
An Explicit Strategy to Scaffold Novice Program Tracing
Benjamin Xie

University of Washington
The Information School, DUB Group

bxie@uw.edu

Greg L. Nelson
University of Washington

The Allen School, DUB Group
glnelson@uw.edu

Andrew J. Ko
University of Washington

The Information School, DUB Group
ajko@uw.edu

ABSTRACT
We propose and evaluate a lightweight strategy for tracing code
that can be efficiently taught to novice programmers, building off
of recent findings on "sketching" when tracing. This strategy helps
novices apply the syntactic and semantic knowledge they are learn-
ing by encouraging line-by-line tracing and providing an external
representation of memory for them to update. To evaluate the effect
of teaching this strategy, we conducted a block-randomized experi-
ment with 24 novices enrolled in a university-level CS1 course. We
spent only 5-10 minutes introducing the strategy to the experimen-
tal condition. We then asked both conditions to think-aloud as they
predicted the output of short programs. Students using this strategy
scored on average 15% higher than students in the control group for
the tracing problems used the study (p<0.05). Qualitative analysis
of think-aloud and interview data showed that tracing systemati-
cally (line-by-line and "sketching" intermediate values) led to better
performance and that the strategy scaffolded and encouraged sys-
tematic tracing. Students who learned the strategy also scored on
average 7% higher on the course midterm. These findings suggest
that in <1 hour and without computer-based tools, we can improve
CS1 students’ tracing abilities by explicitly teaching a strategy.

KEYWORDS
Program tracing, instructional intervention, sketching, think-aloud.
ACM Reference format:
Benjamin Xie, Greg L. Nelson, and Andrew J. Ko. 2018. An Explicit Strat-
egy to Scaffold Novice Program Tracing. In Proceedings of The 49th ACM
Technical Symposium on Computing Science Education, Baltimore, MD, USA,
February 21–24, 2018 (SIGCSE ’18), 6 pages.
https://doi.org/10.1145/3159450.3159527

1 INTRODUCTION
Program tracing, the process of emulating how a computer exe-
cutes a program [6], is a necessary precursor to the ability to write
[12, 13, 22], debug [17], and maintain code [28]. However, there
is substantial evidence that novice programmers, such as those in
introductory computer science (CS1) courses, struggle with tracing.

Prior work suggests this is from fragile understanding of pro-
gram semantics and weak strategies for tracing [11, 14, 17]. For

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE ’18, February 21–24, 2018, Baltimore, MD, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN ISBN 978-1-4503-5103-4/18/02. . . $15.00
https://doi.org/10.1145/3159450.3159527

example, novices struggle with tracing variable values as they up-
date because they often try to remember these values [29]; this
extraneous load on working memory [1, 26] increases as programs
become longer andmore complex. Students also struggle to produce
external representations of program state, perhaps because of an
incomplete understanding of the function of code elements [27] or
an inability to put the "pieces" of a program together [25].

Computer-based tools to support tracing are not easily integrated
into CS1 curricula, which often require students to trace code on
paper. Tools enable students to see a visualization of the program
state [8, 15], but they often lack active engagement, having students
passively step through code execution [23]. Virtual Program Simu-
lation could improve engagement [24], but this work has yet to be
evaluated and focuses on computer-based tools. Low-level tracing
without the aid of tools is necessary for expert code comprehension
[28], so novices must learn to trace without tools.

As an alternative to tools, researchers have investigated sketch-
ing, writing visualizations of program state or other computing
processes, as a pedagogical tool [3]. Previous work has investigated
using sketching to assess object-oriented programming knowledge
[10] and integrating sketching into pedagogy [9], with other work
proposing standardization of sketched memory diagrams [4]. Cun-
ningham et al. framed sketching as a technique for managing cogni-
tive load and found that complete tracing sketches correlated with
improved performance [3]. These findings suggest a correlation
between sketching an external representation of memory and im-
proved tracing performance, but fall short of evaluating whether
teaching sketching is the cause of this improvement.

We explore these causal effects of sketching. We theorize that
sketching is a form of scaffolding [21] that lessens the load on stu-
dents’ working memory and makes changing program state more
visible. We predict that explicitly teaching a lightweight sketching
strategy will offer two benefits: 1) by encouraging students to trace
line-by-line "like a computer does" [15], it will reduce their temp-
tation to create their own strategies or shortcuts which may lead
to errors [18]; 2) by having students make updates to an external
representation of variable values as the code executes, it will reduce
the extraneous working memory load of remembering values, low-
ering working memory retrieval errors [1]. We hypothesize that
explicitly teaching a tracing strategy will take a short amount of
time and improve students’ performance for tracing code on paper.

To test this hypothesis, we ask the following questions:
1) Does explicitly teaching a tracing strategy improve novice
programmers’ performance? 2) How do novices trace code
and how does an explicit strategy change their behavior?

2 THE STRATEGY: LINE-BY-LINE + SKETCH
The goal of our strategy was to help novices embody the computer.
Our strategy achieved this by providing 1) step-by-step instructions

https://doi.org/10.1145/3159450.3159527
https://doi.org/10.1145/3159450.3159527

on how to apply the syntactic and semantic knowledge novices have
been learning to tracing questions and 2) a visual representation to
explicitly track variables which we refer to as memory tables. The
strategy instructions consisted of three steps:
(1) Read question: Understand what you are being asked to do. At
the end of the problem instructions, write a check mark.
(2) Find where the program begins executing. At the start of that
line, draw an arrow.
(3) Execute each line according to the rules of Java.
(a) From the syntax, determine the rule for each part of the line.
(b) Follow the rules.
(c) Update memory table(s).
(d) Find the code for the next part.
(e) Repeat until the program terminates.
When tracing through the code, a participant creates a memory

table with each method call, as shown in Figure 1. This memory
table keeps track of parameters passed into and variables instan-
tiated in a given method, similar to sketches from previous work
[3, 4]. These were the instructions for using a memory table :
(1) Create a new Memory Table every time a method is called.
(2) Write the method name in the box at the top of table.
(3) When a variable is created, add it as a row in the table (variable
name in the "name" column; value in "value" column.
(4) When a variable is updated, find the variable by name, cross
out the previous value and write in the new one.
(5) After the method finishes running, write the value for the
return and cross out the entire table.

Figure 1: Two memory tables for 2 calls to the same method
(Prob. 3). The participant wrote the method name at the top,
variable names in the Name column, and variable values on
theValue column.When variables updated, they crossed out
the previous value and wrote in the new value. After each
method finished executing, they crossed out the table.

In designing the strategy, our intentions were to enable instruc-
tors to teach the strategy without major changes to their pedagogy
and to enable novices to easily understand and apply the strategy
to any tracing problem. From our pilot testing, we found the in-
structions were easy to recall and discouraged participants from
deviating from line-by-line tracing. We designed the memory tables
so participants could easily sketch their own tables. We empha-
sized the separation of variable names and values to ensure vari-
able names were differentiated from Strings and to ensure variable
names from different scopes were not passed in as parameters. We
emphasized using a new table for each method call to enforce scope.

3 EXPERIMENT: TRACING + THINK-ALOUD
We designed an experiment in which students enrolled in the same
CS1 course worked through problems that required them to predict
the output of 6 Java programs while verbalizing their thoughts. The
control group used their own strategies, while the strategy group
was encouraged to use the strategy from Section 2.

Our target population was novices who were just beginning
to learn programming. This ensured some exposure to the syntax
and semantics of a programming language, but little experience
with tracing code. We advertised the study as preparation for an
upcoming midterm, with participants receiving tutoring after the
problem solving session. We recruited students who had taken 0 or
1 CS courses prior to the course they were enrolled in.

Ultimately, 24 students participated in the study. Eleven iden-
tified as males and 13 as females. Nineteen were enrolled in their
first CS course, 1 was retaking the course, 1 had previously taken a
CS1 course at local community college, 1 had taken AP Computer
Science, and the 2 others specified they had previously completed
an unspecified CS course. Most participants were in their first year
of college (16), with 7 others in years 2-4, and 1 having a Master’s
degree and taking the course to change careers. Most were not CS
majors. Only 3 were majoring in CS, with others majoring in an-
other engineering discipline (8), Informatics (4), a non-engineering
major (3), were undecided (5), or were not pursuing a major (1).

3.1 Study design: Think-aloud while tracing
The study sessions occurred 3-6 days prior to the course midterm
and participants worked through 6 tracing problems that covered
potential midterm concepts. Participants met individually at self-
selected times with a researcher and completed a pre-survey (demo-
graphics, prior knowledge, self-efficacy [19]) prior to arriving. We
attempted to block randomize participants by self-reported number
of previous CS courses completed and hours spent programming
or learning to program. Because of cancellations, there were 11 in
the control group and 13 in the strategy group.

After introducing the study and asking a few questions (# of
practice midterm problems attempted, describe tracing strategy),
we spent 5-10 minutes introducing think-aloud (protocol from [5]).
We then asked participants to work through 6 tracing problems in
a fixed order while verbalizing their thought process. After each
question, they were asked to recall what they remembered thinking.
Following the completion of all problems (≈40 min on average,
although they could work for as long as they wanted), we asked
them to describe their strategy, how they learned it, what strategies
their CS1 course taught, and had them complete a post-survey
(mindset, study feedback). We then tutored them for ≈ 30 minutes,
reviewing study problems, the midterm format and the cheat sheet.

For the strategy group, we spent ≈5 minutes after practicing
think-aloud to teach the tracing strategy. We provided the instruc-
tions on a sheet of paper and 4 example memory tables on another
sheet of paper and walked through the instructions with the partic-
ipant. We provided help applying the strategy to the 1st problem,
with the help typically involving us reiterating some of the written
instructions. Our intention was to help the participant learn the
strategy without providing hints which may unfairly support their
knowledge of syntax and semantics.

Problem 6 (created)
1. public class OddMystery {
2. public static void main(String[]

args) {
3. int x = 2;
4. int y = 3;
5.
6. System.out.println(x + y + "!");
7.
8. compute(y, x);
9.
10. double val = compute(x, y + 1);
11.
12. System.out.println(val);
13. }
14.
15. public static double compute(int

_ x, int y) {
16. int z = y;
17. y = x;
18. x = z;
19.
20. System.out.println("x" + y + z);
21.
22. return Math.pow(x, y);
23. }
24.
25. }

1. public class Conditionals {
2. public static void

__main(String[] args){
3. int x = 3;
4. int y = 9;
5. int z = 5;
6. manipulate(x, y, z);
7. manipulate(y, z, z);
8. }
9.
10. public static void manipulate

_ (int x, int y, int z) {
11. if (y % x == 0) {
12. if (y >= z) {
13. x = x * x;
14. } else {
15. z = z * z;
16. }
17. } else {
18. if (z >= x) {
19. if (y >= z) {
20. y = y * y;
21. }
22. } else {
23. z = z * z;
24. }
25. }
26. if (y % x == 0) {
27. x = x + 3;
28. } else {
29. y = y * 2;
30. }
31. System.out.println( 

 "x = " + x);
32. System.out.println( 

 "y = " + y);
33. System.out.println( 

 "z = “ + z);
34. }

1. public class Greeting {
2. public static void main(String[] args) {
3. String banner = "Good Night";
4. System.out.println("banner");
5.
6. greet("Alice", "night");
7. System.out.println(banner);
8.
9. greet("Bob", "night");
10. System.out.println(banner);
11. }
12.
13. public static String greet(String name, String

_ time) {
14. String greeting = "Good " + time + " " +

____name;
15. if (name.equals("Alice")) {
16. return greeting;
17. }
18. greeting = greeting + "!";
19. System.out.println(greeting);
20. return greeting;

#6 (created)

1. public class StrategyPractice {
2. public static void main(String[] 

 args) {
3. int x = 1;
4. int y = 2;
5.
6. int z = x;
7. x = y;
8. y = z;
9.
10. printSum(x, y);
11. printSum(z, y);
12.
13. int val = getSum(x, y+z);
14. System.out.println(val);
15. System.out.println("Bye!");
16. }
17.
18. public static void printSum( 

 int a, int b) {
19. System.out.println(a + b);
20. }
21.
22. public static int getSum(int a, int b) {
23. return a + b;
24. }
25. }

1. public class Farmer {
2. public static void main(String[] args) {
3. String farm = "here";
4. String old = "macdonald";
5. String macdonald = "there";
6. String everywhere = "farm";
7. String here = "everywhere";
8. String there = "old";
9. String quack = "duck";
10.
11. mystery(old, macdonald, farm);
12. mystery("quack", here, "there");
13. mystery(quack, "here", "farm");
14. mystery(old, everywhere, there);
15. }
16.
17. public static void mystery(String 

 macdonald, String farm, String old) {
18. String end = ".";
19. if (macdonald.length() >  

 farm.length()) {
20. end = "!";
21. }
22. System.out.println(old + " " +  

 macdonald + " had a " + farm + end);
23. }
24. }

1. public static void wildMystery(int n) {
2. int x = 1;
3. int y = 1;
4. String output = "";
5. while (y < n) {
6. x++;
7. if (x % 2 == 0) {
8. n++;
9. } else {
10. output = n + " ";
11. }
12. y = 10 * y - x;
13. }
14. output = output + x + " " + y;
15. System.out.println(output);
16. }

wildMystery(0); ___
wildMystery(6); ___
wildMystery(31); ___

#1
(created)

#2 (midterm)

#3
(midterm)

#5 (SCS1)

#4
(SCS1)

1. public class OddMystery {
2. public static void main(String[] args) {
3. int x = 2;
4. int y = 3;
5.
6. System.out.println(x + y + "!");
7.
8. compute(y, x);
9.
10. double val = compute(x, y + 1);
11.
12. System.out.println(val);
13. }

Figure 2: The 6 problems for the study, each asking for the
program’s output. Bold denotes changes to adapted items.

3.2 Problems: Fixed-code tracing questions
The study had 6 fixed-code problems which covered early CS1 con-
cepts and required participants to trace provided code and deter-
mine the output. In contrast, the midterm assessed tracing (≈50%
of midterm), code construction (≈40%), and invariants (≈10%).

Figure 2 shows the 6 problems. Problem 1 helped participants
practice usingmemory tableswith variable updates, repeatedmethod

calls with parameters passed in, and calls to different methods. Prob-
lems 2 and 3 were from practice midterms and Problems 4 and 5
from the SCS1 [16]. Problem 6 assessed midterm concepts not cov-
ered in other problems.We used notes from the think-aloud sessions
to develop a scoring rubric for the problems completed during the
study. The rubric attempted to differentiate scores based on what
participants found difficult about each problem. We did not look at
participant responses until after the rubric was created.

After the midterm, we sent an online survey to participants to
solicit their midterm grades and experiences (perceived problem
difficulty, how they prepared for the midterm, how the study may
have helped). We also asked the participants in the strategy group to
describe the strategy we taught them (to ensure they remembered
it) and whether they used the strategy. Of the 24 participants, 17
responded (8 control, 9 strategy, with 1 not sharing their grade).

4 RESULTS
Our data included background information, participants’ sketches
and responses, researcher notes, audio recordings of participants
thinking aloud, and self-reported midterm grades.

4.1 The explicit strategy improved correctness
We answer our first research question by comparing the perfor-
mance of the two groups on the study problems and midterm. We
found a strong linear correlation (r = 0.91, Pearson) between the
scores on the study problems and the midterm grades, suggesting
both measure similar concepts. Because the distributions of scores
for each problem in the study deviated from normality (p < 0.05,
Shapiro-Wilk [20]), we conducted a one-tail non-parametric t-test
(Mann-Whitney U test [20]) to determine significance without mak-
ing assumptions on the distribution shape. Participants’ total scores
and midterm scores did not deviate from normality, so we used a
one-tail parametric t-test (Welch t-test [20]) to compare total scores
and midterm scores between conditions. We calculated a Common
Language (CL) effect size from Cohen’s d [7, 20] for the parametric
test and by dividing the test statisticU by the product of the sample
sizes for the non-parametric test [7].

Although we designed the 6 problems to be harder than midterm
problems, a large portion of students got many problems correct.
Because of this skew, we use the median as the average and the
interquartile range (IQR, 3rd quartile/75% - 1st quartile/25%) to mea-
sure dispersion for scores on individual problems. For all problems,
the median for the strategy group was greater than or equal to the
control group’s and the IQR was lesser, as shown in Figure 3. The
strategy group tended to perform better and with less variability.

Strategy group participants performed significantly better on
Problem 4 (p=0.021), which required them to keep track of multiple
variables through nested if/else statements. Figure 3 shows that
11 of 13 participants in the strategy group scored perfectly on this
problem and above the median score of the control. The U statistic
is 101.5, which we interpret as a CL effect size to say that there is a
71% chance that a randomly selected participant from the strategy
group scores better than one from the control group on Problem 4.

For the total score across all problems, we found that the strategy
group performed on average 15% better and with 46% less variabil-
ity. We could model the distributions of total problem scores as

Figure 3: Scores for the 6 study problems by condition. Each
dot denotes a participant score. Each boxplot shows the in-
terquartile range. * denotes p < 0.05.

Figure 4: Total scores for study problems by condition (max
36). A dot is a participant score and a curve is a fitted normal
curve. (x̄s=30.00, σs=4.91). (x̄c=24.55, σc=9.16). p=0.049.

approximately normal, so we used mean and the standard deviation
to measure dispersion. Figure 4 shows the distributions, where the
strategy group performed significantly better (p = 0.049). Ten of
the 13 students who learned the strategy performed better than the
mean of the control group. We interpret the Cohen’s d of 0.7243 as
a CL effect size and say that there is a 70% chance that a randomly
selected participant from the strategy group scores better than one
from the control group on the study problems.

Seven of the 8 strategy group participants who provided midterm
grades said they used the strategy on themidterm. These 8 scored on
average 7% better than the control group and had 42% less variability.
Figure 5 shows the distributions of midterm scores and fitted normal
curves. The class average of 80.4 was within 0.5 standard deviations
of the control group mean of 84.5 (Z=-0.36, σc=9.16) but was over
1.5 standard deviations below the strategy group mean of 91.5
(Z=-1.66, σs=4.91). We expected both groups to perform above the
class average because of the tutoring. We found a trend towards
significance (p=0.083) that the strategy group performed better than
the control group on the midterm. The tracing questions on the
midterm were easier, so the difference in performance came largely
from the code writing questions which were more challenging.

Considering these performance scores together, our data show
that explicitly teaching a strategy can improve tracing performance,
even on a midterm which assesses more than just tracing ability.

4.2 An explicit strategy reduced errors
In this section, we qualitatively investigate the reasons for the per-
formance increases in the previous section. To perform this analysis,

Figure 5: Midterm scores by conditions (max 100). A dot
is a participant’s score and a curve is a fitted normal curve.
(x̄s=91.5, σs=6.68). (x̄c=84.5, σc=11.5). p=0.083.

we triangulated across think-aloud recordings, sketches, solutions,
and researcher notes to characterize the tracing strategy that each
participant used. We compare and contrast the strategies that we
observed through this process by describing high and low perform-
ers in each condition, describing similarities within each subgroup
and go into detail on one member of each group (calledCmax ,Cmin ,
Smax , Smin for control/strategy participant with max/min score).

4.2.1 Control group’s low performers. The two lowest perform-
ing members of the control group demonstrated incomplete knowl-
edge of semantics and often deviated from line-by-line tracing. They
deviated because they skipped past an unfamiliar concept (e.g. x++)
or they made incorrect assumptions about the control flow (e.g.
choosing to skip a method call in Problem 4 because they felt the
method would not output anything). They often focused on trying
to determine if a problem was similar to one they had previously
practiced. Both participants quit partway through several problems,
either because of a lack of semantic knowledge overwhelming them
or inadequate strategy leaving them unsure what to do next.

Cmin : One of the lowest scoring members of the control group
scored 9/36. He had attempted 5 practice midterm questions prior
to the study. His strategy involved trying to comprehend the code’s
overall purpose and translating the code to English. This strategy
and an incomplete understanding of Java semantics overwhelmed
him, resulting in him giving up and not answering half of the
problems. He tried to look at the code holistically before tracing,
but either found the code "really weird" for unfamiliar problems or
recognized the problem as similar to one he had previously seen, but
failed to recall how to solve it ("I swear I’ve done a problem like this.
I just forgot how to do it."). He had trouble applying concepts he
learned in class. He often focused on translating code into natural
language but was usually unable to do this for the entire problem. In
Problems 4 and 6, he considered writing down intermediate values
("Maybe if I write down the variables?"), but did not do it. He also
inappropriately drew upon knowledge from other domains, such
as seeing a number followed by an exclamation point in a string
("5!", Prob. 6) and thinking it referred to a factorial. Longer code
segments (Prob. 4) were more overwhelming, with the participant
"thinking that this is crazy, I don’t know where to start."

4.2.2 Control group’s high performers. The six highest perform-
ers in the control group scored 30-35 of 36. They were able to trace
code line-by-line and also update a sketch of intermediate values,
although they did not consistently create sketches. Some looked at
code holistically before tracing line-by-line, often looking for print/
output statements and return statements, but did not do this for
longer code segments (Prob. 4) or for later, more complex problems
(Prob. 5, 6). Others immediately began tracing line-by-line.

High performing participants in the control group tended to
intermittently sketch a tabular external representation to keep track
of intermediate values. They often began sketching as a response to
specific "cues," such as when the code instantiatedmultiple variables
or when a variable began updating ("I needed to make a table to
keep track of the variables because there are a lot of moving parts").
Their tracing of intermediate values also appeared to vary by data
type, often sketching numeric variables in tables, but ignoring
String variables. This may be because Strings take longer to write,
something noted by many members of the strategy group.

Cmax : The highest scoring participant from the control group
scored 35/36 and used both inline (next to code) and tabular (sep-
arate from code) annotations to track intermediate values. She
completed 4 practice midterm questions prior to the study and re-
ported the highest programming self-efficacy [19] of all participants.
She self-described her tracing strategy as "writing out the values
that were given and keeping track of the series of manipulations
as they went through." Like most of the control group, she recog-
nized Problem 2 and applied a problem-specific strategy learned
in class. For other problems, she immediately began tracing the
code line-by-line. She wrote intermediate values inline when they
were numeric and did not update. She created a separate table when
values were Strings or when they updated. The only error she made
was when she used the + operator incorrectly (Prob. 6).

4.2.3 Strategy group’s low performers. The 3 lowest strategy
group participants did not use the strategy appropriately, scoring
22-23.5 of 36. Despite being taught the strategy, they still deviated
from line-by-line tracing, sometimes unintentionally (not checking
an if/else conditional because they believe it is always true, Prob.
3), and sometimes intentionally (see Smin). One participant did
not create memory tables for the last 3 problems she did. These
participants found sketching the memory tables time-consuming
and often unnecessary. In sharp contrast to the control group, these
low performers never became overwhelmed or gave up.

Smin : The lowest scoring participant in the strategy group scored
22/36, still within 3 points of themean score of the control group. He
reported having done 0 practice problems prior to the study. Prior
to being taught the strategy, he tried to interpret what the code was
doing and translate it to pseudocode, while also trying to remember
variable values. When applying the strategy, he still deviated from
line-by-line tracing intentionally, such as in Problem 5 when he
correctly traced through the first call to a method and realized it
resulted in no printed output or stored return, then skipped the
second call to the method which had different parameters passed
in and would have printed an output. He justified his decision by
thinking that "since [the method] doesn’t do anything with the
return value, I just ignore it. I don’t need to write another memory
table. It doesn’t affect the output in any way. At least, I don’t think
it does." He also unintentionally deviated from line-by-line tracing,
such as in Problem 4 when he correctly interpreted an if condition
as false, but skipped past the else statement. Smin found the strategy
familiar and reliable, "having a very structured set of rules to follow
that would generally work for any code".

4.2.4 Strategy group’s high performers. The four highest per-
forming participants scored 34-36 of 36, using the strategy as in-
tended to complement their Java semantics knowledge. Participants

had strong understanding of Java, even on more advanced concepts
which often confused most other participants (e.g. scope, return).
They used the strategy as intended, tracing line-by-line and creat-
ing and updating memory tables as they traced. One participant felt
the strategy "forces you to think through what you’re doing...forces
you not to skip around." Another noted that he "didn’t have to keep
thinking about values because they were on paper," suggesting
that the strategy does offload values from working memory. Some
participants actively kept track of where they were in the code
either by pointing at the line they were executing or by crossing
out previously executed lines. The most common error among this
group was returning an integer instead of a double in Problem 6.

Smax : The highest scoring participant from the strategy group
was the only one to score perfectly on all 6 problems. Smax self-
reported having attention deficit hyperactivity disorder (ADHD)
and completing around 100 practice problems prior to the study,
which is much greater than the average participant who had com-
pleted less than 10 practice problems. She was also the only one
who was not an undergraduate, already having a Master’s degree
in an unrelated field. She immediately began tracing the code line-
by-line while also filling in the memory tables completely. She also
wrote check marks after lines in the main method were executed,
perhaps misinterpreting the 2nd step of the strategy. While other
participants in both conditions deviated from line-by-line tracing,
she never deviated from line-by-line tracing. This enabled her to
avoid strategic errors other participants made when skipping line
by line tracing. Smax found the strategy useful "for keeping track of
what a value is," especially when variables were updating or when
there were multiple methods (multiple scopes). She recognized that
the strategy required time and paper to write down the memory
tables, but she felt "like you have to write this stuff down" to solve
the problem. With this method, Smax felt "you can focus on the
calculations without wondering what [a variable] equals."

4.3 Limitations
Because we conducted this study days before course midterms,
we were mindful of participants’ time constraints. We relied on
proxy measures of prior knowledge (est. hours programming, #
of CS courses). Our performance measurements are not validated,
although we found a strong correlation between the study and
midterm scores. Students self-selected to participate in the study,
so selection bias may exist. Some students dropped out of the study,
resulting in our block-randomization on prior experience slightly
favoring the strategy group. Participants took the midterm only
3-6 days after the study, so longer term retention is unclear. Think-
aloud and recall may have influenced their thinking, although we
followed best practices on protocol analysis [5]. We observed some
carryover effect between problems even though we did not provide
feedback. Our statistical analysis assumes applying the strategy
has the same effect for all participants. A mixed model may more
appropriately represent the effect and generalize better [20].

5 DISCUSSION
Our results show that explicitly teaching a tracing strategy that
emphasizes line-by-line tracing and an external representation for
tracking state may improve tracing performance. We also found

that novices who performed well tended to be more able to apply
knowledge of semantics, trace line-by-line systematically, and write
down intermediate values rather than try to remember them. This
was true regardless of whether a student used our strategy, but
when a student did, they tended to perform even better. These
findings support prior work that identified poor problem solving
as a cause of novice programmers’ poor tracing [14] and found
correlations between sketching and tracing performance [3, 10].

There are many ways to interpret our results. First, confounds
such as differences in prior knowledge, self-efficacy, motivation,
fatigue, and amount studied could have influenced participants’ per-
formance. We did not find significant differences between groups
relating to fatigue before the study (# hrs slept) or the amount
of practice prior to the study or midterm (# of practice problems
attempted). There was a significant difference in average program-
ming self-efficacy [19] favoring the control group (p<0.01, 2-sided
Welch t-test). Our sample size was also small and limited to students
from a single course, so course instruction (instructor demonstrated
tracing with tables, students used jGRASP debugger [2]) could have
influenced how participants traced. Replication is necessary to in-
crease confidence in the effects of teaching a strategy.

One interpretation is that the strategy helped lower performers
make progress and not give up. Those in the control group (e.g.
Cmin) tended to become overwhelmed and gave up on problems in
part because their strategies (e.g. translating code to English, look-
ing at code holistically) were inappropriate for their current abilities.
In contrast, those in the strategy group (e.g. Smin) used the strategy
to make incremental progress, never becoming overwhelmed.

Another interpretation is that strategy did indeed help, but that
it did not compensate for a lack of syntactic or semantic knowl-
edge. This was reinforced by our qualitative results, which showed
that lower performing participants in both groups tended to make
mistakes reflecting incomplete semantic knowledge.

The implications for teaching are simple: help students practice
an explicit strategy. That said, our strategy was not necessarily
optimal. Our participants had to do additional work to keep track
of their place in the code (pointing, crossing lines out). We found the
memory tables to be effective for primitive data types and Strings,
but this may not hold true for data structures (e.g. arrays) or objects.
Integrating this strategy with more advanced representations [4]
and determining long-term benefits (e.g. transfer to code writing
ability) may be promising future work.

6 ACKNOWLEDGEMENTS
We have archived the study materials at https://github.com/bxie/
archive/tree/master/sigcse2018. This material is based upon work
supported by the National Science Foundation under Grants No.
1314399, 1735123, 1703304 and the NSF GRFP under Grant No.
12566082. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

REFERENCES
[1] Alan D. Baddeley and Graham Hitch. 1974. Working Memory. Psychology of

Learning and Motivation 8 (Jan 1974), 47–89.
[2] J. H. Cross, D. Hendrix, and D. A. Umphress. 2004. JGRASP: an integrated

development environment with visualizations for teaching java in CS1, CS2, and
beyond. In 34th Annual Frontiers in Education, 2004. FIE 2004. 1466–1467.

[3] Kathryn Cunningham, Sarah Blanchard, Barbara Ericson, and Mark Guzdial. 2017.
Using Tracing and Sketching to Solve Programming Problems: Replicating and
Extending an Analysis of What Students Draw. In 2017 ACM Int’l Computing
Education Research Conf. (ICER ’17). ACM, 164–172.

[4] Toby Dragon and Paul E. Dickson. 2016. Memory Diagrams: A Consistant
Approach Across Concepts and Languages. In 47th ACM Technical Symp. on
Computing Science Education (SIGCSE ’16). ACM, 546–551.

[5] Karl Anders Ericsson and Herbert Alexander Simon. 1993. Protocol Analysis:
Verbal Reports as Data Revised Edition. The MIT Press.

[6] Sue Fitzgerald, Beth Simon, and Lynda Thomas. 2005. Strategies That Students
Use to Trace Code: An Analysis Based in Grounded Theory. In First Int’l Workshop
on Computing Education Research (ICER 2005). ACM, 69–80.

[7] Robert J. Grissom and John J. Kim. 2012. Effect Sizes for Research: Univariate and
Multivariate Applications, Second Edition. Routledge.

[8] Philip J. Guo. 2013. Online Python Tutor: Embeddable Web-based Program
Visualization for Cs Education. In Technical Symp. on Computer Science Education
(SIGCSE ’13). ACM, 579–584.

[9] Matthew Hertz and Maria Jump. 2013. Trace-based Teaching in Early Program-
ming Courses. In Technical Symp. on Computer Science Education (SIGCSE ’13).
ACM, 561–566.

[10] Mark A. Holliday and David Luginbuhl. 2004. CS1 Assessment Using Memory
Diagrams. In Technical Symp. on Computer Science Education (SIGCSE ’04). ACM,
200–204.

[11] Raymond Lister, Elizabeth S. Adams, Sue Fitzgerald, William Fone, John Hamer,
Morten Lindholm, Robert McCartney, Jan Erik Moström, Kate Sanders, Otto
Seppälä, and et al. 2004. A Multi-national Study of Reading and Tracing Skills in
Novice Programmers. InWorking Group Reports from ITiCSE on Innovation and
Technology in Computer Science Education (ITiCSE-WGR ’04). ACM, 119–150.

[12] Raymond Lister, Colin Fidge, and Donna Teague. 2009. Further Evidence of a
Relationship Between Explaining, Tracing and Writing Skills in Introductory
Programming. In 14th Annual ACM SIGCSE Conf. on Innovation and Technology
in Computer Science Education (ITiCSE ’09). ACM, 161–165.

[13] Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. 2008. Re-
lationships Between Reading, Tracing and Writing Skills in Introductory Pro-
gramming. In 4th Int’l Computing Education Research Workshop (ICER ’08). ACM,
101–112.

[14] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan,
Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and Tadeusz
Wilusz. 2001. A Multi-national, Multi-institutional Study of Assessment of Pro-
gramming Skills of First-year CS Students. SIGCSE Bull. 33, 4 (Dec 2001), 125–180.

[15] Greg L. Nelson, Benjamin Xie, and Andrew J. Ko. 2017. Comprehension First:
Evaluating a Novel Pedagogy and Tutoring System for Program Tracing in CS1.
In 2017 ACM Int’l Computing Education Research Conf. (ICER ’17). ACM, 2–11.

[16] Miranda C. Parker, Mark Guzdial, and Shelly Engleman. 2016. Replication, Vali-
dation, and Use of a Language Independent CS1 Knowledge Assessment. In 2016
ACM Int’l Computing Education Research Conf. (ICER ’16). ACM, 93–101.

[17] David Perkins and Fay Martin. 1985. Fragile Knowledge and Neglected Strategies
in Novice Programmers.

[18] D. N. Perkins, Chris Hancock, Renee Hobbs, Fay Martin, and Rebecca Simmons.
1986. Conditions of Learning in Novice Programmers. J. of Educational Computing
Research 2, 1 (Feb 1986), 37–55.

[19] Vennila Ramalingam and Susan Wiedenbeck. 1998. Development and Validation
of Scores on a Computer Programming Self-Efficacy Scale and Group Analyses
of Novice Programmer Self-Efficacy. J. of Educational Computing Research 19, 4
(Dec 1998), 367–381.

[20] J. Robertson and M. Kaptein (Eds.). 2016. Modern Statistical Methods for HCI.
Springer.

[21] B. Rosenshine and C. Meister. 1992. The use of scaffolds for teaching higher-level
cognitive strategies. Educational Leadership 49, 7 (Apr 1992), 26.

[22] Elliot Soloway. 1986. Learning to Program = Learning to Construct Mechanisms
and Explanations. Commun. ACM 29, 9 (Sep 1986), 850–858.

[23] Juha Sorva, Ville Karavirta, and Lauri Malmi. 2013. A Review of Generic Program
Visualization Systems for Introductory Programming Education. Trans. Comput.
Educ. 13, 4 (Nov 2013), 15:1–15:64.

[24] Juha Sorva, Jan Lönnberg, and Lauri Malmi. 2013. Students’ ways of experiencing
visual program simulation. Computer Science Education 23, 3 (Sep 2013), 207–238.

[25] James C. Spohrer and Elliot Soloway. 1986. Novice Mistakes: Are the Folk
Wisdoms Correct? Commun. ACM 29, 7 (Jul 1986), 624–632.

[26] John Sweller. 1994. Cognitive load theory, learning difficulty, and instructional
design. Learning and Instruction 4, 4 (Jan 1994), 295–312.

[27] Lynda Thomas, Mark Ratcliffe, and Benjy Thomasson. 2004. Scaffolding with
Object Diagrams in First Year Programming Classes: Some Unexpected Results.
In Technical Symp. on Computer Science Education (SIGCSE ’04). ACM, 250–254.

[28] Rebecca Tiarks. 2011. What maintenance programmers really do: An observa-
tional study. In Workshop on Software Reengineering. 36–37.

[29] Vesa Vainio and Jorma Sajaniemi. 2007. Factors in Novice Programmers’ Poor
Tracing Skills. In 12th Annual SIGCSE Conf. on Innovation and Technology in
Computer Science Education (ITiCSE ’07). ACM, 236–240.

https://github.com/bxie/archive/tree/master/sigcse2018
https://github.com/bxie/archive/tree/master/sigcse2018

	Abstract
	1 Introduction
	2 The Strategy: Line-by-line + sketch
	3 Experiment: Tracing + think-aloud
	3.1 Study design: Think-aloud while tracing
	3.2 Problems: Fixed-code tracing questions

	4 Results
	4.1 The explicit strategy improved correctness
	4.2 An explicit strategy reduced errors
	4.3 Limitations

	5 Discussion
	6 Acknowledgements
	References

