Session 3: Tools and Technologies in Computing Education, 1

ICER ’18, August 13-15, 2018, Espoo, Finland

Metacognitive Difficulties Faced by Novice Programmers in
Automated Assessment Tools

James Prather
Abilene Christian University
Abilene, TX
jrp09a@acu.edu

John Homer
Abilene Christian University
Abilene, TX
jdho8a@acu.edu

ABSTRACT

Most novice programmers are not explicitly aware of the problem-
solving process used to approach programming problems and can-
not articulate to an instructor where they are in that process. Many
are now arguing that this skill, called metacognitive awareness, is
crucial for novice learning. However, novices frequently learn in
university CS1 courses that employ automated assessment tools
(AATs), which are not typically designed to provide the cognitive
scaffolding necessary for novices to develop metacognitive aware-
ness. This paper reports on an experiment designed to understand
what difficulties novice programmers currently face when learning
to code with an AAT. We describe the experiences of CS1 students
who participated in a think-aloud study where they were observed
solving a programming problem with an AAT. Our observations
show that some students mentally augmented the tool when it did
not explicitly support their metacognitive awareness, while oth-
ers stumbled due to the tool’s lack of such support. We use these
observations to formulate difficulties faced by novices that lack
metacognitive awareness, compare these results to other related
studies, and look toward future work in modifying AATs.

CCS CONCEPTS

« Social and professional topics — CS1; - Human-centered
computing — User studies;

KEYWORDS

Education, CS1, automated assessment tools, HCI, human factors,
metacognitive awareness

ACM Reference Format:

James Prather, Raymond Pettit, Kayla McMurry, Alani Peters, John Homer,
and Maxine Cohen. 2018. Metacognitive Difficulties Faced by Novice Pro-
grammers in Automated Assessment Tools. In ICER ’18: 2018 International

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICER’18, August 13-15, 2018, Espoo, Finland

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5628-2/18/08...$15.00
https://doi.org/10.1145/3230977.3230981

Raymond Pettit
University of Virginia
Charlottesville, VA
raymond.pettit@gmail.com

41

Kayla McMurry, Alani Peters
USAA
San Antonio, TX
kayla.mcmurry,alani.peters@usaa.com

Maxine Cohen
Nova Southeastern University
Ft. Lauderdale, FL
cohenm@nova.edu

Computing Education Research Conference, August 13-15, 2018, Espoo, Finland.
ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3230977.3230981

1 INTRODUCTION

Learning how to code involves more than just syntax and data
structures; it also requires a mental scaffold around which a learner
can correctly place knowledge and begin developing metacognitive
awareness [19, 42, 53]. Metacognitive awareness is the ability not
only to understand the problem but also to understand where one
is in the problem-solving process and to reflect on that state. In his
seminal 1945 book, How To Solve It, Polya identified four stages that
learners move through while solving a math problem, hoping to
make learners more explicitly aware of their movement [51]. When
Dijkstra attempted to effect this four-stage process in his students,
he told them, "Beautiful proofs are not 'found’ by trial and error
but are the result of a consciously applied design discipline” [13]. In
order to be successful in the task of learning programming, novices
must adapt these metacognitive strategies [57]. Despite this, most
novice programmers lack metacognitive awareness [19], though
sometimes the highest-performing novices display some aspects of
metacognitive awareness, which could be a clue to their success in
such a difficult discipline [8]. Most recently, Loksa et al. [40] inves-
tigated metacognitive awareness in novice programmers using a
framework similar to Polya’s. They identified six specific stages in
learning to solve programming problems of which students should
be aware: (1) reinterpret the prompt, (2) search for analogous prob-
lems, (3) search for solutions, (4) evaluate a potential solution , (5)
implement a solution, (6) evaluate implemented solution. Loksa et
al’s approach was to explicitly coach students on these stages and
help them identify which stage they were in when they became
stuck. In this paper, we investigate the theoretical foundation of
Loksa et al’s proposal in an online learning setting via an auto-
mated assessment tool (AAT), looking for ways in which the tool
itself could be built to support and help implicitly build a novice’s
metacognitive awareness. We report on a think-aloud study with
CS1 students to observe their interactions with an AAT in order
to better understand where AATs presently fail - and where AATs
could be augmented - to help novice students build metacognitive
awareness in CS1. Therefore, our research question is:

o RQ: What difficulties do novices who may lack metacogni-
tive awareness face when using an AAT?

https://doi.org/10.1145/3230977.3230981
https://doi.org/10.1145/3230977.3230981

Session 3: Tools and Technologies in Computing Education, 1

2 RELATED WORK
2.1 Automated Assessment Tools

Because this study’s intervention centers on automated assessment
tools, it is important to first consider their history and how they
are currently designed with regard to supporting metacognitive
awareness. In 1960, Hollingsworth created one of the first tools to
automatically assess student programming assignments on punch
cards [26]. Several hundred automated assessment tools have been
created since then with varying levels of adoption [1, 14, 28, 29, 49].
Different tools focus on different aspects of automated assessment:
some focus strictly on assessment, others are explicitly built to help
novice students, and still others focus on test-driven development
[17].

One feature consistently present in AATSs that could cause novices
to reflect on their location in the problem-solving process, and
therefore help to build metacognitive awareness, is compiler error
messages (CEMs). CEMs have long been documented as a recurrent
source of confusion and frustration to students, and many AATs
have been created to address this problem. Traver addresses prob-
lems with CEMs, highlighting some of the challenges in improving
messages and showing many actual examples of the misleading
messages that compilers produce [60]. Murphy et al. were part of
a large multi-institution group analyzing debugging strategies of
novice programmers [46]. Their observations from class sessions
and one-on-one interviews make apparent the frustrations caused
by misunderstanding errors in programming code. Finally, Marceau
et al. discuss how poor error messages lead to student frustrations,
which led Marceau et al. to create their AAT, DrRacket [43]. Fur-
thermore, Marceau observes that some languages used to teach
introductory programming, such as Alice [34] and Scratch [41]
were created with a goal of protecting students from any possibility
of creating syntax errors in their early programs. The rate of error
messages has been tied to success through Jadud’s EQ measurement
[31] and enhanced compiler error messages (ECEMs) have been
shown to reduce EQ and similar measures of error rates [6].

Since students so often struggle with understanding CEMs, many
creators of automated assessment tools have attempted to enhance
the standard CEMs that students receive. One of the earliest exam-
ples of an ECEM is seen in CAP, developed by Schorsh in 1995. The
intent of CAP was to provide students in an introductory program-
ming course with user-friendly feedback pertaining to syntax, logic,
and style errors [55]. In 2012, Watson discussed the tool BlueFix,
which applied his principle of adapting the compiler messages to
the level of the students [62]. Other examples of enhancing CEMs
for novice students include Thetis [22], HiC [24], Expresso [27],
Gauntlet [21], a tool by Dy [15], LearnCS! [39], an IDE by Barik [4],
and ITS-Debug [11].

A few researchers have reported empirical results on the efficacy
of ECEMs. In 2014, Denny et al. reported that there was no statisti-
cally significant difference in students’ behavior between control
and experimental groups [12]. These results seem non-intuitive. In
contrast, Becker similarly enhanced CEMs in the automated assess-
ment tool, Decaf, also used for Java programming and found that
the enhanced messages actually did change student behavior: after
viewing an ECEM, students were less likely to generate the same
error in the future [5]. Pettit et al. enhanced CEMs in an automated

42

ICER ’18, August 13-15, 2018, Espoo, Finland

assessment tool, Athene, used for C++ programming and did not
find conclusive results that the ECEMs were more helpful than
standard CEMs [50]. Prather et al. took a human-factors approach
to redesign the ECEMs in Athene, conducted a mixed-methods
experiment, and found that the newly redesigned ECEMs were
more helpful than the standard CEMs [52], showing that human-
centered design of ECEMs is highly important. Finally, Becker et
al. returned to the problem, examined these conflicting results, and
found that previous studies were measuring different phenomena.
They found a consistent way to explain the seemingly different
results on efficacy of ECEMs and reported on another experiment
which supported their explanation [7].

Despite the importance of useful feedback messages as cognitive
scaffolding to implicitly create metacognitive awareness in novices,
and its empirically confirmed helpfulness, most AATs provide only
rudimentary feedback for submissions [1, 2]. Reporting on 69 differ-
ent tools and how they provide feedback, Keuning et al. report that
most feedback is on failed test cases, some on failure to compile, and
very little about anything else [35]. Most of this feedback is binary
in nature (pass/fail). Kyrilov and Noelle report that only providing
binary feedback to students leads to lower engagement and higher
rates of cheating [37]. It therefore seems that feedback must be
enhanced beyond binary pass/fail, but the existing literature has
yet to establish a standard design for this feedback.

Hartmann et al. [23] created HelpMeOut, an automated assess-
ment tool that provides students with feedback similar to Denny et
al. [12]. HelpMeOut queries a database of similar errors and presents
users with examples and how to fix them. This approach contrasts
with many others that implement enhanced feedback via expert
opinion and not user observation [21, 30]. Furthermore, HelpMe-
Out’s top suggestion is accomplished through crowdsourced voting
by students. Hartmann et al. did not attempt to measure whether
their AAT helped novice programmers create a better conceptual
model of the errors they received or whether it increased learnabil-
ity for novice programmers. Marceau et al. took a human factors
approach to creating DrRacket [44]. They ran mixed-methods ex-
periment and discovered that students were grossly misinterpreting
the feedback messages and were confused by DrRacket’s highly
specialized vocabulary. Marceau et al. postulated that perhaps stu-
dents do not take the time to read the messages but rather use the
presence of CEMs only as an "oracle" that somehow knows how to
fix their code; Marceau et al. also suggested that students may read
only the code highlights that indicate the necessary change. In fol-
lowing work, they provided a rubric for evaluating the effectiveness
of error messages based on student behavior after encountering
them [43]. Marceau et al. recommended changes to error messages:
simplify vocabulary, be more explicit in pointing to the problem,
help students match terms in the error message to parts of their
code (e.g. using color coded highlighting), design the programming
course with error messages in mind (rather than an afterthought),
and teach students how to read and understand error messages
during class time.

Several other recent studies utilize aspects of a human factors
approach to an automated assessment tool such as the theroy behind
error message design [60], design and personification of feedback
[38], and eye-tracking to determine if novices read error messages
and what they are reading when they do [3].

Session 3: Tools and Technologies in Computing Education, 1

2.2 Metacognition in Novice Programmers

Introductory courses in programming often focus solely on syn-
tax and data structures, but there is a growing consensus among
computer science education researchers that it should also focus
on assisting the novice in building a mental scaffold around which
they can correctly place knowledge and develop metacognitive
awareness [8, 19, 25, 40, 42, 53, 56]. Metacognitive awareness is,
simply put, knowing about knowing. Applied to programming, it
is not just knowledge of the problem, but knowledge of where one
is in the problem-solving process and self-reflection on that state
[45].

Incorporating metacognitive awareness into the instruction of
novice programmers is rather uncommon, but the subject appears
more often in literature regarding intelligent tutoring systems.
In 2000, Vizcaino et al. described the intelligent tutoring system
HabiPro [61]. HabiPro included four exercises intended to help stu-
dents develop good programming habits. The exercises in intelligent
tutors can help build mental scaffolding in novices [53], but HabiPro
was not designed to build metacognitive awareness. HabiPro is also
not an automated assessment tool. A more recent study by Cao et
al. reports on Idea Garden, an integrated development environment
(IDE) that helps novices by providing mental scaffolding through
just-in-time contextual hints [10]. A follow-up study by Jernigan et
al. implemented these concepts into a larger prototype and reported
that novices in the experimental group required substantially less
help than the control group, which did not use the prototype [32].
Finally, Nelson et al. proposed a comprehension-first pedagogy
paired with PLTutor, an intelligent tutoring system that aims to
help novices better learn meta-programming skills such as code-
tracing [47].

Falkner et al. [20] carried out a mixed-methods study that ob-
served self-awareness of learning strategies, such as metacognitive
awareness, in novice students in an introductory programming
course. Participants engaged in a multi-part reflection process as
they worked on programming assessments. Falkner et al. reported
that only a few students were able to articulate metacognitive aware-
ness; they therefore recommend instructors engage in targeted
explicit cognitive scaffolding to help students develop this skill.

Hauswirth and Adamoli [25] studied CS2 students’ metacog-
nitive awareness in two courses by observing what they did in
response to explicit coaching on help-seeking and self-assessment
behaviors. They found that students engaged in metacognitive ac-
tivities to varying degrees, but they largely explained this variation
as connected to the setup of the CS2 courses. However, they did dis-
cover some instances of deeper self-reflection among students in un-
expected ways, such as student revision of mastery self-assessments,
indicating a student first thought they had mastered a skill and then
realized they hadn’t. Hauswirth’s and Adamoli’s study is limited
by their data collection method, which was observation of what
students did, as opposed to what students thought, even though
the study was trying to measure metacognitive awareness. They
call for additional work to complement their study by investigating
what students are thinking. We attempt to fill this gap through our
study’s think-aloud protocol.

The most relevant study on promoting metacognitive awareness
in novice programmers is by Loksa et al. [40]. As listed above, they

43

ICER ’18, August 13-15, 2018, Espoo, Finland

identified six distinct problem-solving stages that learners usually
progress through sequentially. They reported on an intervention
at a code camp where the control group was taught how to code
and the experimental group was additionally trained in these six
problem-solving stages and the use of an IDE with an Idea Garden.
They reported that students with this training were significantly
more productive and required less help. As the literature indicates,
then, modified pedagogical approaches and coding environments
warrant development. Some successful modifications, however, are
difficult to scale or hard to implement for online learning tech-
nologies, such as massively open online courses, which Loksa et
al. acknowledged as a limitation of their work. Our intention with
the present study is to adapt the spirit of these interventions to
automated assessment tools that can span this gap.

3 METHODOLOGY

In this paper, we investigate novice programmers’ problem-solving
abilities by observing them complete a programming assignment
using an AAT in order to better understand how an AAT could
be built to implicitly increase student metacognitive awareness. In
order to understand how AATs might help improve metacognitive
awareness in novices, we looked at existing literature for anything
that might fit into one of the six stages used by Loksa et al. Only
the discussions of feedback in AATs fit that criteria and, when done
correctly, could help with stage 5, implement a solution. For this
study, we chose to use the AAT Athene because of the extensive
research already done to enhance its CEMs [48, 50, 52, 59] and
its availability for the researchers to further modify. In our pre-
vious work [52], we iteratively refined the design of the ECEMs
in Athene through two pilot studies and a larger mixed-methods
study and reported that the newly-refined ECEMs had a positive
impact on student performance. From this work, we are confident
that Athene successfully attends to stage 5 by providing helpful and
useful feedback to students while they try to write code that can
compile. We therefore conducted a think-aloud study [54, 58, 63]
to watch novice programmers use Athene and qualitatively ana-
lyzed the data in order to understand what difficulties they faced
in building metacognitive awareness and how that tool could be
further augmented to support users through Loksa et al’s other five
problem-solving stages.

Instead of the regular three hours of classes during week six of
the semester in CS1, the primary researcher canceled class and held
hour-long one-on-one sessions with each student to provide individ-
ualized feedback about their programming process. While meeting
for the one-on-one sessions was mandatory, release of information
was opt-in, and a different professor than the primary researcher
handed out and collected the IRB signature forms while the primary
researcher was not in the room. Students were clearly told by the
other professor that choosing not to opt-in would not have any ef-
fect on their grade and the researchers did not know who had opted
in during the one-on-one sessions, as per IRB requirements. All 31
students chose to release their data for this research. Each student
met one-on-one with a researcher where the student was observed
completing a practical quiz. Students received a programming prob-
lem in Athene and had to solve it in a proctored 35-minute time
window. Students were asked to verbalize their thoughts while

Session 3: Tools and Technologies in Computing Education, 1

they solved the problem. In an effort to control for differing devel-
opment environments and the help students might or might not
receive from certain IDEs, students were only allowed to type their
code in the default Windows notepad application and could only
access compilation and runtime error checking via submission to
Athene. After the practical quiz had been successfully completed,
or the time had expired, students received detailed feedback on
their programming skills and problem-solving process from the
researcher.

The general format of the think-aloud study follows the usabil-
ity testing guidelines found in Rubin and Chisnell [54], including
pre- and post-testing checklists and scripts. At the beginning of
each think-aloud session, the evaluator read from a script outlining
the reason for the session, the goal of the session, and what was
expected of the student. Students were then given a very simple
task and asked to think aloud so they could get used to verbalizing
their thoughts, the observer, and the process, as suggested by [58]
and [63]. This simple task was to write a program that would out-
put "Hello, world." This particular task was chosen because it was
cognitively easy code to write for any level of student at that point
in the semester, so practicing the think-aloud protocol would be
manageable.

After completing the warm-up exercise, students were asked to
complete the practical quiz within a time limit of 35 minutes. The
task was this: given n integers, compute whether there were more
positive or negative integer numbers provided as input. For this
problem, students would need to understand the following concepts:
console input, console output, conditionals, and loops. This problem
was selected because it correlated with course topics at the time and
therefore should have been moderately challenging. An additional
reason for selecting this problem was that it has been used as an
in-class assessment in previous semesters, also with a 35-minute
time limit, and a majority of students from those previous semesters
completed the problem within the limit. While each student worked
to solve the problem, a researcher took extensive notes on what the
student did and said. Interactions during the practical quiz between
the researcher and student were kept to a minimum per Ericsson
and Simon [18].

Participant observation allowed us to record the participants’ ac-
tions, apparent thought and problem-solving process, and external
reactions to error messages and other feedback. Participant-specific
data were separately recorded and then moved into ATLAS.ti, a
qualitative software analysis package. Tags for the data included
Loksa et al’s six problem-solving stages, users’ external reactions to
feedback from the AAT, and outward expressions of emotion (verbal-
izing or demonstrating through body language feeling encouraged,
happy, frustrated, or angry). ATLAS.ti determines groundedness as
a measure of the relevance of a code within the dataset.

4 RESULTS

In this section, we describe from observation during the think-aloud
study how students working in Athene moved through Loksa et
al’s six learning stages. This qualitative data from the think-aloud
study will highlight the relevant ways in which AATs, like Athene,
fail to help students build metacognitive awareness. We tagged,
coded, and grouped the observation notes and interview transcripts

44

ICER ’18, August 13-15, 2018, Espoo, Finland

into categories by the collaborative agreement of two researchers.
This approach allowed larger trends to emerge from the natural
groupings of the qualitative data. Specifically, we tagged data in
433 places and from that identified 39 recurring themes as first-
order concepts that emerged from our ground-level observations.
We then built these 39 themes into five second-order concepts,
which are summarized below in the Discussion. To show how we
arrived at the second-order concepts, we begin with the raw data
of participant experience broken into two categories: students who
successfully completed the program within the 35-minute time limit
and students who did not. This is followed by a discussion of the
data that groups these experiences into broader concepts by using
[40] as our theoretical foundation. Student names in this section
were changed for the sake of anonymity.

4.1 Students that Completed the Quiz

In the group that completed the quiz, several students finished in
under 10 minutes and displayed a similar set of traits. The first trait
was a consistent approach to starting the problem. Observation
notes report that at the outset, these students, "interpreted the
instructions for the problem," and "immediately verbalized a clear
conceptual model for the problem." Next, these students followed
a similar pattern of thinking through the problem, thinking about
how to solve it, choosing a solution (in this case, using a while
loop), implementing a solution, and tracing their code with specific
test cases in mind. Several students in this group were observed
pausing multiple times to think about their chosen solution and
their process to solve the problem. Only one student in this group
received an ECEM. The student who received this message, Bill,
did not read the enhanced portion at first, but read the standard
portion, successfully edited his code, and then double-checked his
edit by opening the enhanced portion, reading it, and agreeing
that his fix was correct. Bill’s experience is ideal. Still, by the time
these particular students were receiving feedback regarding test
cases, they had successfully moved through Loksa et al.’s first five
stages of problem-solving and therefore they quickly interpreted
any failed test cases and fixed the offending code.

Jane, who took 14 minutes to finish the quiz, first thought through
the problem, immediately decided on a solution, and proceeded to
create comments about what she planned to do throughout the file
and then filled it out with code. This student received one ECEM,
did not read the enhanced portion, and immediately successfully
edited the code. Her next submission compiled, passed two of the
test cases, and failed on the third. She made an edit to her code
and resubmitted, receiving the same failed test case message, and
then repeated this pattern once more. Finally, after receiving the
same test case failure three times, she stopped and carefully walked
through her code with specific test cases in mind, found the issue,
fixed the code, and finished.

Another student, Patricia, who finished in 18 minutes, read the
problem prompt quickly and immediately began attempting to solve
it as if it was a different problem students in CS1 had previously en-
countered that semester ("Even or Odd?": given n numbers, compute
whether there were more even or odd integer numbers provided as
input). She seems to have failed initially to correctly move through
problem-solving stage 1, reinterpret problem prompt, before moving

Session 3: Tools and Technologies in Computing Education, 1

on to stage 2, search for analogous problems. She correctly chose the
"Even or Odd?" problem as analogous, but when moving onto stage
3, search for solutions, she chose to use the solution for the "Even or
0dd?" problem itself instead of using the problem as the basis from
which to form a new solution to a different problem. However, as
Patricia began to write her solution, this approach made apparently
less and less sense, and she verbalized realizing something was
off. She checked the instructions again, but she still didn’t seem to
understand what was wrong-providing a fascinating case of how
forming the wrong conceptual model early on can make it difficult
to fundamentally change how one views the programming prob-
lem at hand. Finally, after being stuck for a few more minutes, she
re-read the instructions a third time and apparently understood.
After this, Patricia solved the problem very quickly.

Another interesting group of students who completed the quiz
were those who took 30-35 minutes, coming right up against the
time limit. Adam, completing the quiz in 30 minutes, read the
prompt and immediately verbalized a clear conceptual model of
what the problem required and how to solve it. However, Adam ran
into extensive issues with syntax and therefore became stuck on
stage 5, implement a solution. His spoken narration demonstrated
that he recognized his deficiency in the particulars of syntax cor-
rectness and utilized the enhanced portion of the ECEMs to his
advantage, finally solving it on the seventh submission.

Finally, Wayne, who completed the problem in 33 minutes, ran
into the same issue as Patricia, confusing the problem for "Even
or Odd?" However, Wayne did not recognize his mistake early on.
At multiple points in the session, he carefully talked through his
algorithm, revealing his incorrect conceptual model. After writing
his solution, built for the "Even or Odd?" problem, he encountered
one ECEM, fixed the error, and moved on to the final stage, evaluate
implemented solution, where he failed the first test case. Wayne
looked at the expected output compared to the actual output of
his program, made an edit, and then passed the next test case.
He continued failing test cases, adding to his code to create the
right output, and failing the next test case. His code grew longer
until he had passed 10 test cases, a process that took just over 30
minutes during which he showed increasing frustration. Finally,
at 31 minutes, he re-read the problem prompt and exclaimed, "Oh!
Wait! This just hit me that it’s doing positive and negative rather
than evens and odds. I don’t know why that happened,’ and he very
quickly solved the problem. In this case, failing to correctly navigate
Loksa et al’s first few stages of problem-solving apparently led to
an incorrect interpretation of the AAT’s error messages and an
incorrect conception of location in the problem-solving process. By
solving compilation problems and working through multiple test
cases, Wayne described feeling that he was very close to solving the
problem, when he was actually very far away. This story highlights
how a lack of metacognitive awareness almost kept an otherwise-
capable student from succeeding.

4.2 Students that Did Not Complete the Quiz

The 11 students who did not complete the quiz all failed to success-
fully move through at least one of the problem-solving stages. If
the way to a correct solution can be thought of like a path from
stage to stage, these students often diverged very early, backtracked

45

ICER ’18, August 13-15, 2018, Espoo, Finland

frequently, and never returned to the crucial juncture to take the
correct path. The most frequent issue these students encountered
was a failure to build a correct conceptual model of the problem.
Unable or unwilling to spend the time to successfully navigate stage
1, reinterpret problem prompt, many of these students searched for
analogous problems and solutions to the wrong problem. And, un-
like Wayne above, these students never demonstrated recognition
that they had the wrong conceptual model. The AAT was not able
to alert these students to this failure of metacognitive awareness,
allowing them to meander down the wrong path, totally lost until
the quiz time had expired.

The most obvious example of a failure to create a correct concep-
tual model can be seen in the experience of Theo, who spent nearly
a third of his quiz time reading and re-reading the quiz prompt. At
one point, halfway into the quiz time, the researcher noted that he
"just keeps repeating the same phrase from the instructions, ’if the
number of positive is greater than the number of negative, over
and over again." Eventually, Theo wrote some code and submitted it,
and he received a standard CEM. He spent the rest of his time trying
to understand this message. Since the CEM was only responding
to a syntax error, if Theo had corrected and submitted his code
again, Athene would have begun running his code against the set
of test cases. The feedback Theo received was not the feedback
that he needed in order to succeed. His time expired while he was
re-reading the prompt for the eighth time.

Neil provides a good example of what happens when one fails to
navigate each of Loksa et al’s stages. After skimming the problem
prompt, Neil immediately began coding without stopping to think
through stage 2, search for analogous problems, stage 3, search for
solutions, or stage 4, evaluate a potential solution, jumping right
to stage 5, implement a solution. This leap was evidenced by his
statement after a few minutes, "What I’'m wondering is if I need
the prompt for input to be in the loop or not,' followed quickly by
removing that prompt entirely. A minute later, he created two vari-
ables and said, "Somehow I'm going to let those represent positive
and negative values. I think I'll have to do that in my while loop." At
that point in the quiz, his code was structured to accept two integer
values and report if they were positive or negative, which is not
code appropriate to the correct problem. Minutes later, he said, "I'm
going to mentally run through it now," but he did so without any
specific test cases. All of these actions show a lack of understanding
about what problem he was trying to solve and how to solve the
problem he thought it was, as well as an inability to evaluate his
own solution. Finally, he submitted his code to Athene and spent
the rest of his quiz time working through compiler errors. Slowly
working through seven CEMs/ECEMs seems to have provided a
false sense of progress to Neil, because his program, even without
syntax errors, was very far away from a correct solution.

Thomas successfully navigated stages 1-2, failed to solve stage 3,
and was subsequently totally unprepared to move into stages 4-6.
Early on, Thomas said things like, "I'm trying to figure out how to .
.. that’s not going to work," and, "I'm trying to figure out how to
make it count the positive ones. I don’t know how to ... that’s going
to be my issue." He continued tinkering with his code and said, "I
just don’t know how to see if there’s more positive or negative."
Thomas’ comments reveal that he understood what he needed to do
but had great difficulty successfully getting through stage 3, search

Session 3: Tools and Technologies in Computing Education, 1

for solutions. Apparently frustrated and eager for some feedback,
Thomas submitted his code, saying, "I guess I'll run it just to see
what it will say" His code was syntactically valid and so Athene
began running test cases. Once in stage 6, evaluate implemented
solution, Thomas struggled with the first test case for the remainder
of the time, unsure as to how to convert the specified input into the
correct output. Near the end of his quiz time, Thomas said, "I feel
like I'm close, but I just don’t know how to count up positive and
negatives. Why is this not working?" The feedback from Athene
seems to have given Thomas a false sense of progression through
the problem. He described feeling very close, but without finding a
solution in stage 3 from which to build his own solution, he was
actually quite far from completion. Thomas’ experience was almost
exactly repeated in the experience of two other students; one, for
example, said , "really close to finishing this, I think," when he was
quite far away.

Several other observations are worth mentioning as well. A few
students said that they usually solve the problem through trial
and error. This behavior shows that AATs, such as Athene, allow
for submission of code immediately without any assurances that
the student understands the problem-they are focused solely on
correctness via syntax and test cases. Another issue researchers
noticed is that several students seemed to become very frustrated
during the quiz, with one student even calling herself and her code
"stupid" This suggests that an absence of appropriate feedback
from an AAT can contribute to students’ feeling lost and frustrated,
and potentially forming negative opinions of their work and the
discipline. Finally, one positive behavior in this group was displayed
by Jenny, who successfully navigated stages 1-3, stalled in stage 4,
evaluate a potential solution, and finally got out a piece of scratch
paper and sketched the flow of the program. This action helped her
immensely, and she was able to immediately move on to stage 5,
implement a solution. Unfortunately, by the time Jenny verbalized
the idea to sketch out her solution, her quiz time was nearly over.

5 DISCUSSION

In this section, we will contrast the two groups above in order to an-
swer the RQ: What difficulties do novices who may lack metacognitive
awareness face when using an AAT? The most glaring inconsistency
between those who completed the quiz and those who did not is
in the initial formation of a correct conceptual model for the prob-
lem, which corresponds to Loksa et al’s stage 1, reinterpret problem
prompt. This breakdown shows perhaps the single greatest weak-
ness in modern AATs: the tools merely present the problem and
assume that the successful student will eventually conceptualize
the problem correctly. Furthermore, there are no measures between
viewing the problem and submitting source code to ensure that
the student understands what they’re being asked to do. As it is,
tools like Athene treat every student submission the same, as a solu-
tion properly designed and requiring only syntactic corrections for
completion. Wayne and Patricia, who both realized their incorrect
conceptual model, saw feedback that paralleled the feedback given
to multiple students who did not complete the quiz, only these
others were not fortunate enough to realize their conceptual errors.
It’s very possible that these students would have completed the
quiz if Athene had somehow prompted them to form the correct

46

ICER ’18, August 13-15, 2018, Espoo, Finland

conceptual model at the outset. Such a modification would not only
benefit the poorer performing students; after all, Wayne completed
the quiz, but just barely. It is likely that Wayne would not have
taken 33 minutes to solve the problem had he been operating under
the correct conceptual model the entire time. Both Patricia and
Wayne also illustrate that simply re-reading the problem prompt
may not help a student who has formed an incorrect conceptual
model, due to the difficulty in dislodging a model once formed.

After forming a correct conceptual model, Jane and several other
students who completed the quiz took the time at the outset to
build out some scaffolding inside their code by placing comments
about how they intended to solve the problem. These students used
this technique to navigate stage 2, search for analogous problems, by
thinking back to similar problems they had encountered, and stage
3, search for solutions, by thinking through how they had solved
those previous problems, and finally stage 4, evaluate a potential
solution, by sketching the solution in comments before actually im-
plementing it. This strategy proved to be a helpful way of thinking
through an approach before committing to any code. Jenny, who
did not complete the quiz, also employed this strategy, but she did
so far too late into the quiz time. Meanwhile, many of the students
who did not complete the quiz read the prompt (often briefly) and
jumped directly to coding, skipping stages 1-4 entirely. This proved
disastrous for them as they wandered aimlessly, seeming to hope
they would eventually stumble on a solution.

Another important distinction can be drawn in stage 5, im-
plement a solution, when considering how some in the incom-
plete group attempted to work through the received CEMs/ECEMs
though they had no idea they had incorrectly navigated all previous
stages. Having used Athene for the assigned homework problems
in weeks 1-5 of CS1 thus far, these students associated receiving
CEMs/ECEMs with being mostly complete, a finding that became
obvious during the think-aloud session or in the interviews after-
ward. This poor sense of location in the problem-solving process
ultimately distracted them from the real issue at hand: even if they
could get their code to be syntactically correct, their code was not
going to solve the problem.

The most-repeated theme in the data also appears in stage 5,
implement a solution, which was the amount of ECEMs read by stu-
dents. The participants who did not complete the quiz read nine of
the 29 enhanced messages encountered, while the participants that
completed the quiz read 23 of the 31 enhanced messages encoun-
tered. From the quiz data, reading the enhanced messages seems to
correlate with quiz completion among all students that completed
the quiz, though it correlates especially strongly for the several stu-
dents who might not have completed the quiz otherwise. However,
we did not control for the so-called "diligent student effect” in this
experiment. Students such as Adam, who correctly navigated stages
1-4 but became stuck on stage 5 with syntax errors, heavily relied
upon and successfully utilized the enhanced messages to reach a
correct solution. Most perplexing is the general behavior of the
students who didn’t utilize the enhanced messages. One student in
particular saw the same ECEM 15 times but never clicked on the
enhanced message to expand and read it.

Finally, the experiences of Neil and Thomas can be juxtaposed
with the experience of Jane to offer a window into stage 6, evaluate
implemented solution. When Jane began receiving test case feedback

Session 3: Tools and Technologies in Computing Education, 1

Table 1: Observed difficulties to metacognitive awareness by
novices using AATs

‘ Metacognitive Difficulty ‘ Explanation

Forming Forming the wrong conceptual model
about the right problem

Dislodging an incorrect conceptual
model of the problem may not be solved
by re-reading the prompt

Forming the correct conceptual model
for the wrong problem

Moving too quickly through one or more
stages incorrectly leads to a false sense of
accomplishment and poor conception of
location in the problem-solving process

Dislodging

Assumption

Location

Achievement
tion due to a false sense of being nearly
done

Unwillingness to abandon a wrong solu-

from Athene, she had already successfully navigated stages 1-5
and was therefore ready to incorporate the feedback accordingly.
Because she was solving the right problem, had chosen an approach
that could solve the problem, and had correctly implemented the
code for her solution, the feedback about failed test cases that
she received enabled her to tweak her code and quickly arrive
at a correct solution. Both Neil and Thomas, on the other hand,
also reached stage 6, but because they had incorrectly navigated
stages 1-5, the feedback they received was misleading. Because
Athene told them which test cases they had failed, Neil and Thomas
expressed that they assumed they should evaluate these feedback
messages and that doing so would lead them to a correct solution.
Unfortunately, no amount of failed test case feedback would have
helped them correct their fundamental misunderstanding of the
problem. Reporting that they felt so close to finishing, these two
participants apparently never considered that the real issue was
their chosen solution.

As noted above, we tagged the data from all 31 student talk-aloud
sessions and identified 39 recurring themes as first-order concepts.
Six of those themes were Loksa et al’s six stages, and we used
ATLAS.ti to analyze the groundedness of each stage within the
full dataset. For reference, the highest level of groundedness of any
theme ("helpfulness of ECEMs") was 33, which represents the theme
of students reading an ECEM and immediately correcting a compile
error. Out of all 39 first-order concepts that showed some level of
groundedness, only eight had a higher level of groundedness than
the first and third learning stages (which each had groundedness
levels of 15); as Figure 1 shows, stage 2 was the next saturated
(with a groundedness level of 13). This observation is particularly
interesting because "helpfulness of ECEMs" should happen in stage
five, implement a solution (groundedness: 5).

In moving from first-order to second-order concepts, we discov-
ered that students often encountered ECEMs when, unbeknownst
to them, they were stuck in the first few learning stages by regress-
ing back to an earlier stage from a later stage. Recognizing this
pattern helped us to identify the trends in the data leading towards

47

ICER ’18, August 13-15, 2018, Espoo, Finland

15

10

Stage 1 Stage2 Stage3 Stage4 Stage5 Stage6

Figure 1: Groundedness of each learning stage within the
full dataset.

the final two second-order concepts in Table 1, where students en-
countered ECEMs and mistook it for progress, did not understand
feedback that could point them to their incorrect approach to a
solution, or were unwilling to backtrack after incorrectly feeling
close to a solution.

We went on to group the 39 themes into five second-order con-
cepts that emerged from this research, as summarized in Table 1.
The first few difficulties in Table 1 all center around the first three
learning stages, which is not surprising given the level of grounded-
ness of the earlier stages compared with the later stages, as shown
in Figure 1.

Our results support previous research on metacognitive aware-
ness in novice programmers. Bergin et al. [8] showed that higher-
performing students tend to display some metacognitive awareness
while lower-performing students display lower or no metacognitive
awareness. In our results, students who completed the quiz tended
to display some metacognitive awareness, while those who did
not complete the quiz tended to lack that awareness. Obviously,
determining whether or not a student has some metacognitive
awareness depends on whether or not they display it, either ver-
bally or with some behavior. A few students that completed the
quiz did so very quickly without saying anything or showing any
metacognitive behaviors, such as planning out a solution with com-
ments before coding. However, most students who completed the
quiz displayed at least some metacognitive awareness to the re-
searchers. Some students who did not complete the quiz, such as
Jenny, displayed some metacognitive awareness but did not do so
early enough or consistently enough. Bergin et al. also showed
that students with higher intrinsic motivation were more likely to
display metacognitive awareness. Our research also confirms this
finding. The students who did not complete the quiz showed far
less motivation, in part because they seemed to think much less of
their programming skills. Several students in the group repeatedly
berated themselves out of frustration.

Session 3: Tools and Technologies in Computing Education, 1

The results of our study should also be brought into conversation
with those of Falkner et al. [20]. They found that when teachers in-
cluded specific exercises in CS1 classes such as design activities, task
difficulty assessments, and expectation of iterative coding practices,
and when teachers encouraged students to explore alternative de-
signs, students were more likely to develop self-regulated learning
strategies such as metacognitive awareness. We found that students
who were already aware of their need to practice these skills were
more likely to be in the group completing the assessment. Falkner et
al. also noted that students in their study frequently skipped design
and problem exploration in favor of jumping right into coding. We
noted this behavior as well, among both successful and unsuccess-
ful groups, though it was far more frequent among unsuccessful
students. The positive scaffolding that Falkner et al. propose and
the negative behaviors they observed could be supported and pre-
vented, respectively, if the programming environment that was used
implicitly supported metacognitive awareness, which in combina-
tion with our research suggests potential direction for modifying
AATs to improve student performance.

Finally, Loksa et al. [40] categorize the learning barriers that
learners might encounter at a particular stage using the classifica-
tion system provided by Ko et al. [36]. This classification system
describes the different cognitive, environmental, and programming
systems barriers that can prevent programming students from find-
ing a solution and solving a given problem. However, only one
barrier, design, is described as specifically cognitive, while the rest
are environmental, programming systems, API interface, or user
interface related. The description of the design barrier seems to
contain several of the metacognitive difficulties we noted above
in Table 1, including Forming and Assumption. Ko et al. did not
describe the other metacognitive difficulties we found. While the
learning barriers presented by Ko et al. can be a useful classifi-
cation system, it is not particularly equipped to understand the
specifically metacognitive difficulties faced by novice programmers.
The metacognitive difficulties presented above in Table 1, however,
seem to extend the work of Ko et al. by expanding and unpacking
their design barrier, as well as to offer new insights into the matter.

6 CONCLUSION

In this paper, we have presented a think-aloud study of CS1 students
in order to understand the difficulties faced by novices in forming
metacognitive awareness when using an AAT. Our analysis shows
how successful students mentally augmented Athene while explor-
ing how and why unsuccessful students faltered from Athene’s
lack of cognitive scaffolding. Unfortunately, this lack of cognitive
scaffolding with regard to each of Loksa et al’s stages is common in
most AATs, and so our observations should apply more broadly to a
wide range of AATs. The only exception occurs in relation to stage
5, where some tools are already moving to enhance the default
CEMs, but even those that have done so are still often lacking in
effective human-centered design. The primary contribution of this
paper is the identification of metacognitive difficulties that novice
programming students often face as shown in Table 1, which can
serve to inform future AAT development.

The present study has shown the need for AATs to provide
implicit support of metacognitive awareness. Prior research has

48

ICER ’18, August 13-15, 2018, Espoo, Finland

shown that explicit teaching of metacognitive skills has a positive
impact on learning, self-regulation, and growth mindset [40]. In our
study, we did not explicitly train students on metacognition because
we wanted to determine where AATs presently fail to provide
adequate cognitive scaffolding such that a novice can implicitly
learn metacognitive programming skills. In this case, we consider
metacognitive training implicit because it is built into the tool itself
and requires no explicit instruction on learning strategies or stages,
and students who use an AAT with built-in metacognitive support
would largely be unaware that they were being trained to develop
that skill. Our results call for AATs to evolve significantly and
move somewhere between their present form and that of intelligent
tutoring systems. So what would such an AAT look like?

From the discussion above, it seems that AATs should be modified
to provide more comprehensive cognitive scaffolding for novices
around which they can appropriately locate their knowledge as
they learn. Since a student at a university that uses an AAT will
typically complete dozens of problems in a semester, the AAT that
is designed to overcome the issues described above will implicitly
build metacognitive awareness in novices as they use it over and
over again. Such an AAT should help novices work through each
of Loksa et al’s learning stages [40] by confirming that students
understand the problem before proceeding, helping them think
through previous problems they have encountered, asking them
to outline their solution via something like Parsons Problems [33],
and requiring students to write their own test cases to submit
alongside their code [9, 16], in addition to enhancing the compiler
error messages [23, 44, 52]. A more thorough discussion of these
suggestions, including empirically testing of each one individually
and also testing all of them together, is presently underway and
will be reported on in future work.

There are several threats to the validity of this study. First, our
observations took place in a laboratory setting and may not re-
flect actual student behavior and experience. Second, students in
the think-aloud study were in a one-on-one setting, were asked to
think-aloud, and did not have access to previous code. It is possi-
ble that all of these factors increased student cognitive load and,
therefore, skewed the results. We attempted to offset the cognitive
load concern by adding in the warm-up exercise as suggested by
Teague et al. [58]. Third, we acknowledge that coming to firm con-
clusions in think-aloud studies can be perilous as it can seem like
the researchers are narrating the thoughts of participants. However,
we only tagged data from students’ verbalizations and concrete ac-
tions, tying the two together as often as possible, in order to avoid
this trap. Finally, the low number of student participants (n=31) is
another possible threat to validity. Still, although it is helpful in
quantitative studies to increase the number of participants, a higher
number would have been prohibitive in conducting an in-depth
experiment such as this.

7 ACKNOWLEDGMENTS

Special thanks to Heidi Nobles for her editorial support in preparing
this manuscript.

REFERENCES

[1] Kirsti M Ala-Mutka. 2005. A survey of automated assessment approaches for
programming assignments. Computer science education 15, 2 (2005), 83-102.

Session 3: Tools and Technologies in Computing Education, 1

[2] José Luis Fernandez Aleman. 2011. Automated assessment in a programming

3

=

[4

o

=

[10

[11]

[12

[13]

[14]

[15

[16]

[17]

[18

[19]

[20

[21

[22]

[23

™
=t

[25]

[26

[27]

tools course. IEEE Transactions on Education 54, 4 (2011), 576—581.

Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emerson
Murphy-Hill, and Chris Parnin. 2017. Do Developers Read Compiler Error
Messages?. In Proceedings of the International Conference of Software Engineering.
ACM.

Titus Barik, Jim Witschey, Brittany Johnson, and Emerson Murphy-Hill. 2014.
Compiler error notifications revisited: an interaction-first approach for helping
developers more effectively comprehend and resolve error notifications. In Com-
panion Proceedings of the 36th International Conference on Software Engineering.
ACM, 536-539.

Brett A Becker. 2016. An effective approach to enhancing compiler error mes-
sages. In Proceedings of the 47th ACM Technical Symposium on Computing Science
Education. ACM, 126-131.

Brett A Becker. 2016. A new metric to quantify repeated compiler errors for
novice programmers. In Proceedings of the 2016 ACM Conference on Innovation
and Technology in Computer Science Education. ACM, 296-301.

B. A. Becker, K. Goslin, and G. Glanville. 2018. The Effects of Enhanced Compiler
Error Messages on a Syntax Error Debugging Test. In Proceedings of the 2018
ACM Conference on Innovation and Technology in Computer Science Education.
ACM, 640-645.

Susan Bergin, Ronan Reilly, and Desmond Traynor. 2005. Examining the role of
self-regulated learning on introductory programming performance. In Proceedings
of the first international workshop on Computing education research. ACM, 81-86.
Kevin Buffardi and Stephen H Edwards. 2015. Reconsidering Automated Feedback:
A Test-Driven Approach. In Proceedings of the 46th ACM Technical Symposium
on Computer Science Education. ACM, 416-420.

Jill Cao, Scott D Fleming, Margaret Burnett, and Christopher Scaffidi. 2014. Idea
Garden: Situated support for problem solving by end-user programmers. Inter-
acting with Computers 27, 6 (2014), 640-660.

Elizabeth Carter. 2015. Its debug: practical results. Journal of Computing Sciences
in Colleges 30, 3 (2015), 9-15.

Paul Denny, Andrew Luxton-Reilly, and Dave Carpenter. 2014. Enhancing syn-
tax error messages appears ineffectual. In Proceedings of the 2014 conference on
Innovation & technology in computer science education. ACM, 273-278.

Edsger W. Dijkstra. 1995. Introducing a course on calculi. https://
www.cs.utexas.edu/users/EWD/transcriptions/EWD12xx/EWD1213.html Re-
marks by Edsger Dijkstra at Department of Computer Sciences, The University
of Texas at Austin [Accessed: 2017 08 25].

Christopher Douce, David Livingstone, and James Orwell. 2005. Automatic test-
based assessment of programming: A review. Journal on Educational Resources in
Computing (JERIC) 5, 3 (2005), 4.

Thomas Dy and Ma Mercedes Rodrigo. 2010. A detector for non-literal Java errors.
In Proceedings of the 10th Koli Calling International Conference on Computing
Education Research. ACM, 118-122.

Stephen H Edwards. 2003. Rethinking computer science education from a test-
first perspective. In Companion of the 18th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications. ACM, 148-
155.

Stephen H Edwards and Manuel A Perez-Quinones. 2008. Web-CAT: automati-
cally grading programming assignments. In ACM SIGCSE Bulletin, Vol. 40. ACM,
328-328.

Karl Anders Ericsson and Herbert Alexander Simon. 1993. Protocol analysis. MIT
press Cambridge, MA.

Anneli Eteldpelto. 1993. Metacognition and the expertise of computer program
comprehension. Scandinavian Journal of Educational Research 37, 3 (1993), 243—
254.

Katrina Falkner, Rebecca Vivian, and Nickolas JG Falkner. 2014. Identifying
computer science self-regulated learning strategies. In Proceedings of the 2014
conference on Innovation & technology in computer science education. ACM, 291-
296.

Thomas Flowers, Curtis A Carver, and James Jackson. 2004. Empowering students
and building confidence in novice programmers through Gauntlet. In Frontiers in
Education, 2004. FIE 2004. 34th Annual. IEEE, T3H-10.

Stephen N Freund and Eric S Roberts. 1996. Thetis: an ANSI C programming
environment designed for introductory use. In SIGCSE, Vol. 96. 300-304.

Bj6rn Hartmann, Daniel MacDougall, Joel Brandt, and Scott R Klemmer. 2010.
What would other programmers do: suggesting solutions to error messages. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, 1019-1028.

Robert W Hasker. 2002. HiC: a C++ compiler for CS1. Journal of Computing
Sciences in Colleges 18, 1 (2002), 56-64.

Matthias Hauswirth and Andrea Adamoli. 2017. Metacognitive calibration when
learning to program. In Proceedings of the 17th Koli Calling Conference on Com-
puting Education Research. ACM, 50-59.

Jack Hollingsworth. 1960. Automatic graders for programming classes. Commun.
ACM 3, 10 (1960), 528-529.

Maria Hristova, Ananya Misra, Megan Rutter, and Rebecca Mercuri. 2003. Identi-
fying and correcting Java programming errors for introductory computer science

ICER ’18, August 13-15, 2018, Espoo, Finland

students. In ACM SIGCSE Bulletin, Vol. 35. ACM, 153-156.

Petri Thantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppéld. 2010. Review
of recent systems for automatic assessment of programming assignments. In Pro-
ceedings of the 10th Koli Calling International Conference on Computing Education
Research. ACM, 86-93.

Petri Ihantola, Arto Vihavainen, Alireza Ahadi, Matthew Butler, Jirgen Borstler,
Stephen H Edwards, Essi Isohanni, Ari Korhonen, Andrew Petersen, Kelly Rivers,
et al. 2015. Educational data mining and learning analytics in programming:
Literature review and case studies. In Proceedings of the 2015 ITiCSE on Working
Group Reports. ACM, 41-63.

James Jackson, Michael Cobb, and Curtis Carver. 2005. Identifying top Java errors
for novice programmers. In Frontiers in Education, 2005. FIE'05. Proceedings 35th
Annual Conference. IEEE, T4AC-T4C.

Matthew C Jadud. 2006. An exploration of novice compilation behaviour in Bluej.
Ph.D. Dissertation. University of Kent.

Will Jernigan, Amber Horvath, Michael Lee, Margaret Burnett, Taylor Cuilty,
Sandeep Kuttal, Anicia Peters, Irwin Kwan, Faezeh Bahmani, and Andrew Ko.
2015. A principled evaluation for a principled Idea Garden. In Visual Languages
and Human-Centric Computing (VL/HCC), 2015 IEEE Symposium on. IEEE, 235~
243.

Ville Karavirta, Juha Helminen, and Petri Ihantola. 2012. A mobile learning
application for parsons problems with automatic feedback. In Proceedings of the
12th Koli Calling International Conference on Computing Education Research. ACM,
11-18.

Caitlin Kelleher, Randy Pausch, and Sara Kiesler. 2007. Storytelling Alice moti-
vates middle school girls to learn computer programming. In Proceedings of the
SIGCHI conference on Human factors in computing systems. ACM, 1455-1464.
Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2016. Towards a systematic
review of automated feedback generation for programming exercises. In Pro-
ceedings of the 2016 ACM Conference on Innovation and Technology in Computer
Science Education. ACM, 41-46.

Andrew J Ko, Brad A Myers, and Htet Htet Aung. 2004. Six learning barriers
in end-user programming systems. In Visual Languages and Human Centric
Computing, 2004 IEEE Symposium on. IEEE, 199-206.

Angelo Kyrilov and David C Noelle. 2015. Binary instant feedback on pro-
gramming exercises can reduce student engagement and promote cheating. In
Proceedings of the 15th Koli Calling Conference on Computing Education Research.
ACM, 122-126.

Michael] Lee and Andrew J Ko. 2011. Personifying programming tool feedback
improves novice programmers’ learning. In Proceedings of the seventh interna-
tional workshop on Computing education research. ACM, 109-116.

Derrell Lipman. 2014. LearnCS!: a new, browser-based C programming environ-
ment for CS1. Journal of Computing Sciences in Colleges 29, 6 (2014), 144-150.
Dastyni Loksa, Andrew J Ko, Will Jernigan, Alannah Oleson, Christopher J
Mendez, and Margaret M Burnett. 2016. Programming, Problem Solving, and Self-
Awareness: Effects of Explicit Guidance. In Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems. ACM, 1449-1461.

John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. 2010. The scratch programming language and environment. ACM Trans-
actions on Computing Education (TOCE) 10, 4 (2010), 16.

Murali Mani and Quamrul Mazumder. 2013. Incorporating metacognition into
learning. In Proceeding of the 44th ACM technical symposium on Computer science
education. ACM, 53-58.

Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. 2011. Measuring
the effectiveness of error messages designed for novice programmers. In Proceed-
ings of the 42nd ACM technical symposium on Computer science education. ACM,
499-504.

Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. 2011. Mind your
language: on novices’ interactions with error messages. In Proceedings of the 10th
SIGPLAN symposium on New ideas, new paradigms, and reflections on programming
and software. ACM, 3-18.

Janet Metcalfe and Arthur P Shimamura. 1994. Metacognition: Knowing about
knowing. MIT press.

Laurie Murphy, Gary Lewandowski, Renée McCauley, Beth Simon, Lynda
Thomas, and Carol Zander. 2008. Debugging: the good, the bad, and the quirky-a
qualitative analysis of novices’ strategies. In ACM SIGCSE Bulletin, Vol. 40. ACM,
163-167.

Greg L Nelson, Benjamin Xie, and Andrew J Ko. 2017. Comprehension First:
Evaluating a Novel Pedagogy and Tutoring System for Program Tracing in CS1.
In Proceedings of the 2017 ACM Conference on International Computing Education
Research. ACM, 2-11.

Raymond Pettit, John Homer, Roger Gee, Susan Mengel, and Adam Starbuck. 2015.
An empirical study of iterative improvement in programming assignments. In
Proceedings of the 46th ACM Technical Symposium on Computer Science Education.
ACM, 410-415.

Raymond Pettit and James Prather. 2017. Automated Assessment Tools: Too
Many Cooks, Not Enough Collaboration. J. Comput. Sci. Coll. 32, 4 (April 2017),

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD12xx/EWD1213.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD12xx/EWD1213.html

Session 3: Tools and Technologies in Computing Education, 1

113-121. http://dl.acm.org/citation.cfm?id=3055338.3079060

[50] Raymond S Pettit, John Homer, and Roger Gee. 2017. Do Enhanced Compiler Error

Messages Help Students?: Results Inconclusive. In Proceedings of the 2017 ACM

SIGCSE Technical Symposium on Computer Science Education. ACM, 465-470.

George Polya. 1945. How to solve it: A new aspect of mathematical method (2014

reprint ed.). Princeton university press.

[52] James Prather, Raymond Pettit, Kayla Holcomb McMurry, Alani Peters, John
Homer, Nevan Simone, and Maxine Cohen. 2017. On Novices’ Interaction with
Compiler Error Messages: A Human Factors Approach. In Proceedings of the 2017
ACM Conference on International Computing Education Research. ACM, 74-82.

[53] Ido Roll, Natasha G Holmes, James Day, and Doug Bonn. 2012. Evaluating

metacognitive scaffolding in guided invention activities. Instructional science 40,

4(2012), 691-710.

Jeffrey Rubin and Dana Chisnell. 2008. Handbook of usability testing: how to plan,

design and conduct effective tests (2 ed.). John Wiley & Sons.

[55] Tom Schorsch. 1995. CAP: an automated self-assessment tool to check Pascal

programs for syntax, logic and style errors. In ACM SIGCSE Bulletin, Vol. 27.

ACM, 168-172.

Teresa M Shaft. 1995. Helping programmers understand computer programs: the

use of metacognition. ACM SIGMIS Database 26, 4 (1995), 25-46.

[57] Judy Sheard, S Simon, Margaret Hamilton, and Jan Lonnberg. 2009. Analysis of
research into the teaching and learning of programming. In Proceedings of the

[51

[54

[56

50

[58

[59

[60

[61

[62

[63

]

]

]

ICER ’18, August 13-15, 2018, Espoo, Finland

fifth international workshop on Computing education research workshop. ACM,
93-104.

Donna Teague, Malcolm Corney, Alireza Ahadi, and Raymond Lister. 2013. A
qualitative think aloud study of the early neo-piagetian stages of reasoning in
novice programmers. In Proceedings of the Fifteenth Australasian Computing
Education Conference-Volume 136. Australian Computer Society, Inc., 87-95.
Dwayne Towell and Brent Reeves. 2009. From Walls to Steps: Using online
automatic homework checking tools to improve learning in introductory pro-
gramming courses. (2009).

V Javier Traver. 2010. On compiler error messages: what they say and what they
mean. Advances in Human-Computer Interaction 2010 (2010).

Aurora Vizcaino, Juan Contreras, Jesus Favela, and Manuel Prieto. 2000. An
adaptive, collaborative environment to develop good habits in programming. In
Intelligent Tutoring Systems. Springer, 262-271.

Christopher Watson, Frederick WB Li, and Jamie L Godwin. 2012. Bluefix: Using
crowd-sourced feedback to support programming students in error diagnosis and
repair. In International Conference on Web-Based Learning. Springer, 228-239.
Jacqueline Whalley and Nadia Kasto. 2014. A qualitative think-aloud study of
novice programmers’ code writing strategies. In Proceedings of the 2014 conference
on Innovation & technology in computer science education. ACM, 279-284.

http://dl.acm.org/citation.cfm?id=3055338.3079060

	Abstract
	1 Introduction
	2 Related Work
	2.1 Automated Assessment Tools
	2.2 Metacognition in Novice Programmers

	3 Methodology
	4 Results
	4.1 Students that Completed the Quiz
	4.2 Students that Did Not Complete the Quiz

	5 Discussion
	6 Conclusion
	7 Acknowledgments
	References

