
The Big Ideas of K-12 Computer
Science Education
Prepared by:
Tim Bell, University of Canterbury, NZ
Paul Tymann, Rochester Institute of Technology, New York, USA
Amiram Yehudai, Tel Aviv University, Israel

When teaching computer science it can be easy to focus on details and lose sight of the bigger
picture; this is particularly concerning with new pre-tertiary curricula being adopted in many
countries, as teachers grapple with a bewildering array of topics to teach. Why do students
need to know how to "code?" Why do we teach them how to work with binary numbers? What's
the purpose of learning selection sort and quicksort? This document presents a list of 10 "big
ideas" of computer science that have been distilled based on input from curriculum designers
and computer science education experts around the world.

Although the 10 ideas have been numbered to help us talk about them this does not indicate an
order.

1. Information is represented in digital form.

A huge variety of information is stored as data on digital
devices, and shared between them; the data may be as
simple as the number of steps counted on a fitness tracker,
or as complex as the details of every transaction going
through an international organisation; it includes text,
images, video, sound and scientific readings. The
remarkable thing is that all of this information is reduced to
digits (that's the fundamental thing that makes digital devices

so useful).

Digital representations lead to versatile devices because the same hardware can be used for
quite different purposes: a smartphone can play music, take photos, send email and show
videos, because all these things are represented as digits, which are easily stored, copied,
manipulated and transmitted on the same hardware. This is in contrast to non-digital (i.e.
analogue) devices, which by nature are specialised (phones connect to a phone line, a TV gets
a signal from a TV aerial, music is played from a vinyl disc, and video is recorded on videotape).
Digital data can also be shared without loss of quality, whereas analogue devices tend to
reduce the quality if the material is copied or re-transmitted.

Digging deeper:

● The digits are usually represented in binary, although the key is that they are discrete
(not continuous) values. Traditionally these binary digits are written as 0 and 1, but in
practice they use electric, magnetic, audio and optical representations. The choice of just
two different digits is essentially an engineering tradeoff of cost and complexity (it's
easier to distinguish between two different values than, say, 10 different levels), but it
relates to the idea that the simplest possible number system is binary (Claude Shannon
pointed this out, and suggested that "bit" might also stand for Basic Indissoluble uniT).
The basic circuitry that manipulates the bits is based on Boolean logic, and the simplicity
of having only two values makes reliable electronic circuitry relatively inexpensive to
construct.

● Despite a bit being so simple, you need relatively few digits (bits) to represent very large
numbers e.g. you can write a number larger than the number of atoms in the universe in
using a few hundred bits.

● Although the digits are represented physically, the scale is very different to what we are
used to in the physical world; a Blu-Ray disk holds about 200 billion binary digits in a few
square centimeters, and a Fibre-optic cable can transmit a similar number of bits in
seconds, at the speed of light. This means that it is feasible to store and share useful
amounts of all kinds of data on mobile or desktop devices, and for mass storage there
are also very large general purpose systems (servers and cloud storage) that store data
for multiple users and purposes.

● Traditionally data is converted to a series of binary digits (bits) and represented using
electrical, magnetic, audio, or optical representations. Different approaches to
representing data as bits can improve how efficiently and effectively it can be stored,
transmitted, accessed, and manipulated. For example, compression methods are used
to reduce the size of a file, and encryption can be used to prevent others from
discovering the contents of the file, whether they are intruding onto your computer, or
eavesdropping on data that you are sending through a wired or wireless network.
Nevertheless, compressed and encrypted data is still stored as digits.

● Techniques for manipulating information are at the core of the discipline, and hence
processing digital representations is fundamental, whether it is changing the brightness
of a photo or adding up the bill on a cash register.

● Within a programming language the representations of stored information is articulated
as data types (e.g. integers, characters, strings of characters, and composite types that
lead to more complex structures). They are all bits, but the programmer can decide that
the purpose of the bits are in each situation. This also applies to files; in a text file the
bits are interpreted as textual characters, while in a spreadsheet file most of the bits may
be interpreted as numbers, and in an image they might be interpreted as representing
colours.

● Programs themselves are stored as data; the same hardware that stores music or video
is also used to store the app (software) that can display those files.

● Values in the physical world are analogue, which means that there are no discrete steps
in values (e.g. for any distance or time, there is always a distance or time that is a little
smaller, setting aside questions around quantum mechanics!). In contrast, digital devices
represent the physical world as discrete values (such as treating a photo as a few million
discrete pixels, or a sound as sound pressures selected from a limited range of values).
The digitisation of analogue measurements is an example of abstracting away detail for
the sake of simplifying the representation. The more detail that is removed, the simpler it
is to store and process, but eventually the abstract becomes an oversimplification. The
goal is to remove detail that is irrelevant to the computation or beyond human
perception, to avoid using too many bits to store detail that won't be needed. The digital
representation will nevertheless not be an exact version of the original.

● Computers move digits (bits) around through various hierarchies of memory, from very
fast cache memory to off-site data warehouses.

● Digital representations must be invented for each type of data we represent. Creating
new representations (such as new alphabets or languages) gives us the opportunity to
think about how new writing methods are developed, and how they can be designed for
different situations, giving some insight into the way that languages and alphabets have
developed over the history of human-kind.

● Storing data requires physical matter (such as transistors), and transmitting it requires
energy (such as light over a fibre optic cable). This can be done very efficiently in
modern systems, but limitations in data storage capacity and transmission speeds exist
because of the physical process involved.

● Computers exist that use a model other than simple digital representation (e.g. analogue
computers and quantum computers), but currently digital devices (primarily using
binary-based representations) dominate the devices that we use because this is
currently the best engineering tradeoff for the various desired attributes such as
economy, power consumption, size, reliability and versatility.

2. Algorithms interact with data to solve computational problems.

An algorithm is a well defined process that acts on data
to solve some problem i.e. to achieve a result, such as
finding the shortest route on a map, matching two
strands of DNA, or changing the brightness of a photo.

An algorithm can only include steps that a conventional
computer could do; for example, you couldn't just put in
a step that says "find the most efficient solution".
Remarkably, the full power of a conventional digital
device can be realised by an algorithm using just three
structures to control program flow: sequencing (putting
instructions one after the other), selection (choosing
which part of the algorithm to execute based on some

values, usually using an "if" statement), and iteration (repeating part of the algorithm with a
loop). Apart from these three basic types of instruction, a computer is able to read in information
(input), give out information (output) and store data to use later on. These basic components
can be used to define every algorithm, as they define exactly what can (and can't) be done on
conventional devices.

Digging deeper:

● Algorithms can be expressed as a static (finite) representation that describes a dynamic
(potentially infinite) process.

● The "conventional" computer referred to here is the kind of processor found in typical
digital devices, including personal computers, smartphones, supercomputers, cloud
services, internet devices, and digital watches. Examples of unconventional computers
would be quantum computers and analogue computers.

● The kind of algorithm that can be used in a given situation depends on the way that data
is stored and organised (the organisation is referred to as data structures). For example,
finding the smallest file in a list sorted in ascending order of size has a simple algorithm
(just pick the first file!), while finding the smallest file in a huge disorganised list requires
a different algorithm. There is a close relationship between algorithms and data;
designing computer systems often involves tackling the tradeoff between efficient data
storage and efficient algorithms to process the data, so it is therefore very important to
be aware of the advantages and disadvantages of different ways of storing data.

● The term "computational problem", "algorithmic problem", or simply "problem" in this
context is often used to refer to the task that needs to be computed e.g. searching for a
word, sorting values into order, finding the shortest route on a map, or finding a face in a
photo. These kinds of problems are different from, say, a maths problem, where students
might be expected to find a single correct solution. A computational problem can have
several correct solutions (algorithms), and an algorithm is a general process for solving
that type of problem. For example, if the problem is how to search for any given word in
any given document, there are several possible algorithms (e.g. a sequential search
comparing every word; or sorting the words into alphabetical order and then searching
the alphabetical list); these computational solutions contrast with a specific outcome,
such as "where is the word 'score' in the Gettysburg address?", which has the simple
answer that it is the second word.

● Algorithms should solve for all possible inputs that might be given in the future (such as
finding the high score in any list of scores); this contrasts with other human problem
solving that solves for just one instance at a time e.g. design a bridge for a particular
river crossing.

● The model for a conventional device (using sequence, selection, iteration, input, output
and storage) goes back to the first electronic computers, and is based on work done by
Alan Turing and Alonzo Church; conventional devices and programming languages that
meet these criteria are often (loosely) referred to as "Turing-complete". Because all
conventional digital devices that we work with meet these criteria, it means that
designing algorithms using this model has very broad applicability. The concept is

explored further by Guzdial here
https://computinged.wordpress.com/2012/05/24/defining-what-does-it-mean-to-understa
nd-computing/. Turing's model can also be expressed using an equivalent approach
called recursion, which can make an algorithm easier to reason about how it works.

● Algorithm correctness is important - we need to be sure that it achieves exactly what we
expect it to achieve. This includes heuristics (near enough solutions that may not be
perfect, but can be computed faster than the optimal solution); heuristics can be
considered to be the correct solution if the desire is for a solution that is fast enough and
near enough to the best possible solution.

● The interaction of algorithms with data is crucial; we can choose between various ways
to arrange data in computer storage (through "data structures"), which affect how quickly
it can be accessed. Whenever the form of data is changed, there is typically a tradeoff
between time and space e.g. a search data structure such as a "hash table" is faster
than an unstructured list, but wastes space. Data structures can give faster access to
data for purposes like searching for information, finding patterns, and calculating paths
through maps. There are many kinds of data structures used on computers, ranging from
variations on lists, to trees and "graphs", which can represent general networks such as
road maps. The relationship between data structures and algorithms is seen, for
example, between searching and lists; a sorted list can be searched more efficiently than
an unsorted list because it makes a better algorithm possible, but it requires more
computation in advance to ensure the list is in sorted order.

● The data can also have the fundamental bit-level structure of how it is stored changed to
make it take less space (compression), to make it meaningless to eavesdroppers
(encryption) or to make it useful even if a few of the bits get messed up (error control).
This also presents tradeoffs; for example, a JPEG file is smaller than a raw image file,
but requires processing to make it smaller, and there will be a tradeoff in quality. The
technical word for changing the bit-level representation of data is "coding", although the
meaning in this context is quite different to the meaning of "coding" in the context of
programming. Coding changes the form of representation for encryption, compression
or error control to better suit how we wish to use it.

○ Encryption can allow us to transmit data while someone observes all
transmissions (including setting up the encryption keys), yet the eavesdropper is
still unable to decode anything from the data. This enables a secure connection
to be set up with a bank or online shop.

○ Compression has the potential to reduce the size of files so they use less storage
and are transmitted faster; some methods however can expand the files rather
than compress them, and it is impossible to achieve infinite compression.
Compression is particularly important for large media files such as photos (e.g.
JPEG, GIF, PNG), video (e.g. MPEG) and audio (e.g. MP3).

○ Error control enables us to detect when data has been corrupted, to any level of
confidence required. All data stored long-term on disks and flash memory, and all
data sent over wireless, wired and fibre networks has error control added to it to
make sure that the user doesn't accidentally end up working with incorrect data.

● Many algorithms rely on decomposition using "divide and conquer" techniques, where
the problem being solved is being reduced in size until it is small enough to deal with
easily (e.g. sorting one item into alphabetical order is trivial!) A key idea here is recursion
- expressing a problem as the combination of smaller problems, which themselves can
be broken into smaller problems, and so on until you reach a trivial "base case". The
problem might have millions of items in it to process (such as searching for a word in a
list of a billion words), but the base case typically has only one, or even zero, items in it
(such as searching for a word in a list of just one word).

3. The performance of algorithms can be modelled and evaluated

The main resources that an algorithm uses are time and
space (memory). Time is a key factor because slow programs
are annoying to users, and if a program is going to take
decades to complete a calculation, it's better to work that out
before you go to the trouble of implementing it! Using an
unnecessarily inefficient algorithm will also lead to devices
wasting power or needing cooling, which have an
environmental impact; or it could make the battery on a
device go flat too quickly. Some algorithms also need a lot of
spare memory or storage while they are running. This may

make the algorithm infeasible in some cases, while in other cases it might be an excellent
tradeoff if the algorithm is faster.

The time taken to solve a problem with an algorithm (and therefore programs that run the
algorithm) isn't necessarily proportional to the size of the input; sometimes it's better than that,
and sometimes it's a (lot) worse. The time taken by an algorithm is usually estimated based on
the size of the input (such as the number of items being searched through, the number of
streets in a map, or the number of pixels in an image). It's important to at least estimate the
speed of an algorithm before implementing it, as it might be very sensitive to the size of the
input; perhaps a program works satisfactorily in tests, but with a larger input it might take a lot
longer.

Digging deeper:

● There can be many different algorithms for solving the same problem, but some are
more efficient than others (for example, you could look for a book in a library by starting
at the first shelf and checking every book, but it's better to take advantage of the order
that the books have been shelved).

● The time taken by an algorithm on particular input is often measured as a function of the
amount of input to the algorithm. Sometimes the time taken by an algorithm is
proportional to the amount of data (given twice as much data, such an algorithm would
take roughly twice as long to process it), but very often the time taken is not proportional.
Many algorithms take more time than would be predicted from an assumption of taking

proportional time (for example, sorting algorithms generally take more than twice as long
to sort twice as much data); there are also some algorithms (such as binary search and
hashing) that hardly take any extra time even to process a problem that is 10 times as
big. Some algorithms become completely infeasible if even a little more data is added to
the problem because they require exponential time in the amount of data they are
processing; for example, there are algorithms where adding one extra item of data can
double the processing time. Such problems that don't have feasible algorithms are
referred to as "intractable" (see the next big idea).

● The rate of growth of the resources needed by algorithm is referred to as its complexity.
Complexity measures are not usually made precisely, since the time taken will depend
on the particular computer and other details, so instead they consider the rate of growth;
for example, the notation O(n) is used to indicate that an algorithm solving a problem of
size n takes and amount of time proportional to n, whereas O(n2) indicates that it will
take time proportional to the square of the amount of input (doubling the amount of input
will take approximately 4 times as long to process).

● Choosing the wrong algorithm for a situation can lead to unnecessary computation,
which uses power (e.g. battery life on a portable device, or expensive energy in a large
data centre); this in turn can have environmental impacts.

● It is possible to quantify a lower bound on the amount of time that a problem may take to
solve even if we don't have an algorithm in mind; as a trivial example, for most problems,
if a program is processing n values, then it at least needs to take the time to read in all n
values. An algorithm gives an upper bound for how long the problem will take to solve
(since it solves the problem, but we might not yet know if a faster algorithm exists). For
some problems we have a large gap between the known upper and lower bounds, while
for others we know what the best possible algorithm is.

● Computer science routinely deals with very large and very small quantities. Online
systems can deal with billions of customers or transactions, cheap cameras capture
millions of pixels in a fraction of a second, personal computers store billions of binary
digits, data usually travels at the speed of light, and a step in a computer instruction
happens in a billionth of a second, yet some algorithms can take billions of years to
complete. It is important to be able to evaluate these situations, as sometimes they work
in our favour (e.g. a code that takes billions of years to crack) and sometimes against us
(e.g. an image enhancement algorithm that takes hours to complete).

4. Some computational problems cannot be solved by algorithms.

There are some computational problems that we can
prove will never have programs written to solve them
(these problems are not computable). For example, we
can prove that no one will ever be able to write a general
app that can vet another app to tell you if it will freeze
your smartphone (more formally known as the halting
problem).

In addition to non-computable problems, there are many practical problems for which all known
algorithms to find optimal solution are “intractable”, which means that no machine exists that
has the resources required to execute the algorithm once the size of the input gets fairly large.
For these problems we need to consider heuristics (that is, find an approximate solution) rather
than pursue optimal solutions that could potentially take billions of years to evaluate on the
fastest computer. Some problems have mathematical proofs that they are intractable, but there
are many problems for which we haven't found an algorithm that runs in a reasonable amount of
time, despite decades of research; yet we also haven't proved that the algorithm can't exist.
Resolving this issue is widely regarded as one of the biggest questions in computer science!

Digging deeper

● A consequence of these ideas is that the idea that "computers can calculate anything
given the right program" is incorrect. The limits of what can be computed may change if
new types of computing become common (e.g. quantum computing), but with the
devices that have been in use since the dawn of electronic computers, there are
definitely things that can't be done.

● Another example of a non-computable problem is the "line of code" problem. If you write
a large program, you might want to know for a particular line of code in the program if it
ever gets executed, but no-one can ever write a program that reads in another program
and tells you if a particular line will be executed. Of course, it can be done in some
special cases, but no general program can be written to achieve this. Another program
that can't be written is one that is given two other programs, and decides if they always
produce exactly the same output if they are given the same input.

● Problems for which we have only algorithms that take an exponential amount of time (or
space) as the size of the input increases are generally regarded as intractable as the
time needed can blow out to billions of years very quickly. Such algorithms amount to
trying out every possible answer to find the best. (Exponential time typically means that
to process n items of input, the time taken will be proportional to 2n or worse, which
doubles each time just one item gets added. This grows extremely large very quickly -
for example, adding 10 more items will multiply the time by more than 1000.) There are
examples where this is frustrating (e.g. finding the perfect route for a courier to drop off
parcels is intractable; we can find routes that are probably perfect or nearly perfect, but it
would take too long to be sure we have the best possible route, and therefore we may
be wasting fuel and time); on the other hand, this negative situation applies to
cryptography, where cracking the codes that are in widespread use is intractable, and
the lack of algorithms to do this makes secure communication and commerce possible
online.

● For some problems we know the optimal (fastest) algorithm for solving them because we
can prove it can't be done in fewer steps, but for others we haven't discovered tractable
algorithms yet, and in some cases we don't even know whether or not tractable
algorithms exist. One of the biggest open questions in computer science, called the P vs.
NP problem, is related to intractable problems. There are two interesting variations of

intractable problems: design an algorithm that produces a solution to the problem, or
design an algorithm to check that a given solution is correct. For this huge family of
thousands of important problems (e.g. timetabling, route planning, vehicle loading, and
DNA matching), we have efficient algorithms for checking if a given solution is correct,
but we do not know if an efficient algorithm for finding a solution will ever be discovered.
As an example, consider the bin packing problem, in which objects of different sizes
have to be packed into a finite number of containers, each of a fixed capacity. If we are
given a proposed packing (which items are to be packed into each bin), checking that
this is a valid packing is an easy task that can be done efficiently - you just need to
check that no container is too full. But we do not know of any efficient algorithm that will
always decide if the given objects can be packed in a given number of bins. The
remarkable fact is that if an efficient algorithm is found for any one of these problems,
then all the other problems will also have an efficient algorithm, and similarly if we show
that no efficient algorithm exists for any one of them, than all of them are intractable.

● Despite not being able to find efficient algorithms to find optimal solutions, many
heuristics (algorithms that give near-optimal solutions) have been developed, and some
are known to come very close to the optimal solution, which means that in many
practical situations it is better to focus on improving heuristics, and not worry too much
that the result might be very slightly short of optimal.

5. Programs express algorithms and data in a form that can be implemented on a
computer

Programming involves taking algorithms (which might exist only in
the programmer's head, or may have been designed by a team of
people) and turning them into program instructions that can be
executed by a computer. Program instructions are written in a
programming language which is precisely defined. These
instructions manipulate data on the computer, so the form and
meaning of the data is dictated by the program.

Because the capabilities needed to fully control a general

purpose computer (which covers most digital devices) can be defined by six properties,
consisting of three control structures (often expressed as sequence, selection, iteration), and
three ways to deal with data (input, output and storage), these properties are also the key
elements of writing programs. Consequently, any programming language that has all of these
elements can be used to write any computation that any other full programming language could
be used for, and the differences between languages is largely to do with how well they suit a
particular situation (e.g. for processing files, running on a smartphone, teaching programming,
or running an enterprise system).

Digging deeper:

● The six properties are the same as the structures used to define algorithms:

○ Sequence: specifying instructions to happen one after the other
○ Selection: choosing between two different sets of instructions (commonly an "if"

statement)
○ Iteration: repeating a set of instructions (loops)
○ Input: reading in data from outside the program, which could be from a keyboard,

pointing device, a file, a network, or even another program
○ Output: getting data out of the program, which could be to a screen, through a

network, into a file, or to another program
○ Storage: also known as memory; being able to store data for use later in the

program (typically in variables) or long-term storage such as files on a disk.
● This means that if a student has learned enough programming to include the six

properties needed, then in principle they have the tools to program anything that can be
computed. A consequence is that even "simple" languages like Scratch are actually just
as capable as the most advanced languages if the programmer has learned the right
parts of the language; they just might take more work to achieve the same thing, and
have less suitable input and output formats.

● The six properties derive from the idea of a universal computing machine articulated by
Alan Turing, and computers and languages with this capability are often (slightly loosely)
referred to as a Turing-complete system. The modern digital devices that we work with
(from small portable devices, to large "cloud" computing systems) and commonly used
language both meet these requirements, and are no more powerful than Turing's
universal machine, so they are fundamental in defining what computers can and can't
do.

● There are always different ways to implement a program and store the data it works with;
this means that programming is an act of creativity, and there is no single way of
implementing a program for a particular situation.

● Getting programs to work correctly isn't just a matter of "coding" them; developing
programs involves designing the structures, testing them and debugging the software,
and these are all important skills for a programmer to have.

● A programming language (such as Python, Scratch, Java, JavaScript or Basic) is
designed for a particular purpose, and has a formal description of what can and can't
appear in a program (syntax), as well as what each command does (semantics).
Defining these rules is the domain of formal languages, which provides tools for
concisely specifying how a given programming language works.

● Although all current devices and languages are (essentially) Turing-complete, there are
more powerful models of computation, such as non-deterministic systems and quantum
computing, but building them is challenging, and commonly used devices remain Turing
complete (so far!).

● There are also less powerful models of computation (such as Regular Languages and
grammars) that are easier to use and do the job for some purposes; these are
sometimes used as a part of a program for doing some simple tasks such as checking
the format of input values, and also checking for some of the syntax errors in computer
programs!

● Computer programs are stored on computers in the same way as data is, represented
using these zeros and ones, including the "source" code that humans write, and the
machine code that actually runs on a digital device. This means that programs are also
stored as data, and that computer programs are used to manipulate other computer
programs in the same way that they manipulate data; the most common form of this is
compilers and interpreters that allow us to write programs in high level language and
have them run on a computer that uses a low level language. It also means that a digital
device is very flexible; the program is just data that can be updated or replaced easily, so
the same device can be used as a video player, a burglar alarm, a medical monitor, and
a game system.

6. Digital systems are designed by humans to serve human needs.

This is the driver for all the ideas above; digital
devices must be fast, reliable and match a need
appropriately if people are to use them, and
because they are designed by people, the
process for designing them needs to enable the
developers to efficiently turn creative ideas into
working products.

This means that there are (at least) three broad
areas concerned with human factors:

● human computer interaction, which is about creating interfaces that are easy to
use in the situation they are intended for,

● software engineering, which is concerned with enabling organisations to develop
software on a large scale (potentially with thousands of people contributing to it),
and at the same time making sure that the product meets the needs of the user,
is reliable, does what is intended, and is completed in a timely fashion, and

● ethics, which considers the impact of a new technology on humans, the
responsibilities of those who work on it, and possibly even whether or not we
should construct it.

All of these concerns require some understanding of human behavior (psychology),
interaction (sociology), and capability (physiology).

Digging deeper:

○ Frustrating and inaccessable user interfaces are far too common, and "easy to
use" systems that delight users sell for a premium. Designing good interfaces
builds on all the big ideas in this document to make software work quickly and
reliably, and also builds on the human sciences to make sure the final product
matches the way people work.

○ Although it might seem that programs are written for machines, the text of
programs themselves is written by humans, for humans - most programs will be
read by someone else later, and they need to be written in a way that they can be
understood quickly and unambiguously (e.g. with meaningful variable names and
comments). Knuth's "Literate programming" is based on this idea: "Instead of
imagining that our main task is to instruct a computer what to do, let us
concentrate rather on explaining to human beings what we want a computer to
do." (Knuth, 1984); and Abelson & Sussman (1996) wrote: "Programs must be
written for people to read, and only incidentally for machines to execute."

○ This also means that we highly value processes that enable people to collaborate
efficiently and effectively in teams to produce software that works well for the end
users; this is the realm of software engineering, and involves many techniques
around working on large projects in teams to produce quality software.

○ The processes used to build digital systems need to assure us that the product
will work appropriately. This involves human processes itself; ensuring that a
program is reliable requires designing thorough tests for it, and tracking down
any bugs can require a lot of skill. Even then, a test might show the presence of
bugs, but if software passes all tests, that doesn't necessarily mean that it is
bug-free (this was articulated by E.W. Dijkstra).

○ Decomposition is a general tool in computer science that breaks a large task or
object into smaller components that can be dealt with without the distraction of
the whole being visible while working on a small part. Building large software
systems (software engineering) relies heavily on decomposing the task, as a
large system needs to be built by multiple people working on parts of a system.
This is sometimes seen as a "stack" of sub-systems; for example, communication
systems have layers from the physical specifications through to protocols the
programs can interface directly to regardless of the network being used (such as
file transfer and email); web programmers use a stack of systems that simplify
programming different elements of the website; and operating systems provide
functionality through "drivers" that interface with specific hardware in a way that
saves each software developer being concerned with the details of the particular
computer being used.

○ In a digital society our privacy and right to participate is often mediated by digital
devices; furthermore, there may be some things that are possible to build that
shouldn't be built, and informed discussion is needed, in the same way that
discussion can be had around nuclear power, genetic modification or climate
change if the public have a general understanding of the science. Ethical
considerations mean that we should question algorithms that affect our lives (e.g.
voting, privacy, job loss), the ownership of intellectual property, and the impact of
digital systems on the environment (both positive and negative).

○ The human aspect of computing is also reflected in how it appears in so many
disciplines - computational biology and computational linguistics are just two

examples of how ideas central to computing are enabling new approaches in
other disciplines.

7. Digital systems create virtual representations of natural and artificial phenomena.

Computer simulations and virtual systems are used to
create virtual versions of processes in the physical world,
and also to create imagined scenarios. Simulations can be
used to reduce cost (e.g. simulating a structure to fine tune
it before building it, or simulating different financial scenarios
to choose the most effective strategy) and to reduce risk
(e.g. simulating dangerous situations to give aircraft pilots
experience, or simulating the spread of a disease to
determine how best to prepare for an epidemic). Virtual
worlds can be created by generating images and sounds
artificially, to make the user feel that they are in a world
imagined by the designer (including computer games, virtual

reality and augmented reality). Virtual machines provide a simulation of a computer, and this
approach is widely used because it protects the physical hardware and the software from each
other, which can provide a safer and more flexible environment. Artificial Intelligence models
human intelligence, in an attempt to replicate human decision making and reasoning.

These virtual representations take advantage of the unique properties of digital devices that
enable a system to work on vast amounts of data, and if something goes wrong, they can be
re-started in full working order by simply restoring some data, which is considerably simpler than
reinstating physical objects that have been damaged or placing humans in a dangerous
situation.

Digging deeper:

● The virtual representation of a real-world phenomenon is often referred to as a model
since it is an approximate, but useful, version of the original scenario; this could be a
model of the forces on a physical structure, a model of a financial scenario, or a model of
the objects in a 3-dimensional image being viewed on a screen or a virtual headset.

● Simplified models can be used because some details will make (almost) no difference to
the solution to a problem; abstracting out those details can save time and space, and
avoid having to capture detail for no material purpose.

● Simulation can be used in science where empirical or theoretical approaches won't work.
Simulation has become a "third paradigm" of science, joining experiment and theory as
an approach to discovering new knowledge.

● Games and virtual worlds create a new environment that may never exist in the physical
world (such as a fantasy game or animated movie), or they may seek to model

something in the real world as accurately as possible (such as a flight simulator or the
spread of disease).

● Computer graphics and visualisation systems enable us to project 3-dimensional models
onto a computer display.

● Computer systems also model the world in real time - for example, databases and
spreadsheets are used to track the amount of money in a bank account or the score of a
student; such models abstract key ideas from the world.

● Artificial intelligence is still a computer program, and so subject to the rules and
limitations of computer programs (for example, they may contain errors); however, they
may be sufficiently effective that they no longer appear to work as a conventional
program.

● Large, detailed models (big data) can be used to search for patterns (data
mining/machine learning) that may not be obvious in the physical world.

● Queuing systems are a common basis of simulation, where the system tracks entities
(such as data on a network, or customers in a store) by considering their activities to be
a series of queues, waiting for various services.

● Although we are modeling the "physical world" with simulations, a computer is still a
physical device, and the data and programs are stored physically. However, they are on
a completely different scale, and are stored in a way that is very flexible - a flight
simulator can run on the same physical devices as a disease simulation or a movie
animation.

● A virtual machine is essentially a computer being simulated on a computer - this is a way
to be able to give someone access to computing resources with an extra level of
flexibility, while isolating them from the original hardware. A simple virtual machine might
be an independent environment running on a local desktop computer, or it could be on a
large scale as in cloud computing, where a remote user can pay to use some amount of
computing resources on a large system.

8. Protecting data and system resources is critical in digital systems.

Modern computing systems provide access to data and resources
that if used inappropriately could breach privacy, provide
unauthorised access to financial data or other resources, or even
bring about physical harm. Security professionals often say that the
weakest link in the security of a computer system is the user, and so
it is essential that all computer users understand basic computer
security principles. These principles include confidentiality (not
allowing unauthorised access to information), availability (legitimate
users can access their information), and integrity (the information is
accurate).

Computer users must be aware of and understand the tools and techniques that they can use to
make their computing environment more secure. These tools include encryption methods,

detecting and blocking attacks, authenticating who is accessing a system, and allowing users to
recover from damage, whether malicious or accidental.

Digging deeper:

● The need for security is because of human issues. We work within codes of ethics, such
as conferring some rights to privacy. Digital representations now control our ownership
of property (particularly digital cash) and so traditional crime (such as theft) has now
entered the digital world, and requires digital solutions. We also need to allow for human
error, such as accidentally deleting or changing information.

● The importance of computer security highlights the value of educating people about it.
For example, understanding the basic idea of Public Key Cryptography can help users to
feel secure when communicating online, and understanding how passwords are stored
can help a user to know why their password should have particularly characteristics.

● Cyber security is now a crucial part of a nation's defence. Nations can be attacked
through the internet, and because so many aspects of our lives are controlled by digital
systems, an attack on areas such as financial systems, power generation or food supply
could have disastrous consequences.

● Another reason for attack is taking over computing resources to do work for the intruder
e.g. loading programs on other people's computers to send spam or spread viruses.

● Balanced against this, we need to give appropriate people access at appropriate level as
conveniently as possible.

● Security applies to communication systems as well as data storage; physical security
(such as building access) is also commonly controlled digitally.

● Security doesn't just involve preventing intrusion; a "denial of service" attack simply
overloads a system to prevent legitimate clients from using it, which could put a
company out of business or prevent a government from doing its job.

● A key part of good security is having suitable backup, both for data and processing
systems, and testing it to ensure that it would work if needed.

● Encryption is a central tool in computer security because it enables data to be changed
so that an eavesdropper cannot easily read it. But this raises a new problem: how can
people in different locations (such as an online store and a customer) set up a secure
connection using secret encryption keys if those keys have to go through the same
secure network that the eavesdropper is watching!? Public key cryptography provides a
solution to this problem, where, remarkably, it is possible set up a communication and
exchange messages in full view of an untrusted third party, without them being able to
decode any of the messages.

● There are many cryptographic protocols that enable us to do things that might not seem
possible, such as digital signatures that verify the source of a document; making cash
payments without knowing who it came from; secure time-stamping where the time of an
event or agreement can be recorded in a way that can't be modified; and electronic
voting, where each person can verify that their vote was counted correctly, yet not be
able to find out how others voted.

● Trying to find holes in security is an important role. A "white hat hacker" is someone who
attempts to find security problems, but instead of exploiting the problem, they arrange to
have it fixed before a "black hat hacker" can use it for negative purposes.

9. Time dependent operations in digital systems must be coordinated.

Digital systems have many components that
can run independently; these components can
be working in parallel, and on independent
schedules. Parallelism occurs at many levels in
digital systems, from instruction execution on a
CPU, to multi-core systems in a laptop, to data
being transmitted over a network through
multiple routes, to large "big data" systems that
process vast quantities of data in small chunks
and combine the results.

When a computational task is being spread over several independent parts of the system,
considerable care is needed to make the most of the ability to spread the work over multiple
devices. Problems need to be broken up into as many parts as possible that can be processed
independently and recombined, and the dependency between these operations can restrict how
easily a problem can be broken into parts.

Digging deeper:

● Computing power is commonly expanded by using multi-processor systems working in
parallel; for example, even common desktop computers use multiple "cores" to spread
the processing load across several processors. High performance computers can have
hundreds or thousands of processors working in parallel, and "cloud" computing can
involve arbitrary numbers of devices being applied to a task. A computer system might
also involve multiple programs running independently, but communicating with each
other (

● All of these situations require very careful coordination of the independent processes so
that information is collated in the correct order when each process finishes. There is also
the challenge of breaking a problem into many parts so that each part can be processed
efficiently and independently, and then combined to provide a suitable solution to the
problem.

● A key challenge is that applying twice as many processors doesn't necessarily solve a
problem twice as fast; often there are parts of a solution that are needed before another
part can be started on.

● Concurrent processes need to be designed carefully to avoid race conditions (where the
order that events happen is critical), deadlocks (where two processes are both waiting
for each other) and resource starvation (where some tasks prevent others from getting
access to resources, such as a denial-of-service attack).

● Time dependent operations distinguish computing from algebra; for example, the
sequence x=2; x=3 is meaningful in a computer program (x ends up with the value 3),
but a contradiction in maths (x can't be 2 and 3 at the same time); and y=x+1; x=3 has
an algebraic solution that is different to what would happen in a typical program because
it depends on the order in which the instructions are executed.

● A related issue is "time slicing", where multiple processes are given turns at a small
share of time on a machine, which makes it appear that each of them is running
independently. This can happen on a single-user machine (e.g. running the clock at the
same time as a word processor program), but also happens on computing systems that
deal with multiple users (e.g. a website serving information to multiple clients). Each user
may see the system as serving them alone, yet the server is designed to carefully switch
between doing tasks for each user to give this appearance.

10. Digital systems communicate with each other using protocols.

Very few digital devices are an "island" - most are
connected by wired or wireless networks,
including local systems such as Bluetooth or USB
connections. The goal is to get data through the
networks as quickly as possible. However,
networks are prone to errors from faulty
components or transmission interference, and are
also vulnerable to attack from people wanting to
eavesdrop on the data or prevent it getting
through.

Techniques are available to minimise these
issues, to the extent that people use wireless data
and the Internet for sending important and private
information without being concerned about

reliability and security. Protocols that ensure that the data has arrived safely and efficiently are
essential for almost any situation: personal communications, commercial transactions, or
military control all need to be sure that the data gets through reliably.

Digging deeper

● Communication protocols typically break data into packets, and use ideas like
acknowledgement, time-outs, cryptographic protocols and compression to make sure
data has got through correctly, efficiently and securely.

● These protocols are often expressed in "layers", from the details of the physical
connectors and electronic specifications, through to details such as breaking data into
packets, numbering them, and acknowledging that they have been received, and at the

highest level, specifying how a computer program can interface with a program on
another computer.

● Protocols are the basis of a large variety of services such as the internet (e.g. the
Internet Protocol, IP), the web (e.g. the Hypertext Transfer Protocol, http), secure data
transfer (e.g. https) and e-mail (e.g the Internet Message Access Protocol, IMAP).
Protocols are needed even to simply download a photo from a camera to a desktop
computer (e.g. Bluetooth or USB).

● Protocols are created by humans, and are subject to negotiation; standards are created
by considering competing options, and selecting a common approach that enables
different devices to work together effectively. Sometimes the selection is done by
committees, industry organisations and joint working groups (such as IPv6), and other
times de facto standards emerge because of their wide adoption (such as HTML).

