
acm Inroads • inroads.acm.org  53

CONTRIBUTED ARTICLESARTICLES

By Alexander Miller, University of Washington, Stuart Reges, University of Washington,
Allison Obourn, University of Arizona

jGRASP: A Simple,
Visual, Intuitive
Programming
Environment for
CS1 and CS2

Instructors of CS1 and CS2 have access to a wide range
of sophisticated Integrated Development Environments

(IDEs) to choose from, and most are free. Having such a
wealth of options can be overwhelming, especially given
that each instructor must consider the most relevant issues
for their institution. This paper describes the experience of
the authors—instructors at a large, public university—in
using the jGRASP IDE to teach both a Java CS1 course and
a Java CS2 course. The primary considerations were ease of
installation and use, support for interactive programming
exercises, and debugging support with intuitive visual
representations of data structures.

No programming course can exist without a code editor,
both for the lecturer to teach with and the students to learn
with. The choice of editor greatly impacts the quality of the
course, but the abundance of editors doesn’t make the choice
easy. At one end of the spectrum, an instructor could choose
a simple text editor such as TextPad [10] that includes support
for syntax highlighting and program compilation and execu-
tion, but no support for debugging. On the other end of the
spectrum, an instructor could choose a professional-strength,
feature-rich IDE such as Eclipse—described on the download
page as an environment intended for “developers” [7].

At the University of Washington, we have settled on using a
development environment in between these two extremes. We
wanted an environment with a debugger, but we also wanted to
avoid the complexity of a sophisticated editor like Eclipse. In addi-

tion, we were convinced by our experience with DrJava [5] that an
IDE with a read-eval-print loop (REPL) feature could be helpful
as teaching tool for instructors and as an exploration tool for stu-
dents [1]. Finally, because of the large numbers of students taking
our courses, we wanted an environment that would install consis-
tently across multiple platforms with minimal configuration.

CS1 AND CS2 AT
THE UNIVERSITY OF WASHINGTON
A choice of editor is context specific; at the University of Wash-
ington, our CS1 and CS2 courses have the following properties:
• Large lecture sizes. In the autumn quarter of 2016, there

were 1,078 CS1 students (split between two lecture times)
and 408 CS2 students. The same set of lecturers rotate
between the CS1 and CS2 courses every quarter. Code
walkthroughs, in which the instructor writes code along
with the class, make up a large portion of our lectures.

• Undergraduate teaching assistants. Teaching assistants
(TAs) lead weekly sections that supplement lectures and
give students hands-on programming experience through
solving sample problems. Each section consists of around
20 students. We had 73 TAs in autumn 2016. TAs choose
between CS1 and CS2 every quarter.

• Weekly projects. Students are assigned project-based
homework that requires them to write Java programs from
scratch at home. They can receive homework help from
TAs in a dedicated lab.

54  acm Inroads  2017 December • Vol. 8 • No. 4

ARTICLES
jGRASP: A Simple, Visual, Intuitive Programming Environment for CS1 and CS2

jGRASP IN THE LECTURE
Instructors use jGRASP when giving lectures, taking advantage of
a variety of features that allow lectures to be dynamic. Consider, for
example, how one might introduce the String type in Java. One op-
tion would be to create a PowerPoint slide with examples of String
usage—although we consider that approach dull. A more hands-on
instructor might write example code in an IDE, but this requires
compiling and executing an entire program. We’ve found the in-
teractions pane to be ideal for introducing topics like the String
type: instructors can type a variable declaration, and then see how
Java evaluates various expressions involving that variable. Figure 1
shows how that might look to a student after the instructor types
in some code. The lecturer might accompany the code in Figure 1
with the following narration: “Now I’m going to declare a String
variable called fruit. Notice how jGRASP lists it as a new variable
defined in this scope. Now I’m going to ask it for the character at
position 0 and it says b. Now I’m going to ask for a substring…”

Furthermore, the jGRASP debugger provides a dynamic rep-
resentation of program execution. Figure 2 demonstrates how a
CS1 instructor can set a breakpoint with the debugger and then
step through the execution of a for loop, watching how local
variables change as the loop executes.

Our relatively large class sizes have influenced our choice of
editor. For example, because it is difficult to provide consistent,
individualized editor support for our students, simplicity and
ease of use were of special importance to us.

AN INTRODUCTION TO jGRASP
jGRASP is a lightweight integrated development environment
created and maintained by the Department of Computer Sci-
ence and Software Engineering at Auburn University [8]. Its
target audience is teachers and students, which means its suite
of features was picked with the novice programmer in mind.
The creators of jGRASP have written several papers describing
its features [2,3,4,5].

The features that have proven most useful for us are:
• Simplicity. While jGRASP supports standard IDE

features, such as program compilation and execution,
debugging, and syntax highlighting, it is missing certain
advanced features like code autocomplete and version
control integration. We consider the lack of these
advanced features to be an asset, because they don’t
intimidate novice programmers. In addition, although
jGRASP does allow code to be organized into projects,
a source file does not need to be part of a project to be
run. This contrasts with Eclipse, which requires all code
to be part of a project—something we’ve found confuses
students.

• Easy installation across platforms. There are few configu-
ration issues even with thousands of students installing the
program on a wide variety of platforms.

• Interactions pane. jGRASP’s interactive window provides
a REPL for exploring Java code snippets (note that JDK 9’s
JShell, new at the time of this writing, makes this function-
ality available outside of jGRASP).

• Simple debugging. We leverage jGRASP’s debugging tool in
the lecture to step through code, and students can use the
debugger to fix problems in their own code.

• Data structure viewers. jGRASP can display a wide range
of data structures, including arrays, ArrayLists, linked lists,
and binary trees. These visualization capabilities are inte-
grated with jGRASP’s debugger.

Many environments provide some of these features, but
jGRASP packages them into a single tool that exposes a good
level of functionality for novice programmers. The data struc-
ture viewers are particularly unique relative to other popular
IDEs.

We were also pleased that we could use a single IDE that
would be appropriate for both CS1 and CS2. We have at-
tempted to minimize any uncertainty and nervousness a CS1
student might experience in considering whether to continue
to CS2, so it has been helpful for students to know that they
will continue to use the same familiar IDE if they continue in
the sequence.

Figure 1: The instructor can use the jGRASP interactions pane, a REPL
interface for Java, to demonstrate String methods in the lecture.

Figure 2: Example of instructor use of the debugger in the lecture.

acm Inroads • inroads.acm.org  55

ARTICLES

The common theme for these examples is the ability to make
visible what is normally invisible to students: the internal exe-
cution of a program. We’ve found that jGRASP gives instruc-
tors a useful set of tools for discussing program execution in a
lecture setting.

jGRASP FOR TEACHING ASSISTANTS
We employ a small army of approximately 80 undergraduate
teaching assistants (TAs) that lead supplemental sections for
CS1 and CS2. A teaching section involves reviewing general
concepts from the lecture and working through sample pro-
gramming problems. TAs are not required to use jGRASP in
the section, but many choose to—of 60 TAs who responded to
a survey, 95% used it in teaching. Considering that TAs learned
Java with jGRASP themselves—and the TAs’ desire to remain
consistent with the lecture—this high usage of jGRASP does
not surprise us.

TAs can leverage jGRASP’s features to lead their sections
in the same ways instructors use jGRASP in the lecture, as de-
scribed previously (for example, by stepping through broken
code in the jGRASP debugger, or by using the interactions pane
to demonstrate Java syntax). The debugger specifically was cit-
ed by many TAs as essential to teaching certain topics. For ex-
ample, one TA stated: “The debugger is really helpful when ex-
plaining confusing topics like recursive backtracking.” Another
TA raved about the data structure viewers: “[it’s] extremely
helpful for teaching because the diagrams it generates are very
intuitive and I can make changes to code based on student sug-
gestions to immediately show how that changes execution.”

Both the debugger and the data structure viewers are consis-
tently popular across all TAs—of those TAs who use jGRASP

The debugger also lends itself well for teaching Java objects.
Figure 3 demonstrates how the instructor can inspect individ-
ual objects to see the fields inside. The debugger provides a
benefit of numbering the objects, which allows the instructor
to discuss subtle concepts like the difference between a com-
parison with the == operator and a comparison with Java’s
equals method. For example, an instructor might state, “See
how jGRASP is referring to the first point as object 403 and
the second as object 404. They are equivalent in the sense that
they both contain coordinates of 0 and 0, but they are not the
same object.”

Finally, instructors can leverage jGRASP’s dynamic object
viewer tools to help students develop mental models for how
program execution changes the state of data structures. Con-
sider the case where an instructor is explaining how to manip-
ulate the nodes of a linked list. As shown in Figure 4, jGRASP’s
rendering of the linked list structure gives students a picture of
what the code is doing (in this case, removing a node from the
list). We’ve also found that the viewers are effective in demon-
strating why incorrect code doesn’t work. For example, by
changing line 123 in Figure 4 from:

current.next = current.next.next

To:
current = current.next;

and rerunning the code with the viewer open, the students
can see why this seemingly intuitive solution fails to manipulate
the linked list correctly.

Figure 3: Example of instructor use of the debugger to show the internal
state of objects in the lecture.

Figure 4: Example of instructor use of the data structure viewer to show
exactly what linked list remove code is doing in the lecture.

56  acm Inroads  2017 December • Vol. 8 • No. 4

ARTICLES
jGRASP: A Simple, Visual, Intuitive Programming Environment for CS1 and CS2

Below, we discuss the usage patterns of students we ob-
serve for certain key features of jGRASP: the debugger, the data
structure viewers, and the interactions pane.

STUDENT USAGE OF THE DEBUGGER
jGRASP’s debugger is ideal for beginner programmers in two
respects—first, the debugging interface is somewhat simpler
than an industry level debugging tool like Eclipse; and secondly,
the debugger’s integration with other jGRASP features, like data
structure viewers, provides a highly visual debugging experience.

Although the instructors and TAs emphasize the quality of
jGRASP’s debugger, not all students end up making use of it. In
a rough poll, we found that about 58% of CS1 students had used
the debugger.

We found a higher debugger adoption rate among CS2 stu-
dents (77%). There are many possible explanations. It’s possible
that students who use the debugger are more likely to succeed
in CS1 and go on to take CS2. It’s also possible that those stu-
dents who choose to take a second programming course tend to
be more deliberate about debugging their programs. Finally, it
could be that programs written in CS2 are complicated enough
to warrant more debugging (in other words, students run into
more bugs—or more subtle bugs—so they turn to the debugger
more). We suspect a combination of these causes is responsible
for the increased debugger usage among CS2 students.

STUDENT USAGE OF THE OBJECT VIEWERS
While we are treating the debugger and the data structure view-
ers as separate features here, we should again emphasize that
the two are tightly integrated; the viewers complement the de-
bugger. For example, with the execution of a program paused
in debug mode, a student can drag out a linked list to view its
contents, and then step through the program to see how the
state of the linked list is transformed step-by-step to discover
where she went wrong (see Figures 7a and 7b).

Like debugger usage, data structure viewer adoption is low
among CS1 students, at 22%. CS1 students work with simple

to teach, 90% use the jGRASP debugger, and 90% use the data
structure viewers. But other features are better suited to teach-
ing CS1 than CS2. The interactions pane, which is good for
exploring Java basics early in a CS curriculum, finds more use
among CS1 TAs (with usage at roughly 80%) than CS2 TAs
(with usage at 70%). Executing single-line Java statements in a
REPL interface isn’t always useful for teaching CS2 topics, be-
cause exploring more sophisticated CS programming concepts
sometimes requires writing a complete program.

While TAs have a generally positive opinion of jGRASP, Fig-
ure 5 shows that CS1 TAs rate the usefulness of jGRASP higher
than CS2 TAs. We believe that jGRASP can be used effectively
in both CS1 and CS2, but jGRASP’s weaknesses, such as the
lack of code autocomplete, make it potentially less attractive for
a CS2 context. We discuss this further in the Limitations sec-
tion below.

While we don’t go so far as to mandate jGRASP usage among
TAs, we’re convinced that the wide adoption of jGRASP by our
TA community contributes to jGRASP’s effectiveness in our
program. TAs can reinforce the topics learned in the lecture
using an interface common to that of the lecture, and can offer
technical support for students who are learning to use an IDE
for the first time.

jGRASP FOR STUDENTS
Although students are not required to use jGRASP in CS1 and
CS2 (except for an optional lab section), many do, as indicated
in Figure 6. In a poll of students attending their section, 86% of
CS1 students and 72% of CS2 indicated that they used jGRASP.
Why the drop in CS2 usage? We speculate that CS2 students
are less likely to be intimidated by more advanced IDEs like
Eclipse, and benefit more from features like Eclipse’s code auto-
complete while working on larger CS2 homework projects. In
addition, some CS2 students took CS1 at a different school, and
are more familiar with a different editor.

Figure 5: CS1 and CS2 TAs were asked to rate the usefulness of jGRASP
on a scale from 1 (not helpful) to 5 (very helpful). CS1 TAs rated jGRASP
higher than CS2 TAs, although both groups considered jGRASP helpful.

Figure 6: Slightly more CS1 students use jGRASP than CS2, but CS2
students make more use of the debugger and the data structure viewers.

acm Inroads • inroads.acm.org  57

ARTICLES

jGRASP FOR HOMEWORK HELP
Our students visit a dedicated lab to get homework help from
TAs. The CS1 and CS2 instructors emphasize to TAs that they
should not give away solutions (“coding by TA,” as we call it),
but should help students discover the solution on their own—a
challenging task.

We believe jGRASP lends itself particularly well to this con-
text. Rather than telling a student why their program doesn’t
produce the correct output, for example, a TA can ask the stu-
dent to open the jGRASP debugger and step through the pro-
gram with the student. A TA can have a student working on a
binary tree homework open the data structure viewer to see
exactly which line of code causes the state of the tree to devi-
ate from what the student expected. Students come away from
the interaction not only having conquered the bug in their pro-
gram, but having learned a new skill—how to use a debugger.
One TA stated that “...the debugger is really helpful when stu-
dents know how to use it, and I always teach students in the lab
to use it.” Another TA said that “It’s very nice for the students
to be able to see visual representation of their code working.
It definitely helps visual learners see what their code is doing.”
One TA contrasted jGRASP’s debugger with more powerful,
but complex, debuggers, saying that “The [jGRASP] debugging
tool is easy, and we don’t need to worry about as many details
as with Eclipse.”

Using jGRASP (or any similar tool, for that matter) works
well when TAs and lecturers provide instruction and support
for it. Students see jGRASP used in the lecture, are required to
use jGRASP to do lab assignments, and are given one-on-one
support for jGRASP when completing homework. It provides a
common set of tools and vocabulary for teachers and students
to share and communicate with. This thorough integration of
jGRASP makes the program effective in our introductory pro-
gramming courses.

LIMITATIONS OF jGRASP
When we surveyed our TAs, they mentioned three features that
they would like to see in jGRASP:
• Auto-indent. They wish that jGRASP would either

automatically maintain proper indentation or provide an
option for reformatting a program to correct indentation.
(After reviewing this paper, the maintainers of jGRASP
have stated that they are addressing this issue.)

• Code Autocomplete. TAs like the way that Eclipse and
other IDEs suggest possible completions when, for
example, a user types a variable name followed by a dot.
While this is unquestionably a useful feature in many
contexts, it was not universally supported by TAs. One TA
said that “I […] like that jGRASP doesn’t auto-complete any
code or offer suggestions to fix type mismatches or casting
issues, because it really forces students to understand the
code they’re writing.” Another commented that “It’s very
beginner friendly. I love the debugger tool and the fact that
it doesn’t auto-complete.”

data structures, like strings and arrays, which don’t benefit as
much from jGRASP’s visualization—they can be visualized in-
tuitively. On the other hand, CS2 students, faced with compli-
cated data structures such as linked lists and binary trees, find
the data structure viewers invaluable to debugging their code:
71% of CS2 students said they used the feature.

STUDENT USAGE OF THE INTERACTIONS PANE
The interactions pane shines in the lecture for exploring the
small parts of Java—how to construct a String and use the sub-
string method on it, for example. If they wish to review syntax
and structures presented in the lecture, a student can leverage
the interactions pane in the same way on their own. We find
this use case less common though. Less than half of CS1 and
CS2 students said that they used the interactions pane.

Figure 7a: A student wanting to verify their linked list code can use
jGRASP’s data structure viewers in conjunction with the debugger. Here,
the student has paused execution of their program after two nodes have
been added to the linked list.

Figure 7b: When the student steps over a line of code in the debugger,
they can see the live transformation of their binary tree.

58  acm Inroads  2017 December • Vol. 8 • No. 4

ARTICLES
jGRASP: A Simple, Visual, Intuitive Programming Environment for CS1 and CS2

CONCLUSION
jGRASP meets our needs for a lightweight IDE suitable for be-
ginning programmers. It is valued by instructors, TAs and stu-
dents. One indication of its popularity among our students is
that many continue to use it in upper level courses, even though
the faculty may prefer a more complex professional grade IDE.

Our experiences suggest several open questions that would
be useful to explore. The jGRASP interactions pane is a rare fea-
ture among Java IDEs, but one that our instructors value great-
ly. Given that many universities use Python where a REPL is
a standard feature, we wonder whether careful research might
validate the use of a REPL in the lecture as a best practice for
introductory computer science courses. We also find ourselves
asking the perennial question of why we don’t see more stu-
dents using the debugger, particularly in CS1. Finally, we know
that the instructors and TAs find the jGRASP object viewers
helpful, but we have not had a chance to gather evidence that
would allow us to conclude whether it is helpful for students.

Each university will need to consider its own challenges
when choosing an IDE. Because we teach very large CS1 and
CS2 courses that are taken mostly by non-majors, we care a lot
about simplicity and ease of installation. jGRASP has met our
needs in this regard. In addition, jGRASP’s interactions pane
and object viewers provide unique tools for instructors and TAs
to teach the internal execution of programs. Finally, we believe
that the consistent use of a single editor across all layers of a
large University course—whether it be jGRASP, or some other
IDE—greatly impacts the effectiveness of the course.

References
 1. Allen, E., Cartwright, R., and Stoler, B. DrJava: a lightweight pedagogic environment

for Java. SIGCSE Bull. 34, 1 (February 2002), 137-141.
 2. Cross, J., Hendrix, T., and Barowski, L. Using the debugger as an integral part of

teaching CS1. Frontiers in Education, FIE 2002. 32nd Annual, 2002, pp. F1G-1-F1G-6
vol.2.

 3. Cross, J., and Hendrix, T. jGRASP: a lightweight IDE with dynamic object viewers for
CS1 and CS2. SIGCSE Bull. 38, 3 (June 2006), 356-356.

 4. Cross, J., Hendrix, T., Jain, J., and Barowski, L. Dynamic object viewers for data
structures. SIGCSE Bull. 39, 1 (March 2007), 4-8.

 5. Cross, J., Hendrix, T., Umphress, D., and Barowski, L. Exploring accessibility and
visibility relationships in java. SIGCSE Bull. 40, 3 (June 2008), 103-108.

 6. DrJava site; http://www.drjava.org/. Accessed 2016 April 27.
 7. Eclipse download site; https://eclipse.org/downloads/. Accessed 2016 April 27.
 8. jGRASP main site; http://www.jgrasp.org/. Accessed 2016 April 27.
 9. JShell and REPL; https://blogs.oracle.com/java/entry/jshell_and_relp_in_java.

Accessed 2016 June 13.
 10. TextPad site; https://www.textpad.com/. Accessed 2016 April 27

Alexander D. Miller
University of Washington
Paul G. Allen Center for Computer Science & Engineering
185 E Stevens Way NE, Seattle, WA 98195
amiller@cs.washington.edu

Stuart Reges
University of Washington
Paul G. Allen Center for Computer Science & Engineering
185 E Stevens Way NE, Seattle, WA 98195
reges@cs.washington.edu

Allison Obourn
(Formerly University of Washington)
University of Arizona, Department of Computer Science
1040 4th St, Tucson, AZ 85721
urn@cs.washington.edu

DOI: 10.1145/3148562 ©2017 ACM 2153-2184/17/12 $15.00

• Incremental compilation. Some IDEs underline compilation
errors in red as the user types, giving immediate, real time
feedback. jGRASP does not have this functionality.

In addition, we’ve found the following two small points of
friction with jGRASP:
• Language issues. Students who have their computers set to

certain languages (for example, Chinese) must manually
configure jGRASP to produce English compiler messages.

• Object viewer configuration. When viewing an object
with more than one data field, the user must configure
which field should be displayed in the viewer (for
example, for a linked list structure where every node has
two pieces of data).

Have a question about
advertising opportunities?

CONTACT US
212 • 626 • 0686
acmmediasales@acm.org

