
acm Inroads • inroads.acm.org  65

REPRINT

The Swedish government has recently introduced digital
competence including programming in the Swedish K-9

curriculum starting no later than fall 2018. This means that
100 000 teachers need to learn programming and digital
competence in less than a year. In this paper we report on
our experience working with professional teacher training
in Sweden’s fifth largest city. The city has about 150 000
inhabitants and about 50 schools with about 14 000 students
in primary education. The project has been carried out in
close cooperation with the municipality.

The work started in the fall of 2014 with a pilot study with 10
teachers in different subjects, carried out during spring 2015.
The pilot study was successful as the teachers were able to in-
troduce activities related to programming and computational
thinking in their subjects after only two half-day workshops.
The next step was to scale this up to include all the schools in
the city. As expected, this turned out to be a larger challenge.
More than 70 teachers were involved in the second part of the
project. Some of the lessons learned are that it is quite easy to
provide teacher training, but harder to get teachers to actually

From Proceedings of the 2018 ACM SIGCSE Conference. Reprinted with permission.

Fredrik Heintz and Linda Mannila
Linköping University

Computational
Thinking for All: An
Experience Report on
Scaling up Teaching
Computational Thinking
to All Students in a
Major City in Sweden

66  acm Inroads  2018 June • Vol. 9 • No. 2

REPRINT
Computational Thinking for All: An Experience Report on Scaling up Teaching Computational Thinking to All
Students in a Major City in Sweden

classroom. The later project, built on the previous one, now in-
volving a larger group of teachers, who were not only to imple-
ment the ideas in their own classroom, but also to spread it to
other teachers at their schools.

Both projects took place in Sweden’s fifth largest city,
Linköping, as a collaborative effort between the Computer Sci-
ence Department at Linköping University and Linköping Mu-
nicipality. The university was responsible for the project and all
the project activities, while the municipality took care of the ad-
ministration at the city level and the contact with the teachers.

The rest of the paper is structured as follows. We start in
Section 2 with a background on digital competence, program-
ming and computational thinking in Swedish education. In Sec-
tion 3, we present the first part of our project, the pilot study. In
Section 4, the second and larger part of the project is presented.
In Section 5, we discuss the lessons learned from the projects
and in Section 6, we draw conclusions and give some recom-
mendations for the future.

DIGITAL COMPETENCE IN SWEDISH
K-9 EDUCATION
The role of computer science and IT in Swedish schools has
varied throughout the years [10]. In fall 2015, the Swedish gov-
ernment gave the National Agency for Education (Skolverket)
the task of preparing a proposal for K-12 education on how to
better address the competences required in a digitalized so-
ciety. In June 2016, Skolverket submitted a proposal putting a
much stronger emphasis on digital competence and introduc-
ing both digital competence and programming as interdisci-
plinary traits. It also provides explicit formulations in subjects
such as mathematics (programming, algorithmic thinking, and
problem solving), technology (controlling physical artifacts)
and social sciences (fostering aware and critical citizens in a
digital society). In March 2017, the government accepted the
proposal, which has to be implemented by fall 2018 at the latest.
In October 2017, the government also decided on a National
IT Strategy which was notably weaker than the one Skolverket
proposed in June 2016.

The Swedish school debate has in recent years circled around
poor PISA results, difficulties in providing all children and youth
with equal opportunities, and about modernizing the curricu-
lum in order to meet future job market requirements. As “pro-
grammer” is the most common job in the capital Stockholm,
and the need for software professionals is estimated to increase
heavily both in Sweden and internationally, some have argued
that the education system should teach programming in order
to prepare young people for these jobs. Others, the authors of
this paper included, believe that school should offer all students
general preparation for any kind of work, and have therefore
argued for digital competence as part of all-round-learning,
including computational thinking as a set of general problem
solving skill useful for all in the spirit of Jeannette Wing [14].

In 2012, the Swedish government established the Digita-
lization Committee (Digitaliseringskommissionen) with the

change their teaching and even more challenging to get teach-
ers to help their colleagues introduce programming or compu-
tational thinking in their teaching.

Based on our experience we draw some general conclusions
and make suggestions for how to scale up the teaching of pro-
gramming and computational thinking to all.

INTRODUCTION
The increased exposure to technology raises a need for under-
standing how the digital world works, in the same manner as
we get to know the physical world. Consequently, during recent
years, we have witnessed an active discussion surrounding the
role of programming and computer science (CS) for everyone
(see e.g. [6, 9, 13]). As a result, an increasing number of coun-
tries have introduced or are in the process of introducing CS in
their school curriculum. For instance in Europe, the majority
of countries (17 out of 21) taking part in a survey conducted by
the European Schoolnet in 2015 reported doing so [1]. The way
in which this is accomplished varies. Some countries focus on
K-12 as a whole, whereas others primarily address either K-9 or
grades 10-12. Some countries have introduced CS as a subject
of its own (e.g. Computing in England [3]) while others have
decided to integrate it with other subjects, by for instance mak-
ing programming an interdisciplinary element throughout the
curriculum (e.g. Finland [5]). The role of CS and information
technology in school curricula has – in general – varied over
the years, placing focus on different areas, ranging from using
technology as a tool to learning how the computer works and
how to use it to create programs. This has also been the case in
Sweden.

Introducing new content in curricula affects many teach-
ers. When the content is new, such as programming and digital
competence, most of the teachers affected have no prior experi-
ence in teaching the content. Consequently there is a large need
for professional development and training initiatives. In this
paper we present our experience from a three year long project,
aiming at training Swedish teachers (grades 1-9) in teaching
programming and computational thinking.

Although the Swedish government decided on including
programming in the curriculum as late as in March 2017, the
discussion on this had already been vivid since around 2014.
To those involved it was more a question of when this would
happen, rather than if. As a result, many projects focusing on
programming and digital competence at primary and lower
secondary school were initiated already several years ago. For
instance, Sweden’s innovation agency Vinnova funded sever-
al such projects already in 2014. One of these projects was “A
model for computational thinking in Swedish primary school”,
which received renewed funding under the new project name
“Computational thinking for all” in 2016. Both are lead by the
authors of this paper.

The first project aimed at introducing programming and
computational thinking to a small group of teachers, who then
were to implement the ideas and plans created in their own

acm Inroads • inroads.acm.org  67

REPRINT

this definition. The supplemental material clarifies that focus
is not on coding skills, but on programming as a pedagogical
tool and a problem solving process including many phases.
Programming should also be seen in a wider context, includ-
ing “creation, controlling and regulating, simulations and
democratic dimensions” [11, p.10, freely translated]. Skolver-
ket emphasizes the importance of seeing programming in this
wider perspective both as a basis for teaching and as part of all
four aspects of digital competence. For a more detailed over-
view see [7].

THE PILOT STUDY
The first project was a pilot study in the spring of 2015. It in-
volved 10 teachers in different subjects and from different
schools, who had been selected by the municipality. Their
background varied, from those that had been working with
Bebras (http://bebras.org) and Hour of Code (http://code.org)
to those that had absolutely no previous experience. The study
took place during one semester and included three 3-hour long
workshops. The goal was for each teacher to carry out at least
three activities with their students. In the end, more than 300
students from more than 14 classes from grade 1 to grade 9
participated in computational thinking activities as part of the
pilot study.

The first workshop was a lecture style introduction to com-
putational thinking, which gave a motivation to why it is im-
portant, an introduction to what it is, concrete examples of
computational thinking in different subjects, both with and
without computers, and an introduction to programming us-
ing ScratchJr/Pyonkee. To introduce computational thinking,
tasks from the international Bebras challenge were used. To
introduce programming without a computer, material from CS
Unplugged [2] was used. To introduce programming we used
Hour of Code and ScratchJr/Pyonkee. The fact that these re-
sources were easily available simplified our work notably.

The second workshop was a workshop style discussion
around how to introduce computational thinking in the partic-
ipating teachers’ particular subjects. The teachers were divided
into groups based on their subject. There were three groups:
Swedish/language teachers, math teachers, and science/tech-
nology teachers. Each group was given the explicit task to come
up with at least two activities related to computational thinking
that they could carry out in their classes in the coming month:
one unplugged activity and one involving a tablet or a comput-
er. After the group discussions, the whole group discussed the
suggested activities together. The workshop ended with each
teacher having to commit to doing one unplugged activity, one
Hour of Code session, and one programming activity using a
digital device (tablets were more common than computers) be-
fore the third and final workshop.

At the third workshop the teachers presented what they had
done in their classes and we discussed their experience and les-
sons learned. The teachers also filled out an evaluation form for
each activity they had completed. In total we received informa-

task of providing guidelines for the future of work related to
digitalization in Sweden. One of the committee’s reports [4]
highlights the need for the school system to put larger focus
on digital competence. The report explicitly points out the
need for including programming in the curriculum as part of
existing subjects. As a result of the discussion around schools,
programming and CS as part of all-round learning, persons
representing school, universities and industry engaged in vol-
untary initiatives to help overcome the lack of CS in Swedish
basic education. Teacherhack (http://teacherhack.com) is a
nonprofit organization aiming at inspiring “teachers to hack
the current curriculum (Lgr 11) to include the essential skills
that students need in a digital world”. The Teacherhack web-
site provides reviews of all subjects in Lgr 11 with practical
advice on how the current texts can be interpreted in order to
allow for a more active inclusion of content and practices re-
lated to CS, programming and the Internet, as well as security
and integrity issues.

Extracurricular activities such as CoderDojos, code camps,
afterschool clubs and makerspace activities are organized to
give children and youth access to informal learning opportu-
nities. Teachers throughout the country are experimenting and
sharing experiences from introducing programming in differ-
ent subjects, ranging from languages to handicraft and music.
Heintz et. al. [8] present an overview of ongoing activities relat-
ed to CS and computational thinking in Sweden, highlighting
several projects that show how one can introduce CS already
within the current curriculum.

In September 2015, the Swedish government gave Skolver-
ket the task of presenting a national IT strategy for the Swedish
school system. As part of this work, Skolverket was to update
the curricula for primary (K-9) and upper secondary education
(grades 10-12). The government explicitly stated that the cur-
riculum should 1) strengthen students’ digital competence and
2) introduce programming at K-9 level.

In March 2017, the Swedish government accepted Skolver-
ket’s proposal. The revised curriculum will be mandatory start-
ing fall 2018, but schools have the option to introduce it already
fall 2017.

The revision introduces a new general section on digital
competence. Skolverket acknowledges that the meaning of
digital competence changes over time due to changes in soci-
ety, technology and available services [11]. Skolverket’s defini-
tion is based on the set of key competences developed by the
European commission [12] and the work by the Digitalization
Committee [4]. In the Swedish curriculum, digital compe-
tence includes four aspects: 1) understanding how digitali-
zation affects individuals and society, 2) understanding and
knowing how to use digital tools and media, 3) critical and
responsible usage of digital tools and resources, and 4) being
able to solve problems and implement ideas in practice. In a
supplemental material [11], Skolverket stresses that helping
students develop their digital competence is a cross-curricular
responsibility and aspects of digital competence should hence
be covered in all subjects. Programming is considered part of

68  acm Inroads  2018 June • Vol. 9 • No. 2

REPRINT
Computational Thinking for All: An Experience Report on Scaling up Teaching Computational Thinking to All
Students in a Major City in Sweden

ORGANIZATION
The municipality has 50 schools and about 14000 students in
comprehensive education (grade 1-9) organized in 5 school dis-
tricts. Due to the hierarchical organization, the communication
from the central municipal administration is always through
the school district, which can decide whether to forward infor-
mation to the principals, or not. Each principal decides wheth-
er information should be forwarded to the teachers and, if so,
whom to inform. All communication from the project to the
teachers were taken care of by the project’s municipality repre-
sentative, who is also a teacher.

The original plan was to build an organization with one
teacher from each school and a support group within the cen-
tral administration consisting of one representative from each
of the school districts and one representative from the central
education development office (who would also be responsible
for the whole project). We as the university representatives
were outside the organization as our role was to bootstrap the
change. Our responsibility was to provide teacher training,
expert advice and to study the introduction of computational
thinking in the schools.

Even though the central municipal administration has been
very supportive and positive we have not managed to form a
central support group and the representative from the munic-
ipality has been replaced three times during the project period
of three years. Based on this experience, the school organiza-
tion appears to be rather volatile with people constantly chang-
ing positions, but it could also be a coincidence that the munic-
ipality was in a shift of staff.

Luckily, we have managed to get representatives from more
than 40 out of the 50 schools, which means that we actual-
ly reach at least 80% of the schools. Initially we got about 30
teachers in the spring of 2016, which was increased to about 70
teachers from the fall of 2016 after the head of education had
sent out a request to all the schools. The group was mostly un-
changed during fall 2016 and spring 2017, but the engagement
and activity of these teachers varied substantially. Normally
about 40 of the teachers showed up to the workshops. Finding
suitable workshop times and getting teachers to commit is both
hard and important.

WORKSHOPS AND ACTIVITIES
The workshops have been the backbone of the project. We have
arranged three half-day workshops per semester at the univer-
sity, resulting in a total of 12 workshops during 2016 and 2017.
Each workshop has had a theme and a program including both
information or new material from us and discussions to activate
the teachers. We have also given the teachers assignments to do
between the workshops.

In addition to the workshops we have also encouraged par-
ticipation in events such as Bebras and Hour of Code. We have
also developed a handbook with computational thinking activ-
ities and an introductory material for teaching computational
thinking. This material is freely available in Swedish as it is de-
signed for Swedish teachers.

tion about 17 activities. One example of an activity that a teach-
er developed introduced a treasure hunt covering angles and
fractions in mathematics. The students were given a grid map
of the school yard and a sequence of instructions on the form
“walk 1 3/4 squares forward”, “turn 270 degrees to the right”,
etc. They then had to calculate where the treasure was hidden
before actually executing the program to see if they could find
the treasure. This is a good example of combining developing
computational thinking skills with outdoor activities.

The final review of the pilot study revealed four major les-
sons learned:
1. �The teachers were in general positive and felt that the

training made it possible for them to adapt the material
provided and run an activity as part of their own teaching.
Nevertheless, they only did this once and as far as we know
the teachers did not continue to develop more activities
after the pilot study was over.

2. �The teachers reported that other students than the usual
suspects did best on the activities. Students that were
usually quiet and low key were more excited and engaged
in the activities than normally.

3. �According to teacher’s experience, Scratch and ScratchJr
worked well at lower grade levels, while students in grade
7-9 were not motivated by the cute graphics and cartoons.
One teacher used Code Combat (http://codecombat.com/)
instead together with grade 9 students, which he reported
worked well.

4. �The students were in general positive towards the activities
and engaged in them.

The conclusions from the pilot study are that it was definite-
ly possible to get teachers to introduce computational thinking
in their teaching with a limited amount of professional devel-
opment, as long as it was directly connected to their subject.
However, it did not seem to get a lasting effect. This seems to
be a general observation, it is relatively easy to do one or a few
activities, but it is much harder to make it part of the standard
practice and integrate it into everyday teaching.

CT FOR ALL
As the conclusions from the pilot study were positive, while it
was clear that this only affected a small number of students,
the continuation project focused on addressing the question on
scaling up. The basic question is: Now that we know how to get
individual teachers to start including computational thinking
in their classes, how can we scale this up in both the number
of teachers/students and also in the regularity/longevity of the
activities. The general plan for the project was to provide pro-
fessional competence development to at least one teacher at
each school and to build up a central support function within
the municipal administration to support the teachers. The goal
of the project was that 80% of all students in the municipality
should have at least one activity per month related to compu-
tational thinking.

acm Inroads • inroads.acm.org  69

REPRINT

thinking concepts, provides examples of concrete activities and
exercises that the teacher can use in his or her classroom, and
presents a model for how to assess the attitude and maturity of
student’s computational thinking.

The material covers five concepts:
1. �step by step instructions (or how the computer works);
2. �detecting and finding patterns;
3. �breaking down a problem in smaller parts;
4. �abstraction and representation; and
5. �algorithms and programming.

The progression basically follows these concepts, so teachers
start with the first and work through them one by one.

The material also considers seven attitudes:
1. �dealing with complexity;
2. �dealing with ambiguity and open problems;
3. �adapting solutions to new situations;
4. �evaluating own and others solutions;
5. �experimenting and troubleshooting;
6. �grit; and
7. �communication and collaboration.

The learning objectives of the material, when used in teach-
ing, is for students to:
• �know that a computer does things step-by-step;
• �have experience working with different types of problems

where he/she has benefited from or has developed concepts
and attitudes related to computational thinking;

• �recognize computational thinking as a problem-solving
process together with computers that are based on a set of
concepts and attitudes; and

• �be able to assess his/her own level of computational
thinking.

The material consists of a set of slides presenting the con-
cepts and attitudes, in addition to two matrices. The first matrix
defines the concepts. In addition, concrete activities and exam-
ples related to math, technology and other subjects are provid-
ed for each concept. The activities are either Bebras tasks or
activities from our handbook on computational thinking activi-
ties. Most activities can be carried out without a computer. The
second matrix provides an assessment tool where each attitude
progresses through three stages based on work by Phil Bagge,
Mark Dorling, and Thomas Stephens (http://code-it.co.uk/atti-
tudes). Each step is in the form of a concrete question for the
student to answer.

IMPACT
Measuring the number of students that have participated in the
project is challenging. The most specific figure we have is the
number of students that participated in the Bebras contest. In
the 2016 contest 3756 students from 47 schools in Linköping
participated. This corresponds to close to 30% of the students in

Workshop Program.
1. �Introduction to computational thinking, overview of the

proposed new curriculum, introduction to Bebras, Hour
of Code, and Scratch Jr. Discussion: What support do you
need to implement the new curriculum?

2. �Assessment of computational thinking skills. Discussion:
How to assess digital competence and programming in the
new curriculum?

3. �Introduction to our handbook on computational thinking.
Discussion: Now that you have learned the basics, how
should you proceed? This was the first workshop with
the full group, so we had a parallel session for the new
teachers, where we summarized the content of the first
two workshops to bring them up to speed.

4. �Bebras and models for introducing programming and
computational thinking in K-9. Hands on programming
exercises for those that were new to programming and a
seminar on the computer science behind Scratch for the
more experienced.

5. �The results from Bebras and introduction to Hour
of Code. Programming in Python for those with
programming experience and a hands on introduction to
Hour of Code for those that were new to programming.

6. �Presentation of the introductory material for
computational thinking. Discussion: Experiences from
trying out Bebras and Hour of Code, how can these
resources be used in teaching?

7. �Presentation of how others have worked with the new
curriculum. Workshop on Micro:bit (http://microbit.
org) and Swift Playgrounds (http://apple.com/swift/
playground). Discussion: What do you think of the
introductory material to computational thinking and how
does it work in your class?

8. �From block programming to textual programming and
programming and algorithms in mathematics. Discussion:
How will you introduce programming in your teaching
this fall?

9. �Progression and more on algorithms in mathematics.
Discussion: What should students know after grade 3,
grade 6 and grade 9? (The Swedish curriculum lacks
details, so it is up to teachers to interpret the curriculum.)

10. �Spreading to other teachers at the same school. Discussion:
How to spread the workshop contents and lessons learned
to other teachers, get all teachers involved in order to have
continuity at school level (instead of the level of digital
competence teaching at a given school being dependent on
a single teacher personally driving the change)?

11. �Lessons learned and moving forward. Discussion: How will
you continue the work now that you have to work more
independently?

INTRO TO COMPUTATIONAL THINKING PACKAGE
To provide the teachers with a joint basic material on how to
introduce computational thinking, we put together a small re-
source package. The material defines the main computational

70  acm Inroads  2018 June • Vol. 9 • No. 2

REPRINT
Computational Thinking for All: An Experience Report on Scaling up Teaching Computational Thinking to All
Students in a Major City in Sweden

7-9 are not as easy to answer. Many of the suggestions were
considered difficult and too advanced. One lesson learned
is hence that progression is important in many respects and
that there is a need for teacher centric research in order to
learn more about suitable ways to integrate programming at
different grade levels. In Sweden, comprehensive school is
organized in three main stages: K-3, grades 4-6 and grades
7-9, and it is between these stages that students shift schools
and teachers. It is therefore crucial to have a joint progression
to make it easier for teachers at different levels in order to
know both what to expect from students when they transition
to their stage and what minimal level students should reach
before moving forward to the following stage.

The question “what to do now that we know Scratch” is
also not a straightforward one. Does it imply that the per-
son knows how to use the tool Scratch or how to solve dif-
ferent types of problems by programming in Scratch? For
most teachers, the question seems to imply the former. They
have used the tool quite extensively and feel that they know
how to use it, therefore they believe they know how to pro-
gram. This claim is based on our experience of assuming
that the teachers actually had learned to program. For those
teachers, who felt that they needed to learn more advanced
topics, we tried to introduce text-based programming in a
more university style manner. The first attempt was to take
Scratch as the starting point, go through the different blocks
and constructs and explain the computer science behind
them. This turned out to be too complex. The second at-
tempt was to take a subset of the introductory lecture in our
university Python course, explaining the basics of program-
ming in Python, and then do a hands-on exercise writing a
function, which computes the maximum of two numbers.
Although this went better than the first attempt, it was still
clear that the step from block-based to text-based program-
ming is rather big. The step was made even bigger by the fact
that many schools in the region have opted for tablets, and
teachers had to do all the programming on an iPad. From this
we draw two conclusions. First, going from block-based pro-
gramming to text-based programming is hard. Second, teach-
ers who express that they are ready to move from Scratch
probably do not need another tool or programming language,
but rather more experience in developing interesting tasks
and problems, where students can use Scratch, or some other
block-based environment, as a tool solve the task or imple-
ment an idea.

The teachers participating in our projects had quite hetero-
geneous backgrounds: some did not have any prior experience
in programming, while others had already done quite a lot,
both on their own and together with their students. This did
not cause any problems during the workshops, as the partici-
pants were divided into groups with different program based
on their background. However, making all activities suitable to
everyone, regardless of subject taught and prior background,
requires significant resources.

Most teachers in the project have carried out activities with

grades 2-9, which is three times as many as the year before when
the corresponding number was 1277 students. The Linköping
students represented more than 40% of all students that par-
ticipated in Bebras in grade 2-9 at a national level in Sweden.
This shows that the project has had a large impact. Unexpect-
edly, the number of students that participated in Bebras in 2017
dropped to 2209 students from 30 schools. The comments we
received from teachers indicate that the Bebras tasks are very
popular and are used in ordinary teaching, but that schools do
not like to participate in the contest itself. In addition to Bebras,
many students participated in the Hour of Code, but for that
activity we lack concrete statistics.

The informal impact is very high as almost all schools in
Linköping participate in the project and we have been invited
to present the work to all school leaders in the municipality. It is
very likely that this effort will be the main effort by the munici-
pality to introduce the new curriculum.

LESSONS LEARNED
The project has provided many lessons learned. As mentioned
above, the project was organized around a municipality repre-
sentative taking care of all direct contact with the teachers. This
was challenging from two perspectives. First, teachers changing
jobs or tasks at their work place led to the municipality repre-
sentative changing several times throughout the project. This
made it difficult to have continuity in the project even if the rep-
resentatives were all very good and active. Second, having one
person in charge of all teacher contacts complicated our com-
munication with the teachers, as everything had to go through
the middleman. One important lesson learned is hence to have
an active coordinator at the municipality level, both for teach-
ers who need somebody they can easily contact and for us as
the university. Another, but closely related, observation is that
it can be rather difficult to get communication across in large
organizations.

Another lesson learned is related to teacher activity and the
role played by school leadership. Regardless of the current and
highly relevant topic on digitalization in schools, teachers were
not able to prioritize the project. There is a need for a clear
vision at the leadership level as well as resources that make it
possible for teachers to not only take part in a limited number
of workshops, but also to learn more and experiment on their
own and together with colleagues. It is quite surprising to us
that even if the new curriculum is decided and our program
is available for free for the teachers, the interest from school
leaders is quite low (this could be a consequence of the difficul-
ty of communication as we have no direct contact with school
leaders either).

While introducing the basics of programming and
algorithms can be considered rather easy, moving beyond
unplugged programming, apps, Hour of Code and simple
block-based programming is not as straightforward.
Questions such as what to use after Scratch or how to integrate
programming in mathematics and other subjects in grades

acm Inroads • inroads.acm.org  71

REPRINT

If we were to carry out the project again, the most import-
ant thing we would do differently would be to explicitly get the
commitment of principals and school leaders at the highest lev-
el. Having their explicit support would greatly empower teach-
ers to get more done at their schools and feel that they have a
clear mandate and resources needed to inspire to change.

Overall we are satisfied with the project as we have gained
valuable and important insights, and we know for a fact that we
have reached more than 80% of the schools and at least 30% of
all the students in city, probably signifcantly more. 

Acknowledgments
This work is partially supported by Vinnova. We would also like to thank Linköping
municipality and all the teachers that have contributed to the project.

References
1. Balanskat, A. and Engelhardt, K. Computing our future. Computer programming and
coding. Priorities, school curricula and initiatives across Europe. (2015).
2. Bell, T., Witten, I.H., and Mike Fellows. CS Unplugged – An enrichment and extension
programme for primary-aged students. (2015).
3. Department for Education. National Curriculum in England: Computing programmes
of study. 2013; https://www.gov.uk/government/publications/national-curriculum-in-
england-computing-programmes-of-study.
4. Digitaliseringskommissionen. En digital agenda i människans tjänst : en ljusnande
framtid kan bli vår. Technical Report SOU 2014:13. (2014).
5. Finnish National Board of Education. 2014. Perusopetuksen opetussuunnitelman
perusteet. 2014.
6. Heintz, F., Mannila, L., and Färnqvist, T. A Review of Models for Introducing
Computational Thinking, Computer Science and Computing in K-12 Education. In Proc.
IEEE Frontiers in Education Conference (FIE). (2016).
7. Heintz, F., Mannila, L., Nordén, L., Parnes, P., and Regnell, B. Introducing Programming
and Digital Competence in Swedish K-9 Education. In Proc. ISSEP. (2017).
8. Heintz, F., Mannila, L., Nygårds, K., Parnes, P., and Regnell, B. Computing at School in
Sweden – Experiences from Introducing Computer Science within Existing Subjects. In
Proc. ISSEP. (2015).
9. Informatics Europe and ACM Europe. Informatics in Education: Europe Cannot Afford
to Miss the Boat. Report of the joint Informatics Europe and ACM Europe Working
Group on Informatics Education. (2015).
10. Rolandsson,L. and Skogh, I. Programming in school: Look back to move forward.
Trans. Comput. Educ. 2, 14, (2014), 12:1–12:25.
11. Skolverket. Få syn på digitaliseringen på grundskolnivå. (2017).
12. Vuorikari, R., Carretero Gomez, S. and Punie, Y. DigComp 2.1: The Digital Competence
Framework for Citizens with eight proficiency levels and examples of use. (2017).
13. White House. Computer Science for All. (2016); https://www.whitehouse.gov/
blog/2016/01/30/computer-science-all.
14. Wing, J. Computational thinking. Commun. ACM 49, 3 (2006), 33–35.

Fredrik Heintz
Department of Computer and Information Science
Linköping University, Linköping, Sweden
fredrik.heintz@liu.se

Linda Mannila
Department of Computer and Information Science
Linköping University, Linköping, Sweden
linda.mannila@liu.se

Copyright held by the owner/author(s).� Publication rights licensed to ACM. $15.00
DOI: http://dx.doi.org/10.1145/3159450.3159586

their own student group and many have also done so with other
student groups at their school. It is, however, much harder to
spread the work to other teachers at the school. Some of the
reasons expressed by the teachers are:
• �lack of time;
• �lack of mandate, they only have the mandate to participate

in these activities not to take their own initiatives at their
schools;

• �lack of school leadership, in some cases teachers did not
even have a principal as a new one was under recruitment;
and

• �lack of a clear idea on how to introduce programming and
digital competence in a sustainable manner.

CONCLUSION
In this paper we have described our experience from introduc-
ing programming and computational thinking at a large scale
in a Swedish city. The goal was to reach at least 80% of all the
schools and at least 80% of all the students. The plan was to
provide professional training to the participating teachers the
first semester, support them in carrying out a series of activities
during the second semester and then support them to spread
their knowledge to their colleagues during the third semester.
The goal turned out to be too optimistic. First, it took longer
than expected to recruit teachers to the project so we had to
restart the professional training the second semester. Second,
getting teachers to activate their colleagues requires both the
mandate and the support from their local school leaders, which
was outside of our control. Third, large organizations are con-
stantly changing both in terms of directives and in terms of
people, so finding a stable backbone is quite hard.

The main conclusions of the project are:
• �it is possible to provide good teacher training with relatively

modest efforts;
• �it is possible to get these teachers to carry out activities in

their own classrooms and usually also in other classes;
• �the teachers are usually good at adapting the material we

present and turn it into their own lessons; and
• �it is much harder to get teachers to do their own local

teacher training and to get additional teachers at their
schools to adopt the new material as it requires an explicit
mandate from the local school leaders.

An observation that might be important is that it seems
that the teachers who learn Scratch (or other similar languag-
es), learn it as a tool not as a realization of common program-
ming concepts. When they have learned the tool, they feel
that they know programming, but when you start discussing
the programming concepts or show how to do the same thing
in another language, such as Python, they do not really follow.
Scratch in all its greatness also seems to lure people into believ-
ing that they know more than they do, which is something we
have to be aware of and try to mitigate.

