
Evaluating the Efficiency and Effectiveness of Adaptive Parsons
Problems

Barbara J. Ericson
Georgia Institute of Technology

Atlanta, Georgia
ericson@cc.gatech.edu

James D. Foley
Georgia Institute of Technology

Atlanta, Georgia
jim.foley@cc.gatech.edu

Jochen Rick
Georgia Institute of Technology

Atlanta, Georgia
jochen.rick@gatech.edu

ABSTRACT
Practice is essential for learning. There is evidence that solving
Parsons problems (putting mixed up code blocks in order) is a more
efficient, but just as effective, form of practice than writing code
from scratch. However, not all students successfully solve every
Parsons problem. Making the problems adaptive, so that the dif-
ficulty changes based on the learner’s performance, should keep
the learner in Vygotsky’s zone of proximal development and maxi-
mize learning gains. This paper reports on a study comparing the
efficiency and effectiveness of learning from solving adaptive Par-
sons problems vs non-adaptive Parsons problem vs writing the
equivalent code. The adaptive Parsons problems used both intra-
problem and inter-problem adaptation. Intra-problem adaptation
means that if the learner is struggling to solve the current problem,
the problem can dynamically be made easier. Inter-problem adapta-
tion means that the difficulty of the next problem is modified based
on the learner’s performance on the previous problem. This study
provides evidence that solving intra-problem and inter-problem
adaptive Parsons problems is a more efficient, but just as effective,
form of practice as writing the equivalent code.

CCS CONCEPTS
• Social andprofessional topics→Computing education; Stu-
dent assessment;

KEYWORDS
Parsons problems; adaptive Parsons problems; Parsons puzzles;
Parson’s problems; zone of proximal development; cognitive load
ACM Reference Format:
Barbara J. Ericson, James D. Foley, and Jochen Rick. 2018. Evaluating the
Efficiency and Effectiveness of Adaptive Parsons Problems. In ICER ’18: 2018
International Computing Education Research Conference, August 13–15, 2018,
Espoo, Finland. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3230977.3231000

1 INTRODUCTION
Several countries, including the United States, want to increase
computing in K-12 [3, 5, 11, 12, 17, 24]. To accomplish this goal,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICER ’18, August 13–15, 2018, Espoo, Finland
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5628-2/18/08. . . $15.00
https://doi.org/10.1145/3230977.3231000

thousands of teachers with no programming experience need to
learn programming [18, 31]. However, learning to program can
be difficult [7, 10, 39]. Novice programmers spend hours trying to
fix errors in their programs, like unmatched parentheses [6]. Most
introductory programming courses require novices to learn by
writing many small programs [29, 35]. However, writing programs,
even short ones, is a complex cognitive task, which can easily
overwhelm novices and impede learning [40, 44]. Busy teachers
need a more efficient way to learn programming.

One recommended way to reduce cognitive load is to use a
completion task rather than a whole task [43]. Parsons problems
are a type of code completion task in which the correct code to solve
a problem is provided, but is broken into mixed up code blocks, and
the user must place the blocks in the correct order [34].

Ericson, Margulieux, and Rick provided evidence that solving
non-adaptive Parsons problems is more efficient (with respect to
completion time), and just as effective (with respect to learning
gains) as fixing the same code with errors or writing the equivalent
code [22]. However, that study did not include a control group to
verify that the learning gains were due to the instructional practice
condition, rather than from answering the same or similar questions
with feedback. Also, some students struggle to solve Parsons prob-
lems and some never solve them [21], which means that Parsons
problems could be improved.

This study compared the efficiency and effectiveness of adap-
tive (both intra-problem and inter-problem) Parsons problems vs
non-adaptive Parsons problems vs writing the equivalent code. It
also included a control group that solved off-task adaptive Parsons
problems. This study tested the following three hypotheses:

• H1: Learners who solve adaptive and non-adaptive Parsons
problems will finish the instructional problems significantly
faster than the learners who write code.

• H2: Learners who solve adaptive Parsons problems will have
similar learning gains from pretest to immediate posttest as
those who solve non-adaptive Parsons problems and write
code.

• H3: Learners who solve off-task (not related to the pretest
questions) adaptive Parsons problems (the control group)
will have lower learning gains than those who solve on-task
problems.

This paper contributes to research on adaptive learning and Parsons
problem. It is the first study of the efficiency and effectiveness of
intra-problem and inter-problem adaptive Parsons problems.

Session 3: Tools and Technologies in Computing Education, 1 ICER ’18, August 13–15, 2018, Espoo, Finland

60

https://doi.org/10.1145/3230977.3231000
https://doi.org/10.1145/3230977.3231000
https://doi.org/10.1145/3230977.3231000

2 RELATEDWORK
This research is based on cognitive load theory. The study was
informed by prior research on adaptive learning and Parsons prob-
lems.

2.1 Cognitive Load Theory
Cognitive Load Theory (CLT) was developed by John Sweller in the
late 1980s [40]. It can be used to improve the design of instructional
material. Three types of cognitive load are described in the theory:
intrinsic cognitive load, germane cognitive load, and extraneous
cognitive load. Intrinsic cognitive load is the amount of load due
to the difficulty of the problem being solved. Extraneous cognitive
load is the load added by the complexity of the instructional mate-
rials. Germane cognitive load is the load devoted to the processing,
construction and automation of schemas in long-term memory.
Schemas are cognitive frameworks for organizing and interpreting
information.

Instructional materials should be designed to free up working
memory to allow learning to occur by reducing the extraneous
load and focusing resources on the germane load to allow for the
construction of schemas. If the instructional material overloads
working memory then learning is impeded. If the intrinsic load
is too high then the problem should be broken into smaller and
simpler sub problems. It is important to note that the amount of
cognitive load that a learner experiences is based on the learner’s
prior knowledge. This implies that learning should be enhanced if
the task is adapted based on the learner’s prior performance.

2.2 Research on Adaptive Learning
Corbalan, Kester, and van Merrienboer found that dynamically
adaptive practice, where the practice problems are adapted based
on the learners prior performance, improves learning, takes less
time, and increases engagement [15]. This is not surprising since
adaptive practice is more likely to keep the learner in Vygotsky’s
zone of proximal development [8], which is what the learner can
accomplish with support versus independently.

Soloway, Guzdial, and Hay called for more scaffolding to support
learners as they try to accomplish new tasks [36]. To be most effec-
tive, scaffolding should fade as the learner develops expertise. In
other words, the system should adapt to the learner’s performance
to reduce the cognitive load of the task.

Intelligent Tutoring Systems (ITS) provide scaffolding on the cur-
rent problem in the form of explicit hints if the learner is struggling
to solve the problem. They also use selection adaptation, which
means that after the learner finishes a problem the system selects
the next problem based on the learner’s performance and a model
of what the student has mastered. ITS take a great deal of time to
build [16] and are not widely used [2]. Parsons problems are rela-
tively easy to create and Parsons problems are already supported
in several free online learning environments [21, 30].

2.3 Research on Parsons Problems
Parsons problems should have lower cognitive load than code writ-
ing problems, since they are a type of code completion problem.
There are several variants on Parsons problems. Some include dis-
tractor blocks which include syntactic or semantic errors and should

Figure 1: Paired distractor and correct code on the left and
an unpaired distractor randomly mixed in with the correct
code on the right

not be used in a correct solution. In some Parsons problems, a dis-
tractor block is shown either above or below the correct code block
as shown on the left in Figure 1. These are called paired distractors.
In unpaired distractors, shown on the right in Figure 1, the dis-
tractor blocks are randomly mixed in with the correct code blocks.
Some Parsons problems require the learner to indent the code hori-
zontally. These are called two-dimensional Parsons problems.

Research has shown that Parsons problems with only the correct
code (no distractors) are the easiest to solve [25, 26], while con-
versely, increasing the number of distractors in a Parsons problem
increases the difficulty of the problem [19]. Parsons problems with
visually paired distractors are easier to solve than those with un-
paired distractors [19]. Parsons problems that require the learner
to provide indentation are harder than those that do not [19, 28].
Parsons problems with more blocks tend to be harder to solve than
those with fewer blocks [21], especially if students are just ran-
domly trying different combinations of blocks [27]. While many
students find solving Parsons problems engaging [34], students
sometimes struggle to solve the problems, and some students give
up without ever solving them [21]. Since learning gains are based
on the number of practice problems that students solve and under-
stand [1], scaffolding that allows students to solve more problems
should improve learning. However, it is also important that practice
problems challenge the learner. Bjork and Bjork found that making
practice too easy reduced learning gains [9]. They advocate for
desirable difficulties during learning to improve long-term retention.
Our adaptive Parsons problems were designed to scaffold learn-
ers that need help solving the current problem while providing
desirable difficulties to learners who found the last problem too
easy.

Kumar created a web-based tool for adaptive Parsons problems
called Epplets [30]. Epplets uses selection adaptation, similar to
what is used in Intelligent Tutoring Systems. This means that the
next Parsons problem to solve is selected based on the learner’s per-
formance on the previous problem. This is the same approach used
in Intelligent Tutoring Systems. Similar problems are presented
until the user has demonstrated mastery on a particular concept.
He reported that students get faster at solving similar Parsons prob-
lems, but did not compare solving selection-based adaptive Parsons

Session 3: Tools and Technologies in Computing Education, 1 ICER ’18, August 13–15, 2018, Espoo, Finland

61

problems with other forms of practice, such as writing code. His
approach also requires a valid student model to track mastery.

3 INTRA-PROBLEM AND INTER-PROBLEM
ADAPTIVE PARSONS PROBLEMS

This study used two new types of adaptation: intra-problem adap-
tation and inter-problem adaptation. In intra-problem adaptation if
the learner is struggling to solve the current Parsons problem, then
the problem can be made easier by removing distractors, providing
indentation, or combining blocks. These changes are implicit hints
which should guide the learner to the correct solution, compared
to the explicit hints offered by Intelligent Tutoring Systems.

Each time the user asks for help by clicking the “Help Me” button
one action is taken tomake the problem easier. Help is only provided
if the user has made at least three full attempts, otherwise an alert
is shown explaining that help is not yet available. A full attempt
contains at least the required number of blocks.

After three full unsuccessful attempts an alert is shown to inform
the user that help is available. If the user asks for help, and a distrac-
tor block has been used in the solution area on the right side, then
the distractor block animates moving back from the solution area
to the source area on the left and then grays out to show that it is
disabled. Animation is useful for grabbing attending and conveying
a change over time [4, 13]. If the distractor block was originally
shown paired with its correct code block and the correct code block
is still in the source area on the left, then the distractor moves below
the correct code and the purple edge decorations shown in Figure
1 are drawn to again show that the blocks are paired. If there are
no distractors in the solution area, and the solution requires inden-
tation, then space is slowly added to the code blocks to provide
the indentation. Finally, if there are no distractors in the solution
and indentation is not needed, the system will animate moving one
block below another and then redraw the two blocks as one block.
If the user asks for help, and there are only three blocks left in the
correct solution, the user is told that they should be able to solve
the problem.

In inter-problem adaptation, the difficulty of the next problem
is modified based on the learner’s performance on the previous
problem. While this is somewhat similar to selection adaptation, it
differs in that it does not require a model of the learner’s mastery
of concepts and it does not affect which problem the learner solves
next. If the learner solved the last Parsons problem in only one
attempt, then the next Parsons problem is made more difficult by
un-pairing distractors (randomly mixing them in with the correct
code) and by using all available distractors. If it took the learner
four or five attempts to solve the last Parsons problem, then on
the next problem the distractors are shown paired with the correct
code blocks. If it took the learner 6-7 attempts to solve the last
problem, then 50% percent of the available distractors are removed
and the remaining distractors are shown paired with the correct
code blocks on the next problem. If it took the learner 8 or more
attempts to solve the last problem, then all distractors are removed
from the next problem. The goal is to keep the learner in Vygotsky’s
zone of proximal development to optimize learning.

4 METHODS
This was a between-subjects study to test the efficiency (time to
complete the practice problems) and effectiveness (learning gains)
from solving intra-problem and inter-problem adaptive Parsons
problems versus non-adaptive Parsons problem versus writing the
equivalent code.

4.1 Participants
Undergraduate students were recruited from two sections of an
introductory computer science course for computing majors at a
research-intensive university in the United States. The sections had
the same instructor and followed the same curriculum with the
same homework and assessments. This course covers introductory
programming concepts in Python including variables, selection,
iteration, and lists. At the time of the study, the course had covered
all of these topics and was covering files and dictionaries. Ericson
visited the course during lecture to recruit participants and also
sent an announcement to all of the students enrolled in the course.
Participants earned 2.5 points of extra credit for completing the first
session and another 2.5 points of extra credit for completing the
second session one week later. Students who did not participate in
the study could alternatively earn up to 5 points of extra credit by
writing a paper on a computing innovation, which Ericson graded
and that grade was submitted to the course instructors. None of
the authors were involved in the teaching of the course.

4.2 Study Design
The first of two sessions took 2.5 hours and included consent, a
demographic survey, pretest, instructional material, and an imme-
diate posttest. The second session, lasting an hour one week later,
was a delayed posttest to measure retention of the instructional
material.

The instructional material in the first session contained four
worked-example plus practice pairs. A worked example is a worked
out expert solution to a problem [41]. Research has found that inter-
leaving worked-examples with similar practice problems improves
learning gains [42]. Students were randomly assigned to one of
four practice conditions for the instructional material: 1) solving
on-task adaptive Parsons problems with distractors, 2) solving on-
task non-adaptive Parsons problems with distractors, 3) writing the
equivalent code as the Parsons problems, or 4) a control group that
solved off-task adaptive Parsons problems with distractors.

4.3 Study Procedure
Both sessions were held in a closed classroom with all participants
attending at the same time. Students were instructed to bring their
laptops and were provided with scratch paper and a pen. All of
the study materials were online and students were asked to only
use those materials, even though they had access to the Internet.
Proctors checked that the students were on task.

In the first session, the procedure was 1) provide consent and
randomly be placed into one of the four practice conditions, 2) com-
plete the demographic survey, 3) complete the practice problems
which familiarized the students with the online environment and
problem types, 4) complete the pretest, 5) complete four worked
examples plus practice pairs, where the type of practice problem

Session 3: Tools and Technologies in Computing Education, 1 ICER ’18, August 13–15, 2018, Espoo, Finland

62

differed based on the condition, and 6) complete the immediate
posttest.

At the second session, a week later, participants completed the
delayed posttest, which was isomorphic to the first posttest. Only
the variable names and some values were changed, but the structure
of the problems was the same, meaning that they required near
transfer to solve. Near transfer is being able to solve a new problem
in a similar context to one that you have already solved. The delayed
posttest tested for retention of the material one week later.

4.4 Study Materials
The study materials include a demographic survey, familiarization
(practice) materials, a pretest, instructional material, an immediate
posttest, and a delayed posttest.

4.4.1 Demographic Survey. The survey asked the participant’s
age, gender, race, first spoken language, comfort level with read-
ing English, high school grade point average, college grade point
average, current major, expected grade in the course, and prior pro-
gramming experience. If participants reported prior programming
experience, they were also asked what courses, where they took
them, and how many years they had been programming.

4.4.2 Familiarization Activities. The participants in this study
had not previously used the online study environment, so materials
were developed to introduce them to the types of problems they
would see in the pretest. This included instruction on how to start
and finish a timed section (a section that must be completed in
a given amount of time), how to move to the next page, how to
answer multiple-choice questions, how to check the solution for a
fix code or write code problem, and how to drag blocks and check
the solution on a Parsons problem.

The familiarization activities also include two easy practice
multiple-choice questions, a practice fix code problem, a practice
Parsons problem, and a practice write code problem. The fix code
problem included instructions on how to fix the code. The cor-
rect solution was displayed above both the Parsons and write code
problems.

4.4.3 Pretest. The participants had 15 minutes to complete the
first section of five multiple-choice questions and 10 minutes to
complete each of the other three sections (fix code, Parsons problem,
and write code). If the participant ran out of time, the current
answer(s) were automatically recorded. The goal was to control the
amount of time the learner had for each section.

The five multiple-choice questions required tracing code with
lists, ranges, selection, and iteration. The questions included code
to find the minimum value in a list between a range of indices as
shown in Figure 2, compare values in two sorted lists, return the
count of the number of times a target value appeared in a range
of indices in a list, trace the values of variables in a complex for
loop, and return the average of values in a range of indices in a list.
The question that compared the values in two lists had been used
in prior research with 65% of the those students getting it correct
[32].

The fix code problem was intended to calculate and return the
average of a list of numbers, but double the highest value. However,
it had errors that the learner had to find and fix, as shown in Figure

Figure 2: The first multiple-choice question in the pretest
and immediate posttest

Figure 3: Pretest fix code problem with the errors boxed and
the correct code to the right

Figure 4: The unit test results when all the errors in the fix
code problem have been corrected

3. The problem included unit tests, to verify the correctness of the
code as shown in Figure 4.

Session 3: Tools and Technologies in Computing Education, 1 ICER ’18, August 13–15, 2018, Espoo, Finland

63

Figure 5: The solution to the pretest Parsons problem

The Parsons problem asked the participant to order the code
for a function, isLevel, which should return true if the difference
between the maximum and minimum value between a given start
and end index (inclusive) was 10 or less. This problem included five
unpaired distractor code blocks, in which the distractor blocks were
randomly mixed in with the correct code blocks. The solution to
this problem is shown in Figure 5. Note that the user had to order
the blocks vertically as well as indent the blocks horizontally to
achieve a correct solution.

The write code problem was a modified version of Soloway’s
rainfall problem [10], which has been studied by several researchers
[20, 23, 37, 38]. The original problem totals the non-negative values
in an input loop until a sentinel value is reached and then outputs
the average. The solutionmust avoid a division by zero. The problem
was modified to loop through a list of numbers rather than read
input until a sentinel value was reached as shown in Figure 6. Simon
found that students still perform poorly on this problem and that
students are not used to reading input in a loop until a sentinel
value is reached [38]. The instructions explained the algorithm in
English, provided example input and output, and provided unit
tests.

4.4.4 Instructional Material (Worked Example + Practice). There
were four worked examples with interleaved practice problems in
the instructional material. The type of practice problem depended
on the condition: adaptive Parsons problems, non-adaptive Parsons
problems, write code problems, or the control group which solved
off-task adaptive Parsons problems on turtle graphics.

Each worked example contained an algorithm in English and
example input and output. It also included runnable code with
comments as shown in Figure 7. When the user ran the example
code it displayed the results from running the unit tests.

Figure 6: The write code problem with a correct solution

Figure 7: A worked example with runnable code

Each of the practice problems also contained an algorithm in
English, example input and output, and unit tests to verify the user’s
solution. The user had 10 minutes to complete each problem. The
user answer was saved if the user ran out of time.

The first worked example returned a count of the number of
times a target value appeared in a list using a loop that looped
through all the indices. The associated practice question was to
return the count of a target value in a given range of indices (inclu-
sive). The second worked example returned the maximum value
from a list and the associated practice problem was to return the
minimum value. The third worked example returned the average
of the values in a list and protected against a divide by zero error
as shown in Figure 7. The associated practice problem returned
the average but did not include the lowest value in the list in the
average and also guarded against a divide by zero error as shown
in Figure 8. The fourth worked example returned the minimum
value in a given range of indices (inclusive). The associated practice

Session 3: Tools and Technologies in Computing Education, 1 ICER ’18, August 13–15, 2018, Espoo, Finland

64

Figure 8: The correct solution to the third instructional Par-
sons problem

Figure 9: One of the multiple-choice questions from the
pretest, first posttest, and second (delayed) posttest. Note
that the second posttest changed the variable names and val-
ues.

problem returned the maximum value in a given range of indices
(inclusive).

4.4.5 Posttests. The immediate posttest, which was adminis-
tered at the end of the first session, had the exact same questions
as the pretest. The delayed posttest, administered one week later,
was isomorphic to the immediate posttest, meaning that the prob-
lems to be solved had the same structure, but different surface level
features, like variable names as shown in Figure 9.

5 ANALYSIS
A total of 163 students participated in the first session. However, 37
of these students did not answer at least one question during the
session or spent less than 30 seconds answering a question without

Table 1: Mean time in seconds and standard deviation for
each of the four practice problems by group (condition)

Group P1 secs P2 secs P3 secs P4 secs
(std dev) (std dev) (std dev) (std dev)

1. (n=32) 115.65 97.88 191.88 74.63
A. Parsons (50.1) (34.3) (130.5) (23.5)
2. (n=34) 114.29 92.85 190.79 72.94
Parsons (56.3) (31.0) (91.2) (26.8)
3. (n=27) 177.44 118.07 270.48 102
Write (152.0) (113.3) (152.0) (63.6)

4. (n=33) 252.24 176.70 178.12 325.06
Control (100.9) (79.6) (107.13) (160.3)

getting the question correct. This paper reports on the data from
the remaining 126 students (32 in the adaptive Parsons condition,
34 in the non-adaptive Parsons condition, 27 in the write condition,
and 33 in the control group that solved off-task adaptive Parsons
problems) from the first session.

Students were not required to come back for the second session
one week later, but earned an additional 2.5 points of extra credit
for completing this session. A total of 126 students returned for the
second session. Of these, 100 students completed all the questions
in both the first session and second session and spent at least 30
seconds on each question or got the question correct in under
30 seconds (27 in the adaptive Parsons condition, 30 in the non-
adaptive Parsons condition, 19 in the write condition, and 24 in
the control group that solved off-task adaptive Parsons problems).
These 100 students were used to study the retention of the material
one week later.

5.1 Testing for Efficiency
Themean time in seconds to complete each practice problem and the
standard deviation is shown in Table 1 for each condition. Note that
the adaptive Parsons (group 1) and non-adaptive Parsons (group 2)
had similar mean completion times. In an observational study of
teachers solving both adaptive and non-adaptive Parsons problems,
the adaptive problems sometimes took longer to solve than the
non-adaptive because the teacher checked their solution after each
change. With inter-problem adaptation, if the learner struggled on
the previous problem then the next problem was made easier and
if the learner solved the previous problem in one attempt the next
problem was made harder, which probably kept the total comple-
tion times similar. The Cohen’s d for the write code group mean
total time to solve the practice problems in seconds compared to
the adaptive Parsons group is (d=0.756) and for the non-adaptive
Parsons group is (d=0.845). Cohen describes 0.2 as a small effect
size, 0.5 as a medium effect size, and 0.8 as a large effect size [14].
There was a large effect between the non-adaptive Parsons and
the write code group and a medium effect between the adaptive
Parsons and write code group.

To test if the time differences were significant, outliers were
removed (values more than three standard deviations from the
mean) to normalize the data so that z-scores could be calculated.

Session 3: Tools and Technologies in Computing Education, 1 ICER ’18, August 13–15, 2018, Espoo, Finland

65

Z-scores allow for different size groups to be compared. A test for
skew (a test to indicate whether or not the data falls in a normal
distribution) revealed that the values were all in the acceptable
range (under 2). Removing outliers left 31 students in the adaptive
Parsons group, 33 in the non-adaptive Parsons group, and 22 in the
write group. Z-scores were created from the total time in seconds
to solve the four practice problems minus the mean and divided
by the standard deviation. A Least Squares Difference test (LSD)
was used to compare the three on-task groups (Adaptive Parsons,
Parsons, and Write). The fourth condition was the control group,
which was solving off-task problems, so it was not included in the
test for efficiency. There was no significant difference in completion
time between the adaptive Parsons group and non-adaptive Parsons
group. The time was significantly different between the adaptive
Parsons group and the write group (mean difference of -.33 and
p=.025) as well as the non-adaptive Parsons group and the write
group (mean difference of -.32 and p=.025).

5.2 Testing for Effectiveness
Grading rubrics were created for the pretest and posttest write and
fix code problems. Two people graded each problem independently
and then met to resolve any differences in scores. The hand graded
scores correlated with the unit test results. A factor analysis showed
that the hand graded scores and unit test scores appeared to be
measuring the same construct.

The Parsons problems were graded automatically. Each correct
line in the correct order starting from the beginning of the solution
received a half point. If the correct line was also indented correctly
it received an additional half point. If the line was incorrect, but
was the paired distractor and was indented correctly, it received
a half point. Grading continued until a line was found that was
neither the correct line nor its paired distractor (i.e. a line out of
order). Grading then continued from the end of the solution back
towards the first line that had been found to be incorrect.

This grading approach was based on an observation that learners
had the most difficulty in the middle of the solution. We also wanted
the grading to be similar to the grading of the fix code problems,
and the fix code problems had the advantage that the code was
already in the correct order.

The mean and standard deviation for each pretest and immediate
posttest are shown by condition in Table 2. The pretest and posttest
both contained four sections. One section had five multiple-choice
(MC) questions which a maximum score of five, one had a fix code
problem with a maximum score of 11, one had a Parsons with a
maximum score of 10, and one had a write code problem with a
maximum score of 10. The Cohen’s d for the differences in the gains
from pretest to immediate posttest by condition versus the control
group were: (d=0.799) for the adaptive Parsons group, (d = 0.311)
for the non-adaptive Parsons, and (d=0.133) for the code writing
group. This is a medium effect size for the adaptive Parsons group
and a small effect size for the non-adaptive Parsons group.

Remember that not all of the students took the delayed (2nd)
posttest one week later. The mean score and standard deviation for
the pretest, immediate (1st) posttest, and delayed (2nd) posttest for
just the students who attended both sessions is shown in Table 3.

Table 2: Mean score and standard deviation for the pretest
and immediate posttest (first posttest) by group

Group 1 Group 2 Group 3 Group 4
A. Parsons Parsons Write Control
(n=32) (n=34) (n=27) (n=33)

Pre MC 2.7 (1.5) 3 (1.1) 3.8 (1.4) 3.6 (1.4)
Post MC 3.8 (1.1) 3.4 (.17) 4.3 (1.3) 4.2 (1.2)
Pre Fix 8.1 (1.6) 8.9 (2.0) 9.0 (1.6) 8.8 (1.8)
Post Fix 9.2 (1.8) 9.6 (2.0) 9.8 (1.8) 8.8 (2.1)
Pre Order 7.3 (3.3) 8.6 (3.0) 7.7 (3.4) 7.4 (3.6)
Post Order 8.5 (3.0) 9.5 (1.8) 8.0 (3.3) 7.9 (3.5)
Pre Write 8.6 (2.3) 9.3 (1.3) 9.0 (1.7) 9.2 (1.2)
Post Write 9.3 (1.3) 9.4 (1.0) 9.0 (1.9) 9.2 (1.4)

Table 3: Mean score and standard deviation for the pretest,
immediate posttest (first posttest), and delayed posttest (2nd
posttest) by group

Group 1 Group 2 Group 3 Group 4
A. Parsons Parsons Write Control
(n=27) (n=30) (n=19) (n=24)

Pre MC 2.7 (1.5) 2.9 (1.1) 3.8 (1.3) 3.8 (1.5)
1st Post 3.9 (1.0) 3.7 (1.6) 4.2 (1.5) 4.3 (1.3)
2nd Post 3.8 (1.1) 3.7 (1.2) 4.3 (1.1) 3.8 (1.2)
Pre Fix 8.1 (1.6) 8.9 (2.0) 8.9 (1.6) 8.6 (1.9)
1st Post 9.3 (1.7) 9.6 (2.0) 9.4 (2.0) 8.8 (2.2)
2nd Post 9.1 (1.8) 9.7 (1.9) 9.5 (1.8) 9.3 (1.6)
Pre Order 7.7 (3.1) 8.1 (3.3) 6.8 (3.7) 7.2 (3.8)
1st Post 8.2 (3.1) 9.4 (2.0) 7.1 (3.7) 7.4 (3.7)
2nd Post 8.7 (2.4) 9.7 (1.4) 9.2 (2.0) 8.3 (2.9)
Pre Write 8.9 (1.9) 9.4 (1.4) 8.7 (2.0) 9.1 (1.3)
1st Post 9.4 (1.2) 9.5 (1.1) 8.7 (2.2) 9.0 (1.5)
2nd Post 9.3 (1.1) 9.7 (1.0) 9.0 (2.1) 9.3 (1.3)

There was a statistically significant change from pretest to
the immediate posttest using a multivariate analysis of variance
(MANOVA) with Pillai’s trace (F=2.36 and p=.031). A MANOVA was
used since there were four conditions in this study. The Bonferroni
post-hoc test does not indicate a statistically significant difference
by condition from the pretest to the immediate posttest, which
means that no condition seemed to have done better or worse than
the others.

The differences in the scores from pretest to immediate posttest
were compared for all the on-task conditions compared to the con-
trol group. Twenty-seven results were chosen at random from each
condition in order to compare equal size samples. A Mann-Whitney
U test was used, which does not assume that the data follows a nor-
mal distribution. The difference between the pretest score and the
posttest score was significant (p=.007882) for the adaptive condition
versus the control group (who solved turtle graphics problems).
There was not a significant difference for any of the other on-task

Session 3: Tools and Technologies in Computing Education, 1 ICER ’18, August 13–15, 2018, Espoo, Finland

66

Figure 10: Results from a Mann-Whitney U test comparing
the pretest score to the immediate posttest score by condi-
tion

conditions compared to the control group. See Figure 10 for a box
and whisker plot by condition.

Kurtosis was high on the pretest write and posttest write prob-
lems which indicates that the scores fall in a narrow range. This
means there was likely a ceiling effect on the write code problem.
The mean scores on the pretest write problem ranged from 8.7 to
9.4 out of a maximum of 10 as shown in Table 3.

5.3 Analysis of the Demographic Information
Of the 126 students who completed all questions in the first session,
73 (58%) self-identified as male and 51 (40%) as female and two (2%)
students did not answer the question.

An analysis of the demographic information showed a strong
positive correlation with the student’s actual grade in the course
(p < .001). There was a moderate negative correlation between the
pretest score and the student’s age r(121) = -.413, p < .001, which
means that older students did worse than younger. This course is
intended to be a first course for majors, so older students may be
retaking the course after failing it in the past, or be weaker students
who delayed taking the course. We found a moderate negative
correlation for gender with males performing better than females
on the delayed posttest ρ(99) = -.362, p < .001.

There was no interaction between condition and any of the
demographic characteristics that affected performance. This means
that the groups were comparable.

6 DISCUSSION
The on-task Parsons groups (both the adaptive and non-adaptive)
solved the four practice problems in significantly (p=.025) less time
than the write code group with medium (adaptive Parsons group)
(d=0.756) to large (non-adaptive Parsons group) (d=0.845) effect
sizes. This supports hypothesis H1.

There was a significant improvement in composite scores from
pretest to immediate posttest. However, there was no significant
difference between the three on-task conditions. This means that
learners solving both adaptive and non-adaptive Parsons problems

had equivalent learning gains as those in the write code condition.
This supports hypothesis H2.

The learners in the control group who solved off-task turtle
graphics adaptive Parsons problems had a significantly (p=.007882)
lower learning gain from pretest to immediate posttest than the
on-task adaptive Parsons group and there was a medium effect
size (d=0.799), which supports hypothesis H3. However, there was
no significant difference between the control group and the non-
adaptive Parsons group or between the control group and the write
code group. This means that hypothesisH3was not fully supported.

7 LIMITATIONS
There was not any significant difference for the learning gains from
the pretest to the immediate posttest between the control group
and the non-adaptive Parsons group or the write code group. This
implies that at least some of the learning gains were from answering
the same or similar problems with correctness feedback.

This study used both intra-problem and inter-problem adapta-
tion. We do not know the relative effectiveness of each type of
adaptation. Further studies should be done to test this.

The results are only from undergraduates from one research
intensive university in the United States. The results would be
strengthened by replication at other universities around the world
and by similar studies with teachers.

8 CONCLUSIONS
This study provides evidence that solving either adaptive Parsons
problems or non-adaptive Parsons problems is a more efficient, but
just as effective, form of practice than writing the equivalent code.
It also found that solving adaptive Parsons problems led to a signif-
icant learning gain compared to the control group. However, there
was no significant difference in learning gains between the control
group and either the non-adaptive Parsons problems group or the
write code group. This means that at least some of the learning
gains were likely due to repeated exposure to the same problems
with correctness feedback. Further studies are needed to verify
the learning gains from solving adaptive Parsons problems versus
non-adaptive Parsons problems versus writing the equivalent code.
If solving adaptive Parsons problems is a more efficient, but just as
effective form of low cognitive load practice, they could be used
to help prepare thousands of new computing teachers and reduce
the time that it takes to learn to program. The Parsons software is
freely available as part of the Runestone Interactive platform [33].

ACKNOWLEDGMENTS
This study was supported by the National Science Foundation under
grants 1138378 and 1432300. Any opinions, findings, and conclu-
sions expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.
We thank all the people who assisted in this research. Lauren Mar-
gulieux conducted most of the statistical tests. Matthew Guzdial ran
the Mann-Whitney U test. Matt Lord graded the fix and write code
problems. We also thank the reviewers for their helpful comments.

Session 3: Tools and Technologies in Computing Education, 1 ICER ’18, August 13–15, 2018, Espoo, Finland

67

REFERENCES
[1] John R. Anderson, Frederick G. Conrad, and Albert T. Corbett. 1989. Skill Acqui-

sition and the LISP Tutor. Cognitive Science 13 (1989), 467–505.
[2] John R. Anderson, Albert T. Corbett, Kenneth R. Koedinger, and Ray Pelletier.

1995. Cognitive Tutors: Lessons Learned. Journal of the Learning Sciences 4, 2
(1995), 167–207. https://doi.org/10.1207/s15327809jls0402_2

[3] Owen Astrachan, Jan Cuny, Chris Stephenson, and Cameron Wilson. 2011. The
CS10K project: mobilizing the community to transform high school computing. In
Proceedings of the 42nd ACM technical symposium on Computer science education.
ACM, 85–86.

[4] Ronald Baecker and Ian Small. 1990. Animation at the interface. The art of
human-computer interface design (1990), 251–267.

[5] Tim Bell, Peter Andreae, and Lynn Lambert. 2010. Computer science in New
Zealand high schools. In Proceedings of the Twelfth Australasian Conference on
Computing Education-Volume 103. Australian Computer Society, Inc., 15–22.

[6] Klara Benda, Amy Bruckman, and Mark Guzdial. 2012. When Life and Learn-
ing Do Not Fit: Challenges of Workload and Communication in Introductory
Computer Science Online. Trans. Comput. Educ. 12, 4 (2012), 1–38. https:
//doi.org/10.1145/2382564.2382567

[7] Jens Bennedsen and Michael E. Caspersen. 2007. Failure rates in introductory
programming. SIGCSE Bull. 39, 2 (2007), 32–36. https://doi.org/10.1145/1272848.
1272879

[8] Laura E. Berk and Adam Winsler. 1995. Scaffolding Children’s Learning: Vygotsky
and Early Childhood Education. National Association for the Education of Young
Children.

[9] Elizabeth L Bjork and Robert A. Bjork. 2011. Making things hard on yourself, but
in a good way: Creating desirable difficulties to enhance learning. Psychology
and the real world: Essays illustrating fundamental contributions to society (2011),
56–64.

[10] Benedict Du Boulay. 1988. Some Difficulties of Learning to Program. Lawrence
Erlbaum Associates, 283–299.

[11] Neil C. C. Brown, Sue Sentance, Tom Crick, and Simon Humphreys. 2014. Restart:
The Resurgence of Computer Science in UK Schools. Trans. Comput. Educ. 14, 2
(2014), 1–22. https://doi.org/10.1145/2602484

[12] Michael E Caspersen and Palle Nowack. 2013. Computational thinking and
practice: A generic approach to computing in Danish high schools. In Proceed-
ings of the Fifteenth Australasian Computing Education Conference-Volume 136.
Australian Computer Society, Inc., 137–143.

[13] Fanny Chevalier, Nathalie Henry Riche, Catherine Plaisant, Amira Chalbi, and
Christophe Hurter. 2016. Animations 25 years later: new roles and opportuni-
ties. In Proceedings of the International Working Conference on Advanced Visual
Interfaces. ACM, 280–287.

[14] Jacob Cohen. 1988. Statistical power analysis for the behavioral sciences. 2nd.
[15] GemmaCorbalan, Liesbeth Kester, and Jeroen JGVanMerriënboer. 2008. Selecting

learning tasks: Effects of adaptation and shared control on learning efficiency and
task involvement. Contemporary Educational Psychology 33, 4 (2008), 733–756.

[16] Albert T Corbett, Kenneth R Koedinger, and John R Anderson. 1997. Intelligent
tutoring systems. Handbook of human-computer interaction 5 (1997), 849–874.

[17] Tom Crick and Sue Sentance. 2011. Computing at school: stimulating computing
education in the UK. In Proceedings of the 11th Koli Calling International Conference
on Computing Education Research. ACM, 122–123.

[18] Jan Cuny, Diane A Baxter, Daniel D Garcia, Jeff Gray, and Ralph Morelli. 2014.
CS principles professional development: only 9,500 to go!. In Proceedings of the
45th ACM technical symposium on Computer science education. ACM, 543–544.

[19] Paul Denny, Andrew Luxton-Reilly, and Beth Simon. 2008. Evaluating a new exam
question: Parsons problems. In Proceedings of the fourth international workshop
on computing education research. ACM, 113–124.

[20] Alireza Ebrahimi. 1994. Novice programmer errors: language constructs and
plan composition. International Journal of Human-Computer Studies 41 (1994),
457–480.

[21] Barbara J Ericson, Mark J Guzdial, and Briana B Morrison. 2015. Analysis of
interactive features designed to enhance learning in an ebook. In Proceedings of
the eleventh annual International Conference on International Computing Education
Research. ACM, 169–178.

[22] Barbara J Ericson, Lauren E Margulieux, and Jochen Rick. 2017. Solving parsons
problems versus fixing and writing code. In Proceedings of the 17th Koli Calling
Conference on Computing Education Research. ACM, 20–29.

[23] Kathi Fisler. 2014. The recurring rainfall problem. In Proceedings of the tenth
annual conference on International computing education research. ACM, 35–42.

[24] Judith Gal-Ezer, Catriel Beeri, David Harel, and Amiram Yehudai. 1995. A high
school program in computer science. Computer 28, 10 (1995), 73–80.

[25] Stuart Garner. 2007. An Exploration of How a Technology-Facilitated Part-
Complete Solution Method Supports the Learning of Computer Programming.
Journal of Issues in Informing Science and Information Technology 4 (2007), 491–501.
https://doi.org/10.28945/966

[26] Kyle James Harms, Jason Chen, and Caitlin L Kelleher. 2016. Distractors in
Parsons Problems Decrease Learning Efficiency for Young Novice Programmers.

In Proceedings of the 2016 ACM Conference on International Computing Education
Research. ACM, 241–250.

[27] Juha Helminen, Petri Ihantola, Ville Karavirta, and Lauri Malmi. 2012. How
do students solve parsons programming problems?: an analysis of interaction
traces. In Proceedings of the ninth annual international conference on International
computing education research. ACM, 119–126.

[28] Petri Ihantola and Ville Karavirta. 2011. Two-Dimensional Parson’s Puzzles:
The Concept, Tools, and First Observations. Journal of Information Technology
Education 10 (2011), 119–132. https://doi.org/10.28945/1394

[29] Paivi Kinnunen and Beth Simon. 2010. Experiencing programming assignments
in CS1: the emotional toll. In Proceedings of the Sixth international workshop on
Computing education research. ACM, 77–86.

[30] Amruth N Kumar. 2018. Epplets: A Tool for Solving Parsons Puzzles. In Proceed-
ings of the 49th ACM Technical Symposium on Computer Science Education. ACM,
527–532.

[31] Karen Lang, Ria Galanos, Joanna Goode, Deborah Seehorn, Fran Trees, Pat
Phillips, and Chris Stephenson. 2013. Bugs in the System: Computer Science
Teacher Certification in the U.S. Report. The Computer Science Teachers Associa-
tion The Association for Computing Machinery.

[32] Raymond Lister, Elizabeth S Adams, Sue Fitzgerald, William Fone, John Hamer,
Morten Lindholm, Robert McCartney, Jan Erik Moström, Kate Sanders, Otto
Seppälä, et al. 2004. A multi-national study of reading and tracing skills in novice
programmers. In ACM SIGCSE Bulletin, Vol. 36. ACM, 119–150.

[33] Brad Miller and David Ranum. 2014. Runestone interactive: tools for creating in-
teractive course materials. In Proceedings of the first ACM conference on Learning@
scale conference. ACM, 213–214.

[34] Dale Parsons and Patricia Haden. 2006. Parson’s programming puzzles: a fun and
effective learning tool for first programming courses. In Proceedings of the 8th
Australasian Conference on Computing Education-Volume 52. Australian Computer
Society, Inc., 157–163.

[35] Andrew Petersen, Michelle Craig, and Daniel Zingaro. 2011. Reviewing CS1
exam question content. In Proceedings of the 42nd ACM technical symposium on
Computer science education. ACM, 631–636.

[36] Barbara Rogoff. 1990. Apprenticeship in thinking: Cognitive development in socio-
cultural activity. Oxford University Press, New York, NY, USA.

[37] Otto Seppälä, Petri Ihantola, Essi Isohanni, Juha Sorva, and Arto Vihavainen.
2015. Do we know how difficult the rainfall problem is?. In Proceedings of the
15th Koli Calling Conference on Computing Education Research. ACM, 87–96.

[38] Simon. 2013. Soloway’s Rainfall Problem has become Harder. In Learning and
Teaching in Computing and Engineering. IEEE Computer Society, Washington
DC, USA, 130–135.

[39] Elliot Soloway. 1986. Learning to program = learning to construct mechanisms
and explanations. Commun. ACM 29, 9 (1986), 850–858. http://dl.acm.org/
citation.cfm?doid=6592.6594

[40] John Sweller. 1988. Cognitive load during problem solving: Effects on learning.
Cognitive science 12, 2 (1988), 257–285.

[41] John Sweller and Graham Cooper. 1985. The Use of Worked Examples as a
Substitute for Problem Solving in Learning Algebra. Cognition and Instruction 2,
1 (1985), 59–89.

[42] John Gregory Trafton and Brian J. Reiser. 1993. The contributions of study-
ing examples and solving problems to skill acquisition. In 15th Annual Confer-
ence of the Cognitive Science Society. Lawrence Erlbaum Associates, Inc., 1017–
1022. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.9933&rep=
rep1&type=pdf

[43] Jeroen JG Van Merriënboer and Marcel BM De Croock. 1992. Strategies for
computer-based programming instruction: Program completion vs. program
generation. Journal of Educational Computing Research 8, 3 (1992), 365–394.

[44] Jeroen JG Van Merriënboer, Paul A Kirschner, and Liesbeth Kester. 2003. Tak-
ing the load off a learner’s mind: Instructional design for complex learning.
Educational psychologist 38, 1 (2003), 5–13.

Session 3: Tools and Technologies in Computing Education, 1 ICER ’18, August 13–15, 2018, Espoo, Finland

68

https://doi.org/10.1207/s15327809jls0402_2
https://doi.org/10.1145/2382564.2382567
https://doi.org/10.1145/2382564.2382567
https://doi.org/10.1145/1272848.1272879
https://doi.org/10.1145/1272848.1272879
https://doi.org/10.1145/2602484
https://doi.org/10.28945/966
https://doi.org/10.28945/1394
http://dl.acm.org/citation.cfm?doid=6592.6594
http://dl.acm.org/citation.cfm?doid=6592.6594
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.9933&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.9933&rep=rep1&type=pdf

	Abstract
	1 Introduction
	2 Related Work
	2.1 Cognitive Load Theory
	2.2 Research on Adaptive Learning
	2.3 Research on Parsons Problems

	3 INTRA-PROBLEM AND INTER-PROBLEM ADAPTIVE PARSONS PROBLEMS
	4 METHODS
	4.1 Participants
	4.2 Study Design
	4.3 Study Procedure
	4.4 Study Materials

	5 ANALYSIS
	5.1 Testing for Efficiency
	5.2 Testing for Effectiveness
	5.3 Analysis of the Demographic Information

	6 DISCUSSION
	7 LIMITATIONS
	8 CONCLUSIONS
	Acknowledgments
	References

