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When teaching computer science it can be easy to focus on details and lose sight of the bigger 
picture; this is particularly concerning with new pre-tertiary curricula being adopted in many 
countries, as teachers  grapple with a bewildering array of topics to teach. Why do students 
need to know how to "code?" Why do we teach them how to work with binary numbers? What's 
the purpose of learning selection sort and quicksort? This document presents a list of 10 "big 
ideas" of computer science that have been distilled based on input from curriculum designers 
and computer science education experts around the world.  
 
Although the 10 ideas have been numbered to help us talk about them this does not indicate an 
order.  
 
 
1. Information is represented in digital form. 

 
A huge variety of information is stored as data on digital 
devices, and shared between them; the data may be as 
simple as the number of steps counted on a fitness tracker, 
or as complex as the details of every transaction going 
through an international organisation; it includes text, 
images, video, sound and scientific readings. The 
remarkable thing is that all of this information is reduced to 
digits (that's the fundamental thing that makes digital devices 

so useful).  
 
Digital representations lead to versatile devices because the same hardware can be used for 
quite different purposes: a smartphone can play music, take photos, send email and show 
videos, because all these things are represented as digits, which are easily stored, copied, 
manipulated and transmitted on the same hardware. This is in contrast to non-digital (i.e. 
analogue) devices, which by nature are specialised (phones connect to a phone line, a TV gets 
a signal from a TV aerial, music is played from a vinyl disc, and video is recorded on videotape). 
Digital data can also be shared without loss of quality, whereas analogue devices tend to 
reduce the quality if the material is copied or re-transmitted. 



 
Digging deeper: 

● The digits are usually represented in binary, although the key is that they are discrete 
(not continuous) values. Traditionally these binary digits are written as 0 and 1, but in 
practice they use electric, magnetic, audio and optical representations. The choice of just 
two different digits is essentially an engineering tradeoff of cost and complexity (it's 
easier to distinguish between two different values than, say, 10 different levels), but it 
relates to the idea that the simplest possible number system is binary (Claude Shannon 
pointed this out, and suggested that "bit" might also stand for Basic Indissoluble uniT). 
The basic circuitry that manipulates the bits is based on Boolean logic, and the simplicity 
of having only two values makes reliable electronic circuitry relatively inexpensive to 
construct. 

● Despite a bit being so simple, you need relatively few digits (bits) to represent very large 
numbers e.g. you can write a number larger than the number of atoms in the universe in 
using a few hundred bits.  

● Although the digits are represented physically, the scale is very different to what we are 
used to in the physical world; a Blu-Ray disk holds about 200 billion binary digits in a few 
square centimeters, and a Fibre-optic cable can transmit a similar number of bits in 
seconds, at the speed of light. This means that it is feasible to store and share useful 
amounts of all kinds of data on mobile or desktop devices, and for mass storage there 
are also very large general purpose systems (servers and cloud storage) that store data 
for multiple users and purposes. 

● Traditionally data is converted to a series of binary digits (bits) and represented using 
electrical, magnetic, audio, or optical representations.  Different approaches to 
representing data as bits can improve how efficiently and effectively it can be stored, 
transmitted, accessed, and manipulated. For example, compression methods are used 
to reduce the size of a file, and encryption can be used to prevent others from 
discovering the contents of the file, whether they are intruding onto your computer, or 
eavesdropping on data that you are sending through a wired or wireless network. 
Nevertheless, compressed and encrypted data is still stored as digits. 

● Techniques for manipulating information are at the core of the discipline, and hence 
processing digital representations is fundamental, whether it is changing the brightness 
of a photo or adding up the bill on a cash register. 

● Within a programming language the representations of stored information is articulated 
as data types (e.g. integers, characters, strings of characters, and composite types that 
lead to more complex structures). They are all bits, but the programmer can decide that 
the purpose of the bits are in each situation. This also applies to files; in a text file the 
bits are interpreted as textual characters, while in a spreadsheet file most of the bits may 
be interpreted as numbers, and in an image they might be interpreted as representing 
colours. 

● Programs themselves are stored as data; the same hardware that stores music or video 
is also used to store the app (software) that can display those files. 



● Values in the physical world are analogue, which means that there are no discrete steps 
in values (e.g. for any distance or time, there is always a distance or time that is a little 
smaller, setting aside questions around quantum mechanics!). In contrast, digital devices 
represent the physical world as discrete values (such as treating a photo as a few million 
discrete pixels, or a sound as sound pressures selected from a limited range of values). 
The digitisation of analogue measurements is an example of abstracting away detail for 
the sake of simplifying the representation. The more detail that is removed, the simpler it 
is to store and process, but eventually the abstract becomes an oversimplification. The 
goal is to remove detail that is irrelevant to the computation or beyond human 
perception, to avoid using too many bits to store detail that won't be needed. The digital 
representation will nevertheless not be an exact version of the original. 

● Computers move digits (bits) around through various hierarchies of memory, from very 
fast cache memory to off-site data warehouses. 

● Digital representations must be invented for each type of data we represent. Creating 
new representations (such as new alphabets or languages) gives us the opportunity to 
think about how new writing methods are developed, and how they can be designed for 
different situations, giving some insight into the way that languages and alphabets have 
developed over the history of human-kind. 

● Storing data requires physical matter (such as transistors), and transmitting it requires 
energy (such as light over a fibre optic cable). This can be done very efficiently in 
modern systems, but limitations in data storage capacity and transmission speeds exist 
because of the physical process involved. 

● Computers exist that use a model other than simple digital representation (e.g. analogue 
computers and quantum computers), but currently digital devices (primarily using 
binary-based representations) dominate the devices that we use because this is 
currently the best engineering tradeoff for the various desired attributes such as 
economy, power consumption, size, reliability and versatility. 

 
2. Algorithms interact with data to solve computational problems. 
 

An algorithm is a well defined process that acts on data 
to solve some problem i.e. to achieve a result, such as 
finding the shortest route on a map, matching two 
strands of DNA, or changing the brightness of a photo.  
 
An algorithm can only include steps that a conventional 
computer could do; for example, you couldn't just put in 
a step that says "find the most efficient solution". 
Remarkably, the full power of a conventional digital 
device can be realised by an algorithm using just three 
structures to control program flow: sequencing (putting 
instructions one after the other), selection (choosing 
which part of the algorithm to execute based on some 



values, usually using an "if" statement), and iteration (repeating part of the algorithm with a 
loop). Apart from these three basic types of instruction, a computer is able to read in information 
(input), give out information (output) and store data to use later on. These basic components 
can be used to define every algorithm, as they define exactly what can (and can't) be done on 
conventional devices. 
 
Digging deeper: 

● Algorithms can be expressed as a static (finite) representation that describes a dynamic 
(potentially infinite) process. 

● The "conventional" computer referred to here is the kind of processor found in typical 
digital devices, including personal computers, smartphones, supercomputers, cloud 
services, internet devices, and digital watches. Examples of unconventional computers 
would be quantum computers and analogue computers. 

● The kind of algorithm that can be used in a given situation depends on the way that data 
is stored and organised (the organisation is referred to as data structures). For example, 
finding the smallest file in a list sorted in ascending order of size has a simple algorithm 
(just pick the first file!), while finding the smallest file in a huge disorganised list requires 
a different algorithm. There is a close relationship between algorithms and data; 
designing computer systems often involves tackling the tradeoff between efficient data 
storage and efficient algorithms to process the data, so it is therefore very important to 
be aware of the advantages and disadvantages of different ways of storing data. 

● The term "computational problem", "algorithmic problem", or simply "problem" in this 
context is often used to refer to the task that needs to be computed e.g. searching for a 
word, sorting values into order, finding the shortest route on a map, or finding a face in a 
photo. These kinds of problems are different from, say, a maths problem, where students 
might be expected to find a single correct solution. A computational problem can have 
several correct solutions (algorithms), and an algorithm is a general process for solving 
that type of problem. For example, if the problem is how to search for any given word in 
any given document, there are several possible algorithms (e.g. a sequential search 
comparing every word; or sorting the words into alphabetical order and then searching 
the alphabetical list); these computational solutions contrast with a specific outcome, 
such as "where is the word 'score' in the Gettysburg address?", which has the simple 
answer that it is the second word. 

● Algorithms should solve for all possible inputs that might be given in the future (such as 
finding the high score in any list of scores); this contrasts with other human problem 
solving that solves for just one instance at a time e.g. design a bridge for a particular 
river crossing. 

● The model for a conventional device (using sequence, selection, iteration, input, output 
and storage) goes back to the first electronic computers, and is based on work done by 
Alan Turing and Alonzo Church; conventional devices and programming languages that 
meet these criteria are often (loosely) referred to as "Turing-complete". Because all 
conventional digital devices that we work with meet these criteria, it means that 
designing algorithms using this model has very broad applicability. The concept is 



explored further by Guzdial here 
https://computinged.wordpress.com/2012/05/24/defining-what-does-it-mean-to-understa
nd-computing/. Turing's model can also be expressed using an equivalent approach 
called recursion, which can make an algorithm easier to reason about how it works. 

● Algorithm correctness is important - we need to be sure that it achieves exactly what we 
expect it to achieve. This includes heuristics (near enough solutions that may not be 
perfect, but can be computed faster than the optimal solution); heuristics can be 
considered to be the correct solution if the desire is for a solution that is fast enough and 
near enough to the best possible solution. 

● The interaction of algorithms with data is crucial; we can choose between various ways 
to arrange data in computer storage (through "data structures"), which affect how quickly 
it can be accessed. Whenever the form of data is changed, there is typically a tradeoff 
between time and space e.g. a search data structure such as a "hash table" is faster 
than an unstructured list, but wastes space. Data structures can give faster access to 
data for purposes like searching for information, finding patterns, and calculating paths 
through maps. There are many kinds of data structures used on computers, ranging from 
variations on lists, to trees and "graphs", which can represent general networks such as 
road maps. The relationship between data structures and algorithms is seen, for 
example, between searching and lists; a sorted list can be searched more efficiently than 
an unsorted list because it makes a better algorithm possible, but it requires more 
computation in advance to ensure the list is in sorted order. 

● The data can also have the fundamental bit-level structure of how it is stored changed to 
make it take less space (compression), to make it meaningless to eavesdroppers 
(encryption) or to make it useful even if a few of the bits get messed up (error control). 
This also presents tradeoffs; for example, a JPEG file is smaller than a raw image file, 
but requires processing to make it smaller, and there will be a tradeoff in quality. The 
technical word for changing the bit-level representation of data is "coding", although the 
meaning in this context is quite different to the meaning of "coding" in the context of 
programming.  Coding changes the form of representation for encryption, compression 
or error control to better suit how we wish to use it. 

○ Encryption can allow us to transmit data while someone observes all 
transmissions (including setting up the encryption keys), yet the eavesdropper is 
still unable to decode anything from the data. This enables a secure connection 
to be set up with a bank or online shop. 

○ Compression has the potential to reduce the size of files so they use less storage 
and are transmitted faster; some methods however can expand the files rather 
than compress them, and it is impossible to achieve infinite compression. 
Compression is particularly important for large media files such as photos (e.g. 
JPEG, GIF, PNG), video (e.g. MPEG) and audio (e.g. MP3). 

○ Error control enables us to detect when data has been corrupted, to any level of 
confidence required. All data stored long-term on disks and flash memory, and all 
data sent over wireless, wired and fibre networks has error control added to it to 
make sure that the user doesn't accidentally end up working with incorrect data. 



● Many algorithms rely on decomposition using "divide and conquer" techniques, where 
the problem being solved is being reduced in size until it is small enough to deal with 
easily (e.g. sorting one item into alphabetical order is trivial!) A key idea here is recursion 
- expressing a problem as the combination of smaller problems, which themselves can 
be broken into smaller problems, and so on until you reach a trivial "base case". The 
problem might have millions of items in it to process (such as searching for a word in a 
list of a billion words), but the base case typically has only one, or even zero, items in it 
(such as searching for a word in a list of just one word). 

 
3. The performance of algorithms can be modelled and evaluated 

 
The main resources that an algorithm uses are time and 
space (memory). Time is a key factor because slow programs 
are annoying to users, and if a program is going to take 
decades to complete a calculation, it's better to work that out 
before you go to the trouble of implementing it! Using an 
unnecessarily inefficient algorithm will also lead to devices 
wasting power or needing cooling, which have an 
environmental impact; or it could make the battery on a 
device go flat too quickly. Some algorithms also need a lot of 
spare memory or storage while they are running. This may 

make the algorithm infeasible in some cases, while in other cases it might be an excellent 
tradeoff if the algorithm is faster. 
 
The time taken to solve a problem with an algorithm (and therefore programs that run the 
algorithm) isn't necessarily proportional to the size of the input; sometimes it's better than that, 
and sometimes it's a (lot) worse. The time taken by an algorithm is usually estimated based on 
the size of the input (such as the number of items being searched through, the number of 
streets in a map, or the number of pixels in an image). It's important to at least estimate the 
speed of an algorithm before implementing it, as it might be very sensitive to the size of the 
input; perhaps a program works satisfactorily in tests, but with a larger input it might take a lot 
longer. 
 
Digging deeper: 

● There can be many different algorithms for solving the same problem, but some are 
more efficient than others (for example, you could look for a book in a library by starting 
at the first shelf and checking every book, but it's better to take advantage of the order 
that the books have been shelved).  

● The time taken by an algorithm on particular input is often measured as a function of the 
amount of input to the algorithm. Sometimes the time taken by an algorithm is 
proportional to the amount of data (given twice as much data, such an algorithm would 
take roughly twice as long to process it), but very often the time taken is not proportional. 
Many  algorithms take more time than would be predicted from an assumption of taking 



proportional time (for example, sorting algorithms generally take more than twice as long 
to sort twice as much data); there are also some algorithms (such as binary search and 
hashing) that hardly take any extra time even to process a problem that is 10 times as 
big. Some algorithms become completely infeasible if even a little more data is added to 
the problem because they require exponential time in the amount of data they are 
processing; for example, there are algorithms where adding one extra item of data can 
double the processing time. Such problems that don't have feasible algorithms are 
referred to as "intractable" (see the next big idea). 

● The rate of growth of the resources needed by algorithm is referred to as its complexity. 
Complexity measures are not usually made precisely, since the time taken will depend 
on the particular computer and other details, so instead they consider the rate of growth; 
for example, the notation O(n) is used to indicate that an algorithm solving a problem of 
size n takes and amount of time proportional to n, whereas O(n2) indicates that it will 
take time proportional to the square of the amount of input (doubling the amount of input 
will take approximately 4 times as long to process). 

● Choosing the wrong algorithm for a situation can lead to unnecessary computation, 
which uses power (e.g. battery life on a portable device, or expensive energy in a large 
data centre); this in turn can have environmental impacts. 

● It is possible to quantify a lower bound on the amount of time that a problem may take to 
solve even if we don't have an algorithm in mind; as a trivial example, for most problems, 
if a program is processing n values, then it at least needs to take the time to read in all n 
values. An algorithm gives an upper bound for how long the problem will take to solve 
(since it solves the problem, but we might not yet know if a faster algorithm exists). For 
some problems we have a large gap between the known upper and lower bounds, while 
for others we know what the best possible algorithm is. 

● Computer science routinely deals with very large and very small quantities. Online 
systems can deal with billions of customers or transactions, cheap cameras capture 
millions of pixels in a fraction of a second, personal computers store billions of binary 
digits, data usually travels at the speed of light, and a step in a computer instruction 
happens in a billionth of a second, yet some algorithms can take billions of years to 
complete. It is important to be able to evaluate these situations, as sometimes they work 
in our favour (e.g. a code that takes billions of years to crack) and sometimes against us 
(e.g. an image enhancement algorithm that takes hours to complete). 

 
4. Some computational problems cannot be solved by algorithms. 

 
There are some computational problems that we can 
prove will never have programs written to solve them 
(these problems are not computable). For example, we 
can prove that no one will ever be able to write a general 
app that can vet another app to tell you if it will freeze 
your smartphone (more formally known as the halting 
problem). 



 
In addition to non-computable problems, there are many practical problems for which all known 
algorithms to find optimal solution are “intractable”, which means that no machine exists that 
has the resources required to execute the algorithm once the size of the input gets fairly large. 
For these problems we need to consider heuristics (that is, find an approximate solution) rather 
than pursue optimal solutions that could potentially take billions of years to evaluate on the 
fastest computer. Some problems have mathematical proofs that they are intractable, but there 
are many problems for which we haven't found an algorithm that runs in a reasonable amount of 
time, despite decades of research; yet we also haven't proved that the algorithm can't exist. 
Resolving this issue is widely regarded as one of the biggest questions in computer science! 
 
Digging deeper 

● A consequence of these ideas is that the idea that "computers can calculate anything 
given the right program" is incorrect. The limits of what can be computed may change if 
new types of computing become common (e.g. quantum computing), but with the 
devices that have been in use since the dawn of electronic computers, there are 
definitely things that can't be done. 

● Another example of a non-computable problem is the "line of code" problem. If you write 
a large program, you might want to know for a particular line of code in the program if it 
ever gets executed, but no-one can ever write a program that reads in another program 
and tells you if a particular line will be executed. Of course, it can be done in some 
special cases, but no general program can be written to achieve this. Another program 
that can't be written is one that is given two other programs, and decides if they always 
produce exactly the same output if they are given the same input. 

● Problems for which we have only algorithms that take an exponential amount of time (or 
space) as the size of the input increases are generally regarded as intractable as the 
time needed can blow out to billions of years very quickly.  Such algorithms amount to 
trying out every possible answer to find the best. (Exponential time typically means that 
to process n items of input, the time taken will be proportional to 2n or worse, which 
doubles each time just one item gets added. This grows extremely large very quickly - 
for example, adding 10 more items will multiply the time by more than 1000.) There are 
examples where this is frustrating (e.g. finding the perfect route for a courier to drop off 
parcels is intractable; we can find routes that are probably perfect or nearly perfect, but it 
would take too long to be sure we have the best possible route, and therefore we may 
be wasting fuel and time); on the other hand, this negative situation applies to 
cryptography, where cracking the codes that are in widespread use is intractable, and 
the lack of algorithms to do this makes secure communication and commerce possible 
online. 

● For some problems we know the optimal (fastest) algorithm for solving them because we 
can prove it can't be done in fewer steps, but for others we haven't discovered tractable 
algorithms yet, and in some cases we don't even know whether or not tractable 
algorithms exist. One of the biggest open questions in computer science, called the P vs. 
NP problem, is related to intractable problems. There are two interesting variations of 



intractable problems: design an algorithm that produces a solution to the problem, or 
design an algorithm to check that a given solution is correct. For this huge family of 
thousands of important problems (e.g. timetabling, route planning, vehicle loading, and 
DNA matching), we have efficient algorithms for checking if a given solution is correct, 
but we do not know if an efficient algorithm for finding a solution will ever be discovered. 
As an example, consider the bin packing problem, in which objects of different sizes 
have to be packed into a finite number of containers, each of a fixed capacity.  If we are 
given a proposed packing (which items are to be packed into each bin), checking that 
this is a valid packing is an easy task that can be done efficiently - you just need to 
check that no container is too full. But we do not know of any efficient algorithm that will 
always decide if the given objects can be packed in a given number of bins. The 
remarkable fact is that if an efficient algorithm is found for any one of these problems, 
then all the other problems will also have an efficient algorithm, and similarly if we show 
that no efficient algorithm exists for any one of them, than all of them are intractable. 

● Despite not being able to find efficient algorithms to find optimal solutions, many 
heuristics (algorithms that give near-optimal solutions) have been developed, and some 
are known to come very close to the optimal solution, which means that in many 
practical situations it is better to focus on improving heuristics, and not worry too much 
that the result might be very slightly short of optimal. 

 
5. Programs express algorithms and data in a form that can be implemented on a 
computer 

 
Programming involves taking algorithms (which might exist only in 
the programmer's head, or may have been designed by a team of 
people) and turning them into program instructions that can be 
executed by a computer. Program instructions are written in a 
programming language which is precisely defined. These 
instructions manipulate data on the computer, so the form and 
meaning of the data is dictated by the program. 
 
Because the capabilities needed to fully control a general 

purpose computer (which covers most digital devices) can be defined by six properties, 
consisting of three control structures (often expressed as sequence, selection, iteration), and 
three ways to deal with data (input, output and storage), these properties are also the key 
elements of writing programs. Consequently, any programming language that has all of these 
elements can be used to write any computation that any other full programming language could 
be used for, and the differences between languages is largely to do with how well they suit a 
particular situation (e.g. for processing files, running on a smartphone, teaching programming, 
or running an enterprise system). 
 
Digging deeper: 

● The six properties are the same as the structures used to define algorithms: 



○ Sequence: specifying instructions to happen one after the other 
○ Selection: choosing between two different sets of instructions (commonly an "if" 

statement) 
○ Iteration: repeating a set of instructions (loops) 
○ Input: reading in data from outside the program, which could be from a keyboard, 

pointing device, a file, a network, or even another program 
○ Output: getting data out of the program, which could be to a screen, through a 

network, into a file, or to another program 
○ Storage: also known as memory; being able to store data for use later in the 

program (typically in variables) or long-term storage such as files on a disk. 
● This means that if a student has learned enough programming to include the six 

properties needed, then in principle they have the tools to program anything that can be 
computed. A consequence is that even "simple" languages like Scratch are actually just 
as capable as the most advanced languages if the programmer has learned the right 
parts of the language; they just might take more work to achieve the same thing, and 
have less suitable input and output formats. 

● The six properties derive from the idea of a universal computing machine articulated by 
Alan Turing, and computers and languages with this capability are often (slightly loosely) 
referred to as a Turing-complete system. The modern digital devices that we work with 
(from small portable devices, to large "cloud" computing systems) and commonly used 
language both meet these requirements, and are no more powerful than Turing's 
universal machine, so they are fundamental in defining what computers can and can't 
do. 

● There are always different ways to implement a program and store the data it works with; 
this means that programming is an act of creativity, and there is no single way of 
implementing a program for a particular situation. 

● Getting programs to work correctly isn't just a matter of "coding" them; developing 
programs involves designing the structures, testing them and debugging the software, 
and these are all important skills for a programmer to have. 

● A programming language (such as Python, Scratch, Java, JavaScript or Basic) is 
designed for a particular purpose, and has a formal description of what can and can't 
appear in a program (syntax), as well as what each command does (semantics). 
Defining these rules is the domain of formal languages, which provides tools for 
concisely specifying how a given programming language works. 

● Although all current devices and languages are (essentially) Turing-complete, there are 
more powerful models of computation, such as non-deterministic systems and quantum 
computing, but building them is challenging, and commonly used devices remain Turing 
complete (so far!).  

● There are also less powerful models of computation (such as Regular Languages and 
grammars) that are easier to use and do the job for some purposes; these are 
sometimes used as a part of a program for doing some simple tasks such as checking 
the format of input values, and also checking for some of the syntax errors in computer 
programs! 



● Computer programs are stored on computers in the same way as data is, represented 
using these zeros and ones, including the "source" code that humans write, and the 
machine code that actually runs on a digital device. This means that programs are also 
stored as data, and that computer programs are used to manipulate other computer 
programs in the same way that they manipulate data; the most common form of this is 
compilers and interpreters that allow us to write programs in high level language and 
have them run on a computer that uses a low level language. It also means that a digital 
device is very flexible; the program is just data that can be updated or replaced easily, so 
the same device can be used as a video player, a burglar alarm, a medical monitor, and 
a game system. 

 
6. Digital systems are designed by humans to serve human needs. 

 
This is the driver for all the ideas above; digital 
devices must be fast, reliable and match a need 
appropriately if people are to use them, and 
because they are designed by people, the 
process for designing them needs to enable the 
developers to efficiently turn creative ideas into 
working products.  
 
This means that there are (at least) three broad 
areas concerned with human factors:  

● human computer interaction, which is about creating interfaces that are easy to 
use in the situation they are intended for,  

● software engineering, which is concerned with enabling organisations to develop 
software on a large scale (potentially with thousands of people contributing to it), 
and at the same time making sure that the product meets the needs of the user, 
is reliable, does what is intended, and is completed in a timely fashion, and 

● ethics, which considers the impact of a new technology on humans, the 
responsibilities of those who work on it, and possibly even whether or not we 
should construct it. 

 
All of these concerns require some understanding of human behavior (psychology), 
interaction (sociology), and capability (physiology).  
 

 
Digging deeper: 

○ Frustrating and inaccessable user interfaces are far too common, and "easy to 
use" systems that delight users sell for a premium. Designing good interfaces 
builds on all the big ideas in this document to make software work quickly and 
reliably, and also builds on the human sciences to make sure the final product 
matches the way people work. 



○ Although it might seem that programs are written for machines, the text of 
programs themselves is written by humans, for humans - most programs will be 
read by someone else later, and they need to be written in a way that they can be 
understood quickly and unambiguously (e.g. with meaningful variable names and 
comments). Knuth's "Literate programming" is based on this idea: "Instead of 
imagining that our main task is to instruct a computer what to do, let us 
concentrate rather on explaining to human beings what we want a computer to 
do." (Knuth, 1984); and Abelson & Sussman (1996) wrote: "Programs must be 
written for people to read, and only incidentally for machines to execute."  

○ This also means that we highly value processes that enable people to collaborate 
efficiently and effectively in teams to produce software that works well for the end 
users; this is the realm of software engineering, and involves many techniques 
around working on large projects in teams to produce quality software. 

○ The processes used to build digital systems need to assure us that the product 
will work appropriately. This involves human processes itself; ensuring that a 
program is reliable requires designing thorough tests for it, and tracking down 
any bugs can require a lot of skill. Even then, a test might show the presence of 
bugs, but if software passes all tests, that doesn't necessarily mean that it is 
bug-free (this was articulated by E.W. Dijkstra). 

○ Decomposition is a general tool in computer science that breaks a large task or 
object into smaller components that can be dealt with without the distraction of 
the whole being visible while working on a small part. Building large software 
systems (software engineering) relies heavily on decomposing the task, as a 
large system needs to be built by multiple people working on parts of a system. 
This is sometimes seen as a "stack" of sub-systems; for example, communication 
systems have layers from the physical specifications through to protocols the 
programs can interface directly to regardless of the network being used (such as 
file transfer and email); web programmers use a stack of systems that simplify 
programming different elements of the website; and operating systems provide 
functionality through "drivers" that interface with specific hardware in a way that 
saves each software developer being concerned with the details of the particular 
computer being used. 

○ In a digital society our privacy and right to participate is often mediated by digital 
devices; furthermore, there may be some things that are possible to build that 
shouldn't be built, and informed discussion is needed, in the same way that 
discussion can be had around nuclear power, genetic modification or climate 
change if the public have a general understanding of the science. Ethical 
considerations mean that we should question algorithms that affect our lives (e.g. 
voting, privacy, job loss), the ownership of intellectual property, and the impact of 
digital systems on the environment (both positive and negative). 

○ The human aspect of computing is also reflected in how it appears in so many 
disciplines - computational biology and computational linguistics are just two 



examples of how ideas central to computing are enabling new approaches in 
other disciplines. 

 
 

 
7. Digital systems create virtual representations of natural and artificial phenomena. 

 
Computer simulations and virtual systems are used to 
create virtual versions of processes in the physical world, 
and also to create imagined scenarios. Simulations can be 
used to reduce cost (e.g. simulating a structure to fine tune 
it before building it, or simulating different financial scenarios 
to choose the most effective strategy) and to reduce risk 
(e.g. simulating dangerous situations to give aircraft pilots 
experience, or simulating the spread of a disease to 
determine how best to prepare for an epidemic). Virtual 
worlds can be created by generating images and sounds 
artificially, to make the user feel that they are in a world 
imagined by the designer (including computer games, virtual 

reality and augmented reality). Virtual machines provide a simulation of a computer, and this 
approach is widely used because it protects the physical hardware and the software from each 
other, which can provide a safer and more flexible environment. Artificial Intelligence models 
human intelligence, in an attempt to replicate human decision making and reasoning. 
 
These virtual representations take advantage of the unique properties of digital devices that 
enable a system to work on vast amounts of data, and if something goes wrong, they can be 
re-started in full working order by simply restoring some data, which is considerably simpler than 
reinstating physical objects that have been damaged or placing humans in a dangerous 
situation. 
 
Digging deeper: 

● The virtual representation of a real-world phenomenon is often referred to as a model 
since it is an approximate, but useful, version of the original scenario; this could be a 
model of the forces on a physical structure, a model of a financial scenario, or a model of 
the objects in a 3-dimensional image being viewed on a screen or a virtual headset. 

● Simplified models can be used because some details will make (almost) no difference to 
the solution to a problem; abstracting out those details can save time and space, and 
avoid having to capture detail for no material purpose. 

● Simulation can be used in science where empirical or theoretical approaches won't work. 
Simulation has become a "third paradigm" of science, joining experiment and theory as 
an approach to discovering new knowledge.  

● Games and virtual worlds create a new environment that may never exist in the physical 
world (such as a fantasy game or animated movie), or they may seek to model 



something in the real world as accurately as possible (such as a flight simulator or the 
spread of disease). 

● Computer graphics and visualisation systems enable us to project 3-dimensional models 
onto a computer display. 

● Computer systems also model the world in real time - for example, databases and 
spreadsheets are used to track the amount of money in a bank account or the score of a 
student; such models abstract key ideas from the world. 

● Artificial intelligence is still a computer program, and so subject to the rules and 
limitations of computer programs (for example, they may contain errors); however, they 
may be sufficiently effective that they no longer appear to work as a conventional 
program. 

● Large, detailed models (big data) can be used to search for patterns (data 
mining/machine learning) that may not be obvious in the physical world. 

● Queuing systems are a common basis of simulation, where the system tracks entities 
(such as data on a network, or customers in a store) by considering their activities to be 
a series of queues, waiting for various services. 

● Although we are modeling the "physical world" with simulations, a computer is still a 
physical device, and the data and programs are stored physically. However, they are on 
a completely different scale, and are stored in a way that is very flexible - a flight 
simulator can run on the same physical devices as a disease simulation or a movie 
animation. 

● A virtual machine is essentially a computer being simulated on a computer - this is a way 
to be able to give someone access to computing resources with an extra level of 
flexibility, while isolating them from the original hardware. A simple virtual machine might 
be an independent environment running on a local desktop computer, or it could be on a 
large scale as in cloud computing, where a remote user can pay to use some amount of 
computing resources on a large system. 

 
8. Protecting data and system resources is critical in digital systems. 

 
Modern computing systems provide access to data and resources 
that if used inappropriately could breach privacy, provide 
unauthorised access to financial data or other resources, or even 
bring about physical harm. Security professionals often say that the 
weakest link in the security of a computer system is the user, and so 
it is essential that all computer users understand basic computer 
security principles. These principles include confidentiality (not 
allowing unauthorised access to information), availability (legitimate 
users can access their information), and integrity (the information is 
accurate).  
 

Computer users must be aware of and understand the tools and techniques that they can use to 
make their computing environment more secure.  These tools include  encryption methods, 



detecting and blocking attacks, authenticating who is accessing a system, and allowing users to 
recover from damage, whether malicious or accidental. 
 
Digging deeper: 
 

● The need for security is because of human issues. We work within codes of ethics, such 
as conferring some rights to privacy. Digital representations now control our ownership 
of property (particularly digital cash) and so traditional crime (such as theft) has now 
entered the digital world, and requires digital solutions. We also need to allow for human 
error, such as accidentally deleting or changing information. 

● The importance of computer security highlights the value of educating people about it. 
For example, understanding the basic idea of Public Key Cryptography can help users to 
feel secure when communicating online, and understanding how passwords are stored 
can help a user to know why their password should have particularly characteristics. 

● Cyber security is now a crucial part of a nation's defence. Nations can be attacked 
through the internet, and because so many aspects of our lives are controlled by digital 
systems, an attack on areas such as financial systems, power generation or food supply 
could have disastrous consequences. 

● Another reason for attack is taking over computing resources to do work for the intruder 
e.g. loading programs on other people's computers to send spam or spread viruses. 

● Balanced against this, we need to give appropriate people access at appropriate level as 
conveniently as possible. 

● Security applies to communication systems as well as data storage; physical security 
(such as building access) is also commonly controlled digitally. 

● Security doesn't just involve preventing intrusion; a "denial of service" attack simply 
overloads a system to prevent legitimate clients from using it, which could put a 
company out of business or prevent a government from doing its job. 

● A key part of good security is having suitable backup, both for data and processing 
systems, and testing it to ensure that it would work if needed. 

● Encryption is a central tool in computer security because it enables data to be changed 
so that an eavesdropper cannot easily read it. But this raises a new problem: how can 
people in different locations (such as an online store and a customer)  set up a secure 
connection using secret encryption keys if those keys have to go through the same 
secure network that the eavesdropper is watching!? Public key cryptography provides a 
solution to this problem, where, remarkably, it is possible set up a communication and 
exchange messages in full view of an untrusted third party, without them being able to 
decode any of the messages.  

● There are many cryptographic protocols that enable us to do things that might not seem 
possible, such as digital signatures that verify the source of a document; making cash 
payments without knowing who it came from; secure time-stamping where the time of an 
event or agreement can be recorded in a way that can't be modified; and electronic 
voting, where each person can verify that their vote was counted correctly, yet not be 
able to find out how others voted. 



● Trying to find holes in security is an important role. A "white hat hacker" is someone who 
attempts to find security problems, but instead of exploiting the problem, they arrange to 
have it fixed before a "black hat hacker" can use it for negative purposes. 

 
9. Time dependent operations in digital systems must be coordinated. 

 
Digital systems have many components that 
can run independently; these components can 
be working in parallel, and on independent 
schedules. Parallelism occurs at many levels in 
digital systems, from instruction execution on a 
CPU, to multi-core systems in a laptop, to data 
being transmitted over a network through 
multiple routes, to large "big data" systems that 
process vast quantities of data in small chunks 
and combine the results.  

 
When a computational task is being spread over several independent parts of the system, 
considerable care is needed to make the most of the ability to spread the work over multiple 
devices. Problems need to be broken up into as many parts as possible that can be processed 
independently and recombined, and the dependency between these operations can restrict how 
easily a problem can be broken into parts. 
 
Digging deeper: 

● Computing power is commonly expanded by using multi-processor systems working in 
parallel; for example, even common desktop computers use multiple "cores" to spread 
the processing load across several processors. High performance computers can have 
hundreds or thousands of processors working in parallel, and "cloud" computing can 
involve arbitrary numbers of devices being applied to a task. A computer system might 
also involve multiple programs running independently, but communicating with each 
other ( 

● All of these situations require very careful coordination of the independent processes so 
that information is collated in the correct order when each process finishes. There is also 
the challenge of breaking a problem into many parts so that each part can be processed 
efficiently and independently, and then combined to provide a suitable solution to the 
problem. 

● A key challenge is that applying twice as many processors doesn't necessarily solve a 
problem twice as fast; often there are parts of a solution that are needed before another 
part can be started on. 

● Concurrent processes need to be designed carefully to avoid race conditions (where the 
order that events happen is critical), deadlocks (where two processes are both waiting 
for each other) and resource starvation (where some tasks prevent others from getting 
access to resources, such as a denial-of-service attack). 



● Time dependent operations distinguish computing from algebra; for example, the 
sequence x=2; x=3 is meaningful in a computer program (x ends up with the value 3), 
but a contradiction in maths (x can't be 2 and 3 at the same time); and y=x+1; x=3 has 
an algebraic solution that is different to what would happen in a typical program because 
it depends on the order in which the instructions are executed. 

● A related issue is "time slicing", where multiple processes are given turns at a small 
share of time on a machine, which makes it appear that each of them is running 
independently. This can happen on a single-user machine (e.g. running the clock at the 
same time as a word processor program), but also happens on computing systems that 
deal with multiple users (e.g. a website serving information to multiple clients). Each user 
may see the system as serving them alone, yet the server is designed to carefully switch 
between doing tasks for each user to give this appearance.  

 
 
10. Digital systems communicate with each other using protocols. 
 

Very few digital devices are an "island" - most are 
connected by wired or wireless networks, 
including local systems such as Bluetooth or USB 
connections. The goal is to get data through the 
networks as quickly as possible. However, 
networks are prone to errors from faulty 
components or transmission interference, and are 
also vulnerable to attack from people wanting to 
eavesdrop on the data or prevent it getting 
through. 
 
Techniques are available to minimise these 
issues, to the extent that people use wireless data 
and the Internet for sending important and private 
information without being concerned about 

reliability and security. Protocols that ensure that the data has arrived safely and efficiently are 
essential for almost any situation: personal communications, commercial transactions, or 
military control all need to be sure that the data gets through reliably. 
 
Digging deeper 

● Communication protocols typically break data into packets, and use ideas like 
acknowledgement, time-outs, cryptographic protocols and compression to make sure 
data has got through correctly, efficiently and securely.  

● These protocols are often expressed in "layers", from the details of the physical 
connectors and electronic specifications, through to details such as breaking data into 
packets, numbering them, and acknowledging that they have been received, and at the 



highest level, specifying how a computer program can interface with a program on 
another computer. 

● Protocols are the basis of a large variety of services such as the internet (e.g. the 
Internet Protocol, IP), the web (e.g. the Hypertext Transfer Protocol, http), secure data 
transfer (e.g. https) and e-mail (e.g the Internet Message Access Protocol, IMAP). 
Protocols are needed even to simply download a photo from a camera to a desktop 
computer (e.g. Bluetooth or USB). 

● Protocols are created by humans, and are subject to negotiation; standards are created 
by considering competing options, and selecting a common approach that enables 
different devices to work together effectively. Sometimes the selection is done by 
committees, industry organisations and joint working groups (such as IPv6), and other 
times de facto standards emerge because of their wide adoption (such as HTML). 
 

 


