
The Education Column
by

Juraj Hromkovič

Department of Computer Science
ETH Zürich

Universitätstrasse 6, 8092 Zürich, Switzerland
juraj.hromkovic@inf.ethz.ch

http://www.inf.ethz.ch
http://www.ethz.ch
 juraj.hromkovic@inf.ethz.ch


The Big Ideas in Computer Science for K-12
Curricula

Tim Bell
University of Canterbury, NZ
tim.bell@canterbury.ac.nz

Paul Tymann
Rochester Institute of Technology, USA

paul.tymann@rit.edu

Amiram Yehudai
Tel Aviv University, Israel
amiramy@tau.ac.il

Abstract

When teaching computer science it can be easy to focus on details and
lose sight of the bigger picture. This is particularly concerning with new pre-
tertiary curricula being adopted in many countries as teachers grapple with
a bewildering array of topics to teach. This paper steps back and introduces
a list of ten big ideas of computer science that have been distilled based
on input from curriculum designers and computer science education experts
around the world. The big ideas are presented in a way that a classroom
teacher will be able to engage with, so that they can use them to relate topics
that they teach to the context of a bigger picture.

1 Introduction
As computer science appears as a subject in K-12 (pre-tertiary) curricula around
the world, often from the first year of schooling (for example, [2, 3, 5, 6, 8]), it
is important to articulate the big ideas of the subject to inform curriculum design,
and more importantly, to enable teachers to understand the subject that they are
being asked to deliver in the classroom. This is particularly important at the K-
8 (elementary/primary) level where teachers are often generalists, and are being
asked to incorporate ideas that are new to them into their classroom.

tim.bell@canterbury.ac.nz
paul.tymann@rit.edu
amiramy@tau.ac.il


Focusing on a big picture view of a subject makes it easier for teachers to
understand what the subject is about. It helps them to see how abstract ideas
like algorithms, binary numbers and coding underpin things that deeply affect the
modern digital world. Without a big picture view, teachers can perceive the ma-
terial as an unwelcome imposition on their limited classroom time, and teachers
who have not studied the subject previously can see the topics as a collection
of esoteric facts and jargon. A big picture view also helps curriculum designers
to make sure that it is not based on low-hanging fruit such as topics for which
resources are already available for teaching them. For example, the plethora of
introductory coding websites might give the impression that programming is the
only topic of relevance in computer science.

Another concern amongst teachers as computer science appears in the curricu-
lum is that things will change so fast that the curriculum will soon be out of date.
A big picture view of a subject, one that focuses on the big ideas of the subject,
paints a picture of a discipline with longevity, rather than something that needs to
change every time a new technology develops. The big ideas for computing edu-
cation should be stable. As Armoni points out “if complex and major changes [to
a curriculum] seem unavoidable, the program probably emphasises technological
or trendy aspects more than necessary, or the topics constituting its core should
have been selected better at the start” [1]. These big ideas are intended to help
curriculum designers to focus on core computer science topics, and to help teach-
ers see the long-term value of the subject. By focusing on big ideas educators can
distinguish relevant knowledge from skills. Skills (such as programming) are best
built up over time, whereas foundational knowledge affects a student’s view of the
topic (such as how it is possible to search billions of items quickly, or that new
systems need to be designed with security in mind from the start).

The big ideas presented in this paper are not meant to be general principles,
discipline areas, or curriculum topics, but rather ideas that capture the essence
of the discipline. They are not intended to cover every idea that comes up in the
study of the topic (although they do have broad coverage, since curriculum content
will lay the foundation for students to encounter these ideas). They should also
have longevity, and not focus on a specific technology. There are already many
overviews of what the subject of Computer Science is, but many are either directed
at university level education (for example, [9]), or are somewhat abstract and hard
to follow for a non-expert, or are more comprehensive than is appropriate for K-12
education.

The “Great principles of computing” by Peter J. Denning and Craig H. Martell [4],
articulates six principles (communication, computation, recollection, coordina-
tion, evaluation and design) that are used as “windows” to view the space of com-
puter science, and are presented as “cosmic” principles; that is, they should be
ideas that will be true at all times in all parts of the universe. The approach used



by Denning and Martel provides a valuable new window on the subject, and is
complementary to the approach presented here. In fact, Denning and Martell’s
principles are considered in several domains in the chapters of their book [4], and
these expanded topics have elements of overlap with the big ideas presented in
this paper.

Our goal here is to follow a format familiar to curriculum designers and teach-
ers outside of computer science. The approach taken here was initiated from a
request of a curriculum designer with no background in computer science, who
asked for the equivalent of a paper called “Big ideas of science education” [7] that
had the goal of identifying:

. . . the key ideas that students should encounter in their science ed-
ucation to enable them to understand, enjoy and marvel at the natural
world.

Such a definition does not necessarily require an exhaustive list of everything
covered by the topic, but is focused more on what a younger student should take
away from their education, regardless of whether they will specialise in the sub-
ject, or use the knowledge to be a more informed citizen. This makes the focus
more on concepts that are fundamental, but not obvious to the general public.
For example, many people would assume that a program (algorithm) that is given
twice as much data to process would take twice as long, whereas in reality it is
sometimes much worse than this, and other times is much better. Computer sci-
ence is full of paradoxes and surprises that provide opportunities for students to
understand, enjoy and marvel at the digital world, and we are particularly inter-
ested in ensuring these are captured so that the ideas are in line with the intention
of the “Big ideas of science education” [7].

Schwill considered how to develop a set of “fundamental ideas” in 1994 [10].
Our process and goal has much in common with Schwill’s guidelines, which sug-
gest considering the vertical and horizontal applicability of ideas (vertical means
that they can be make sense to students at a variety of levels, and horizontal means
that they have broad applicability), wanting the ideas to be relevant in the longer
term, and ensuring that the ideas can be observed in everyday life.

Our work has focused on the subject of computer science. In K-12 curricula
computer science may appear under headings such as Computational Thinking,
Computing or Digital Technologies. While such curricula are likely to include
topics outside of computer science (such as how to use particular types of software
as a tool), our interest is in the parts of the topic that may not be so obvious because
computer science has not previously been a subject in schools, and teachers and
curriculum designers are unlikely to have studied it themselves, particularly those
working at the grade school level. This contrasts with curriculum topics relating



to teaching with computers (e.g. e-learning), or teaching how to use computing
devices, which is sometimes referred to as ICT [6].

We also note that the ideas don’t necessarily reflect the weight that might be
given to a topic. For example, programming is just one of our ten big ideas, but in
many curricula considerable time is spent on this, partly because it is a skill that
can require some time to acquire. Conversely, there will be other topics around
learning to use or configure computers that appear in curricula but not the big
ideas because students need to learn to do these things, even though they aren’t
necessarily a fundamental concept from computer science.

2 The Big Ideas
The ten big ideas presented in this paper start by looking at data and algorithms,
then the idea of programming to enable the two to interact, then how humans are
involved in the digital world, and concludes with wider ideas and challenges that
come up when implementing real systems.

The description of each of the ten big ideas in this paper is limited to a two-
paragraph summary that uses language that is intended to be accessible to an in-
formed lay person. An expanded version is available online.1 The online version
describes in more detail the meaning and implications of each idea, and presents
examples that are intended to make them more accessible to those without a strong
background in the subject.

1. Information is represented in digital form.

A huge variety of information is stored as data on digital devices, and shared
between them; the data may be as simple as the number of steps counted on
a fitness tracker, or as complex as the details of every transaction going
through an international organisation; it includes text, images, video, sound
and scientific readings. The remarkable thing is that all of this information
is reduced to bits (binary digits), which are the fundamental element that
makes digital devices so useful.

Digital representations lead to versatile devices because the same hardware
can be used for quite different purposes: a smartphone can play music, take
photos, send email and show videos, because all these things are represented
as bits, which are easily stored, copied, manipulated and transmitted on the
same hardware. This is in contrast to non-digital (i.e., analogue) devices,
which by nature are specialised (phones connect to a phone line, a TV gets
a signal from a TV antenna, music is played from a vinyl disc, and video

1http://www.cosc.canterbury.ac.nz/research/RG/CSE/big-ideas/

http://www.cosc.canterbury.ac.nz/research/RG/CSE/big-ideas/


is recorded on videotape). Digital data can also be shared without loss of
quality, whereas analogue devices tend to reduce the quality if the material
is copied or re-transmitted.

2. Algorithms interact with data to solve computational problems.

An algorithm is a well-defined process that acts on data to solve some prob-
lem, for example, finding the shortest route on a map, matching two strands
of DNA, or changing the brightness of a photo.

An algorithm can only include steps that a conventional computer could do;
for example, you couldn’t just put in a step that says “find the most effi-
cient solution”. Remarkably, the full power of a conventional digital device
can be realised by an algorithm using just three structures to control pro-
gram flow: sequencing (putting instructions one after the other), selection
(choosing which part of the algorithm to execute based on some values, usu-
ally using an “if” statement), and iteration (repeating part of the algorithm
with a loop). Apart from these three basic types of instruction, a computer is
able to read in information (input), give out information (output) and store
data to use later on. These basic components, or their equivalents, can be
used to define every algorithm, as they define exactly what can, and cannot,
be done on conventional devices.

3. The performance of algorithms can be modelled and evaluated

The main resources that an algorithm uses are time and space (memory).
Time is a key factor because slow programs are annoying to users, and if
a program is going to take decades to complete a calculation, it is better to
determine this before implementing it! Using an unnecessarily inefficient
algorithm might lead to devices wasting power, needing cooling, or running
batteries flat in mobile devices. Some algorithms also need a lot of spare
memory or storage while they are running. This may make the algorithm
infeasible in some cases, while in other cases it might be an excellent trade-
off if the algorithm is faster.

The time taken by an algorithm is usually estimated based on the size of the
input (such as the number of items being searched through, the number of
streets in a map, or the number of pixels in an image). In some cases, when
the input size is doubled, the algorithm takes twice as much time (we call
this a linear time algorithm). But for some algorithms the time grows much
faster than the size of the input, while for others it grows much slower. It
is important to at least estimate the time it will take an algorithm to solve a
problem before implementing it, as it might be very sensitive to the size of



the input; perhaps a program works satisfactorily in tests, but with a larger
input it might take a lot longer.

4. Some computational problems cannot be solved by algorithms.

There are some computational problems that we can prove will never have
programs written to solve them (these problems are not computable). For
example, it can be proved that no one will ever be able to write a general app
that can determine whether or not another app will freeze your smartphone
(this is more formally known as the halting problem).

In addition to non-computable problems, there are many practical problems
for which all known algorithms to find the optimal solution are “intractable,”
which means that no machine currently exists that has the resources required
to execute the algorithm once the size of the input gets fairly large. For these
problems we need to consider algorithms that find an approximate solution
rather than pursue optimal solutions that could potentially take billions of
years to evaluate even on the fastest computer. Some problems have math-
ematical proofs that they are intractable, but there are many problems for
which an algorithm has not been found that runs in a reasonable amount
of time, despite decades of research; yet we also have not proved that the
algorithm cannot exist. Resolving this issue is widely regarded as one of
the biggest questions in computer science!

5. Programs express algorithms and data in a form that can be imple-
mented on a computer.

Programming involves taking algorithms (which might exist only in the pro-
grammer’s head, or may have been designed by a team of people) and turn-
ing them into program instructions that can be executed by a computer.
Program instructions are written in a programming language which is pre-
cisely defined. These instructions manipulate data on the computer, so the
form and meaning of the data is dictated by the program. Programming lan-
guages let the programmer represent complex data as various data structures
that allow for efficient access and manipulation by the program.

Because the capabilities needed to fully control a general-purpose computer
(which covers most digital devices) can be defined by six properties, con-
sisting of three control structures (often expressed as sequence, selection,
iteration), and three ways to deal with data (input, output and storage),
these properties (or their equivalent) are also the key elements of writing
programs. Consequently, any programming language that has all of these
elements can be used to write any computation that any other full program-
ming language could be used for, and the differences between languages



is largely to do with how well they suit a particular situation (e.g. for pro-
cessing files, running on a smartphone, teaching programming, or running
an enterprise system), or how suitable their built-in capabilities are for the
domain.

6. Digital systems are designed by humans to serve human needs.

This is the driver for all the ideas above; digital devices must be fast, reli-
able and match a human need appropriately if people are to use them, and
because they are designed by people, the process for designing them needs
to enable the developers to efficiently turn creative ideas into working prod-
ucts.

This means that there are (at least) three broad areas concerned with hu-
man factors: creating interfaces that are easy to use in the situation they are
intended for, developing software on a large scale (potentially with thou-
sands of people contributing to it), and making sure that the product meets
the needs of the user (the product is reliable, does what is intended, and is
completed in a timely fashion). It is important that both users and develop-
ers of digital systems, understand the impact of technology on humans, the
responsibilities of those who work on it, and possibly even whether or not
the systems should be constructed. All of these concerns require some un-
derstanding of human behaviour (psychology), interaction (sociology), and
capability (physiology).

7. Digital systems create virtual representations of natural and artificial
phenomena.

Computer simulations and virtual systems are used to create virtual versions
of processes in the physical world, and also to create imagined scenarios.
Simulations can be used to reduce cost (e.g. simulating a physical structure
to fine tune it before building it, or simulating different financial scenarios to
choose the most effective strategy) and to reduce risk (e.g. simulating dan-
gerous situations to give aircraft pilots experience, or simulating the spread
of a disease to determine how best to prepare for an epidemic). Virtual
worlds can be created by generating images and sounds artificially, to make
the user feel that they are in a world imagined by the designer (including
computer games, virtual reality and augmented reality). Virtual machines
provide a simulation of a computer, and this approach is widely used be-
cause it protects the physical hardware and the software from each other,
which can provide a safer and more flexible environment. Artificial Intelli-
gence uses computational techniques to make the kind of decisions that are
normally attributed to human intelligence.



These virtual representations take advantage of the unique properties of dig-
ital devices that enable computing systems to work on vast amounts of data,
and if something goes wrong, they can be re-started in full working order by
simply restoring some data, which is considerably simpler than reinstating
physical objects that have been damaged or placing humans in a dangerous
situation.

8. Protecting data and system resources is critical in digital systems.

Modern computing systems provide access to data and resources that if used
inappropriately could breach privacy, provide unauthorised access to finan-
cial data or other resources, or even bring about physical harm. Security
professionals often say that the weakest link in the security of a computer
system is the user, and so it is essential that all computer users understand
basic computer security principles. These principles include confidentiality
(not allowing unauthorised access to information), availability (legitimate
users can access their information), and integrity (the information is accu-
rate).

Everyone in computing needs to be aware of and understand the tools and
techniques that they can use to make their computing environment more
secure. These tools include encryption methods, detecting and blocking
attacks, authenticating who is accessing a system, and allowing users to
recover from damage, whether malicious or accidental.

9. Time dependent operations in digital systems must be coordinated.

Digital systems have many components that can run independently; these
components can be working in parallel, and on independent schedules. Par-
allelism occurs at many levels in digital systems, from instruction execution
on a CPU, to multi-core systems in a laptop, to data being transmitted over
a network through multiple routes, to large big data systems that process
vast quantities of data in small chunks and combine the results.

When a computational task is being spread over several independent parts
of the system, considerable care is needed to make the most of the ability to
spread the work over multiple devices. Problems need to be broken up into
as many parts as possible that can be processed independently and recom-
bined, and the dependency between these operations can restrict how easily
a problem can be broken into parts.

10. Digital systems communicate with each other using protocols.

Very few digital devices are an island — most are connected by wired or
wireless networks. The goal is to get data through the networks as quickly



as possible while being resource efficient. Networks are prone to errors from
faulty components or transmission interference, and are also vulnerable to
attack from people wanting to eavesdrop on the data or prevent it getting
through.

Techniques are available to minimise these issues, to the extent that people
use wireless data and the Internet for sending important and private informa-
tion without being overly concerned about reliability and security. Protocols
that ensure that the data has arrived safely and efficiently are essential for
almost any situation: personal communications, commercial transactions,
or military control all need to be sure that the data gets through reliably.

3 Conclusion
The big ideas presented above serve to introduce those who are involved with the
design, development, implementation and delivery of computer science curricula
with the wide range of individual topics in the subject. Understanding what the
major landmarks are in the computing landscape will help individuals to see the
bigger picture.

Clearly, a list such as the one presented in this paper is subjective, but to
maintain objectivity the list was developed by discussing it in detail with a number
of computer science education colleagues, at both the higher education and K-12
school level. Early versions were created by showing colleagues the equivalent list
for science, and asking what they thought should be on a list for computer science.
This input was reviewed for commonality, and synthesised into a single list. In
order to ensure that the has been articulated in a way that is meaningful to teachers
the list has been shared with teachers who were relatively new to the subject. The
big ideas presented in this paper are the result of several such reviews.

We believe that we have converged on a list that incorporates practically all
of the ideas that our colleagues regard as the key ideas in the discipline, and that
they have been articulated in a meaningful way. We also believe that the list
can continue to be improved by continuing to solicit and incorporate feedback
from our colleagues. The list above is only an introductory articulation of the big
ideas. An online version expands each idea into examples that are intended to be
meaningful to teachers and non-specialists2. Having the online lists also allows
more detail to be added if necessary to include important ideas that may not have
been captured in our process, and to keep the list relevant to new developments in
the field.

To this end, we welcome feedback from readers of this article. The list to date

2http://www.cosc.canterbury.ac.nz/research/RG/CSE/big-ideas/

http://www.cosc.canterbury.ac.nz/research/RG/CSE/big-ideas/


has been built up by consulting many members of the CS community around the
world, but we are particularly interested to hear if there are big ideas from Com-
puter Science relevant to K-12 curricula that we may have overlooked through the
process, if there are better ways to express the ideas that highlight their funda-
mental nature, or if there are compelling examples that will help non-specialists
to “understand, enjoy and marvel” at the ideas behind our digital world. Readers
are invited to contact the authors with suggestions.

Acknowledgements
We are greatly indebted to a number of colleagues who spent some time comment-
ing on the ideas, including attendees at the 2016 CSMC workshop and the 2016
combined ISSEP/WIPSCE conference. We would particularly like to acknowl-
edge input from Ira Diethelm, Mike Fellows, Jens Gallenbacher, Juraj Hromkovič,
Tobias Kohn, Wiebke Kothe, and Regula Lacher.

References
[1] Michal Armoni. Computing K-12 curricular updates. ACM Inroads, 4(4):20–21,

2013.

[2] Tim Bell, Peter Andreae, and Anthony Robins. A case study of the Introduction
of Computer Science in NZ schools. ACM Transactions on Computing Education
(TOCE), 14(10):10:1–10:31, 2014.

[3] Neil C C Brown, Sue Sentance, Tom Crick, and Simon Humphreys. Restart: The
Resurgence of Computer Science in UK Schools. Trans. Comput. Educ., 14(2):9:1–
9:22, jun 2014.

[4] Peter J. Denning and Craig H. Martell. Great Principles of Computing. MIT Press,
2015.

[5] Katrina Falkner, Rebecca Vivian, and Nickolas Falkner. The Australian Digital
Technologies Curriculum: Challenge and Opportunity. Proc. Sixteenth Australasian
Computing Education Conference (ACE2014), pages 3–12, 2014.

[6] Steve Furber, editor. Shut down or restart? The way forward for computing in UK
schools. The Royal Society, London, 2012.

[7] Wynne Harlen, Derek Bell, Rosa Devés, Hubert Dyasi, Guillermo Fernández,
De Garza, and Pierre Léna. Big Ideas of Science Education. Science Education
Programme (SEP) of IAP, 2015.

[8] Richard Kick and Frances P Trees. AP CS Principles: Engaging, Challenging, and
Rewarding. ACM Inroads, 6(1):42–45, feb 2015.



[9] Mehran Sahami, Steve Roach, Ernesto Cuadros-Vargas, and Richard LeBlanc.
ACM/IEEE-CS computer science curriculum 2013: reviewing the Ironman report.
In Proceeding of the 44th ACM technical symposium on Computer science educa-
tion, SIGCSE ’13, pages 13–14, New York, NY, USA, 2013. ACM.

[10] Andreas Schwill. Fundamental ideas of computer science. Bulletin – European
Association for Theoretical Computer Science, 53:274, 1994.


	EduColumn1
	452-1756-1-PB
	BEATCS_119___Education_Column__NEW_
	Why Everyone Should Learn to Program
	Computer Language as a Medium
	Reason 1: Programming to Earn
	Reason 2: Programming to Think
	Reason 3: Programming to Learn
	Mendelsohn et al.'s Interpretation
	Miller's Interpretation
	Resnick's Interpretation
	Wenger's Interpretation
	Guzdial's Interpretation

	Programming to Learn What?
	Do Not Neglect Learning to Program
	Conclusions

	Demystifying-coding
	Introduction
	Teaching Programming
	Conclusion


	EducationalColumn
	What is Computer Science?
	Goals of Teaching Computer Science
	To contribute to fundamental competences in language and mathematics
	To understand the technological world and to be able to control it and contribute to its development
	To introduce the way of thinking in engineering to schools



	BigIdeas
	Introduction
	The Big Ideas
	Conclusion




