain separate func-
tions to compare values in sorting—but
for integers in Java this requires additional
autoboxing and adds calls for a simple
“less than” comparison. (Generality may
be wonderful in some circumstances, but
it may come at a price.) From timings com-
paring two versions, the multiple-copy-
with-comparator approach ran 3-5 times
slower than a simply-coded merge sort.

In a radix sort of integers, using Java
and an int array based on decimal digits,
one approach on the web creates an
array of 10 linked lists for each int digit.
With autoboxing and autounboxing, new
objects are created for every decimal digit
of every data element. As a conservative
estimate, for an initial int array of n ele-
ments, where the integers contain 8 deci-
mal digits, memory allocation is required
at least 16n times. Further, the Math.pow
function is used to compute the power of
10 needed to extract each decimal digit
from an integer. (Math.pow is wonderful
for fractional exponents, but often ineffi-
cient for small positive integer powers that
do not need to be recomputed at each
step.) Timings indicated that the online
code ran 10 times longer than a simply-
coded radix sort.

Organize a Course Gala
With such awful code easily available,
many traditional coding assignments have
limited usefulness. When asked to write
a specific sorting algorithm, students can
draw upon hundreds (thousands?) of
sources. When asked to time and compare
algorithms, bad implementations may
indicate that some algorithms work rela-
tively well, when a better implementation
might highlight shortcomings.

An alternative approach is to utilize
online examples as starting points to
highlight algorithms, implementation
inefficiencies, and timing issues. The basic
idea is that one can begin with awful
implementations and organize an assign-
ment gala (or festive celebration), in which
students consider how to turn misguided
code into efficient and effective imple-
mentations. Here are several examples I
have used in the recent semesters. In each
case, initial code is given, possibly limiting
students trying to find solutions on the
Web—student work must be based on the
code given.

■	� After highlighting common inefficien-
cies, give students one or two bad
implementations and ask them to
make improvements. Then students
can time versions of the code on vari-
ous data sets to determine what, if any,
speed up has been achieved.

■	� Give students several implementations
of the same sorting algorithm and ask
them to compare and contrast. Based
on these different versions, students
might write a new version that builds
on the strengths of the given versions,
but avoids the weaknesses.

■	� Give students a list of potential inef-
ficiencies in code, as well as several
implementations of a sorting algo-
rithm. Then ask the students to find
which, if any, of those difficulties are
present in several implementations

■	� Start with a bad implementation, and
ask the students to time it on various
data sets. Then the exercise could iden-
tify 3-6 improvements, and students
could time the resulting code when
each adjustment was made. In addition
to the code, students might produce a
table similar to Table 1.

■	� Give two or three versions of a merge
sort (perhaps changing what happens
in a merge when two values are equal),
and ask students to analyze which
version(s) are stable, which shows tim-
ings (in milliseconds) of several sorting
algorithms using comparably-coded
Java methods.

■	� Give students a specific sorting imple-
mentation and ask them to adjust it
so that one version uses a comparator
for determining order and another

version compares elements directly (no
comparator function parameter). Then
ask students to time the two versions
to determine the extent to which a
comparator adds noticeable overhead.

■	� After reviewing several sorting
algorithms, ask students how testing
might be automated, so that a user
will know that an implementation is
working correctly.

■	� In the spirit of a gala or festival, ask
students to examine implementations
of a specified sorting algorithm from
the web. Awards might be given to
students who find the most efficient or
the least efficient implementations.

All of these activities openly acknowl-
edge that a simple Web search will generate
numerous implementations of various al-
gorithms. Rather than ignore these sources,
these approaches ask students to focus on
specific algorithms, analyze available code,
make improvements, and time results. Not
only may these activities help students learn
about specific algorithms, but students also
may gain insights on the quality or lack of
quality found on the Internet.

Altogether, each of these activities al-
lows students to examine examples at an
early stage, by contrasting inefficient
code with well-designed code. Further,
students gain direct experience with quali-
ties that separate well-constructed code
from misguided code. In this context, even
awful examples can provide insights—
although not necessarily about the prob-
lems the examples might have been trying
to address. Ir

Acknowledgments
Some of the ideas for the exercises mentioned in this column
build upon approaches suggested by my colleague, Samuel
Rebelsky. Thanks also to Margie Coahan for her suggestions
on this column.

Henry M. Walker
Computer Science, Grinnell College
Noyce Science Center, 1116 Eighth
Avenue, Grinnell, Iowa 50112 USA
walker@cs.grinnell.edu

DOI: 10.1145/2727125

Copyright held by author.

