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ABSTRACT
There is a consensus on integrating computing with STEM teaching
in K-12. However, very little is known about the integration. In
this paper, we propose a novel framework for integrating science
and computational thinking teaching using Logic Programming.
We then develop and implement two 8-session integration mod-
ules on chemistry and physics for 6th and 7th graders. Pre- and
post- tests, class observations and interviews show the feasibility
of the framework in terms of 1) development and implementation
of the modules, and 2) the students’ learning outcomes on science
content and Computational Thinking, and their acceptance of the
integration.

CCS CONCEPTS
• Social and professional topics→ Computational thinking;
K-12 education; • Computing methodologies → Logic pro-
gramming and answer set programming.
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1 INTRODUCTION
There is consensus on the need of integrating computing, integral
to the practice of all other STEM disciplines, in STEM teaching and
learning in K-12 (Kindergarten to 12th grade in the US education
system) (see, e.g., [31, 41]). However, little is known about how best
Computational Thinking (CT) can be taught and how to integrate
it with STEM disciplines to improve STEM and CT learning in K-12
in general and middle schools in particular.
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To develop effective, integrative curriculum, it is desirable to have
frameworks on how CT can be integrated to STEM education to
support both CT and STEM curricular topics and students’ learning
outcomes.

In this paper we propose a Logic Programming (LP) based frame-
work for integration, called LPK12. LPK12 achieves a deep integra-
tion of CT and STEM education by building computer models for
STEM problems through Answer Set Programming (ASP) [15] – a
modern LP paradigm. LPK12 is based on the following arguments.
First, LP has low floor and high ceiling [32]. It allows students to
start developing computer models for interesting, non-trivial STEM
problems after a very short introduction and yet it is a full-fledged
programming paradigm. Second, LP facilitates a unified treatment
of the fundamental skills and topics in STEM and Computing thanks
to the fact that LP is based on discoveries and ideas of Logic which
forms an important base for learning and problem solving in all
STEM disciplines. The LP modeling methodology allows a natural
and seamless connection of subject-matter concepts and reasoning
to computer model development. Thirdly, middle school students
are cognitively ready for LP based approaches. By Piaget [33] and
Vygotsky [44], children at age 11 to 15 demonstrate substantial
knowledge of natural language and the logical use of symbols re-
lated to abstract concepts. Finally, for STEM, LPK12 facilitates stu-
dents to develop fundamental skills, as defined in next generation
science standards (NGSS) [30], such as asking questions and defining
problems, constructing explanations, engaging in argumentation, and
communicating information. For Computing, students will get abun-
dant opportunities to learn and practice various levels of abstraction,
problem solving, programming and communication as identified in
the K-12 Computer Science Framework [22].

The rest of the paper is organized as follows. We present the
LPK12 framework in Section 2 before the discussion of the related
work in Section 3. In Section 4, we introduce the design of the study
of the feasibility of LPK12 and the procedure of data collection and
analysis. In Section 5, we present the data in alignment with our
research questions. The paper is concluded by the last section.

2 THEORETICAL FRAMEWORK
2.1 LP Based Integration of Computing and

Science Teaching
To integrate STEM and Computing teaching, we employ a method-
ology with two (often iterative) sequential components: (1) Prob-
lem Description. Teach students a new or learned STEM topic
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(problem). Students are expected to answer basic questions in this
topic and understand why. (2)Modeling. Ask students to build a
computer model using LP. The model is expected to answer the
questions in the problem descriptions.

We will use food chain as an example to illustrate both the
methodology and LP.

Problem description. Food chains are a science topic taught in
middle school. Consider a chain with carrots, rabbits, snakes and
eagles. Typical questions include “Q1: do eagles eat snakes?” and
“Q2: what would happen to eagles if snakes become extinct?” Stu-
dents are expected to review or learn food chains and how these
questions can be answered.

Modeling. To design a computer model to answer the questions
above, we follow an LP modeling methodology which consists of
two steps. (1) Identify objects and relations in the problem. (2) Iden-
tify knowledge in the problem and write LP rules for this knowledge.
The final LP rules, also called a program, form the model of the
problem.

Objects of the food chain problem. The objects here are four
species of organisms, which can be represented in LP by the fol-
lowing sort declaration:

#species = {eagle, snake, rabbit, carrot}.
Note that each species is taken as an object here. #species is

called a sort name.
Relations in the food chain problem. From question Q1, we iden-

tify a relation of the form f eedsOn(X ,Y ) meaning that members of
species X feed on those of species Y . In question Q2, we introduce a
relation extinct (X ) which means that species X is extinct.

Knowledge and LPRules. In this part, we explicate the science
knowledge needed to answer the questions in English and then
“translate” that knowledge into LP rules. The declarative nature
of LP allows for a natural translation. For example, in the given
food chain, we know that “rabbits feed on carrots”, which can be
translated, using the relation introduced earlier, into

r1 : f eedsOn(rabbit , carrot ).
which is called a fact, a simplest form of an LP rule. r1 is the

label of the rule which may be referred to later. Similarly, we
have the knowledge that “snakes feed on rabbits” and “eagles
feed on snakes” which are translated respectively into the facts:
r2 : f eedsOn(snake, rabbit ) and r3 : f eedsOn(eaдle, snake ). The
collection of rules above forms an LP program which can be used to
answer question Q1. A query f eedsOn(rabbit ,X ), whereX is a vari-
able (in the standard sense of a variable in algebra/math), asks the
program to find an organism (X ) that the rabbits in the chain feed on.
The correct answer is carrot. Figure 1 gives an idea of onlineSPARC,
an online LP programming environment (http://goo.gl/ukSZET)
[34]. Area 1 (in red ellipse) is an editor containing the program
above, and area 2 contains the query f eedsOn(rabbit ,X ). When
the “submit” button is pressed, the answer is shown in area 3.

To answer question Q2, we add the knowledge that snakes are
extinct which is represented as r4 : extinct (snake ).We also need
some more general knowledge: “a species will be extinct if what
it feeds on is extinct.” This knowledge can be represented by an
LP rule of the form: r5 : extinct (X ) :- f eedsOn(X ,Y ), extinct (Y )
where the symbol “:-” is understood as “if.” The rule is read from
left to right as for any species X , X is extinct if X feeds on Y and

Y is extinct. (Note: the rule is an accurate representation of the
knowledge in food chains, but needs to be refined when a food
web is modeled.) With these newly added rules, the LP program
concludes that eagles are extinct too.

We have covered almost all major constructs of ASP.We hope the
examples demonstrate the simplicity of ASP and the naturalness of
the modeling and how the modeling focuses on domain knowledge.
One can also see that LP, together with its modeling methodology,
produces a seamless integration of Science and Computing.

2.2 LPK12 Facilitates STEM and CT Learning
Model-based learning is well accepted in science education. It is
anticipated to help students’ “attainment of ’conceptual under-
standing’ in science at a level that goes beyond memorized facts,
equations, or procedures” [5]. It is well recognized that building
computer models for STEM problems helps STEM education too
[10, 16, 19, 21, 35, 40, 45]. In fact, Harel and Papert [19] pointed out
that learning computing together with another subject can be more
effective than learning each separately.

To illustrate how LP-based integration will facilitate STEM learn-
ing, we use the framework for K-12 science education[11]. The
framework articulates a vision of the scope and nature of K-12
education in Science, engineering, and technology. It has been imple-
mented by NGSS (Next Generation Science Standards) which has
been adopted by 16 states in US.

The NGSS framework divides the fundamental, core skills for sci-
ence, engineering and technology into eight practices. SP1: asking
questions and defining problems. SP2: developing and using mod-
els. SP3: planning and carrying out investigations. SP4: analyzing
and interpreting data. SP5: using mathematics and Computational
Thinking. SP6: constructing explanations and designing solutions.
SP7: engaging in argument from evidence. SP8: Obtaining, evaluat-
ing, and communicating information.

LPK12 is able to cover the majority of the eight practices. As
shown in our integration example in Section 2, students have to ask
and answer questions before building a computer model. Hence,
SP1 is in a prominent position in LPK12. LPK12 is driven by de-
veloping computer models for STEM problems and thus SP2 will
be practiced intensively under our integration methodology. In
LPK12, as shown in Section 2.1, students are encouraged to iden-
tify the knowledge and represent it as rules for computer models.
Hence, SP3 and SP6 (solution design) are addressed in our integra-
tion. When testing and debugging their computer models, students
have to re-examine the program and apply logical reasoning to
explain the program behavior. Therefore, SP6 (explanation) and
SP7 are well represented in our integration. As required in LP mod-
eling methodology, students have to identify the knowledge used
in modeling, express it in English and then translate it into rigorous
rules. Hence, our integration helps students to practice SP8 (com-
municating information). Practice SP5 will be elaborated below on
mathematics and computing separately.

As for mathematics, our integration helps address some core
practices as identified in the Common Core State Standards for
Mathematics [20]. MP2: reason abstractly and quantitatively. MP3:
construct viable arguments and critique the reasoning of others.
MP6: attend to precision. As argued before, when developing and
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Figure 1: Screenshot of onlineSPARC

testing the computer models (e.g., that for food chain), all these
practices are explicitly involved.

As for computing, LP covers the core practices of abstracting,
problem solving, programming and communicating, as defined in an
AP course [8] and standards ([12, 22]). The identification of relations
and knowledge and the translation of knowledge into rules are
a clear practice of abstracting. As a programming paradigm, LP
offers the practice of all aspects of programming: model (program)
design, program editing, (informal yet rigorous to a great extent)
syntax and semantics, coding, testing and debugging. As shown in
Section 2.1, model development starts from problem description.
Hence problem solving is at the core of our integration. As argued
for STEM, communicating is well covered by LPK12.

2.3 Appropriateness for Middle School
Students

By Piaget [33] and Vygotsky [44], children from 11 to 15 demon-
strate logical use of symbols related to abstract concepts. LPK12
also supports learning progression across multiple years as required
in both STEM and CT [2, 9, 39] because of the easy integration with
STEM topics. LPK12 also lends itself to well-accepted pedagogies
such as scaffolding (because LP methodology explicates the knowl-
edge and skills needed in problem solving in STEM) and inquiry
based learning (because LP integration is driven by building com-
puter models for answering questions – see Section 2 and 4.2). Due
to space limitation, we are not able to elaborate on the above here.

3 LITERATURE REVIEW
Logic Programming Research and Its Use in Education. Born
in the 1960s, Logic Programming is a meeting point of Thinking,
Logic and Computing [24, 26]. It has been studied for teaching
children since the 1980s [25] because it is supposed to allow a
declarative (i.e., logical) reading and understanding of a program
(and thus easy for children) [17, 29]. Unfortunately, the strong
procedural component of classical LP systems such as PROLOG
[29, 43] has prevented LP from reaching a wider audience although
there have been efforts in the last two decades to include it in high
school curriculum [3, 38, 42] and undergraduate teaching [27]. A
major breakthrough in the last two decades is the establishment of
Answer Set Programming – a purely declarative LP paradigm [15].
ASP is now a major paradigm in Knowledge Representation and
Logic Programming community [24] with numerous applications

across many areas [14]. This breakthrough merits a revisiting of
LP in teaching because it eliminates the procedural component.

Programming Systems inK-12.Themainstream systems used
in K-12 is based on visual programming environments such as
Scratch and Alice [23, 28]. The majority of systems encourage and
facilitate tinkering and fit the needs of students who prefer tinkering
to logic and planning [32, 36]. These languages and environments
have been very successful in reaching a large K-12 population.
However, more research is needed to understand how CT occurs as
students are tinkering while using visual programming languages
[17, 28]. The majority of the teaching modules, based on the visual
programming languages, adopt open-ended contexts such as game
design and storytelling for ad hoc STEM topics [2], which makes
the alignment with curricular topics difficult.

Integration of Computing and STEM Teaching. Some chal-
lenges for integrating computing into STEM in K-12 are how to
align with STEM and CT curricula topics and how to support stu-
dents’ learning progression (usually across multiple years) in both
STEM and CT [2, 9, 39]. To develop effective integration curriculum,
it is desirable to have integration frameworks to support curricular
alignment and learning progression. One of the few works in this
direction is [40] which proposes the use of agent-based computa-
tion to integrate CT and science. We also note a rigorous study on
how the integration may improve students’ learning of a specific
topic in mathematics [37]. However, this study does not present a
general framework on the integration.

Our Contribution. As far as we are aware, we are the first to
propose the use of LP, a purely declarative programming paradigm,
to integrate computing and STEM. The majority of integration (in-
cluding [40]) is based on imperative programming paradigms. We
note functional programming, also declarative, is used in integra-
tion, e.g., [37]. However, the work in [37] is on a specific topic
but not on a general framework. The main advantages of LP over
imperative languages are as follows: 1) LP is simple in both syn-
tax and semantics (see Section 2); 2) the fact that LP is based on
discoveries and ideas of Logic which also forms an important basis
for learning and problem solving in all other disciplines provides
a more straightforward connection between LP based models and
STEM problem solving; and 3) the high level of abstraction of LP
allows one to “hide” many machine-related details when solving a
problem. It is also observed that text-based languages have the ad-
vantage over visual languages of “taking students deeper into both
programming and science” [13, 39]. LP is a text-based language.
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4 STUDY DESIGN
To study the feasibility of LPK12, we developed two LP-integrated
modules and applied the exploratory case study method to pilot
the exploration of the efficacy of the modules [1].

4.1 Participants and Context
This study took place in an elective course, with the name “STEM",
of a middle school with 900 students in grades 6th - 8th which is
located in a middle-south city in the United States. The participants
were one STEM teacher and her four sections of 96 6th-graders and
three sections of 71 7th-graders. Among the 6th (and 7th respec-
tively) graders, there were 61 (and 51) males and 36 (and 20) females.
The ethnographic composition of 6th graders was 60 Whites, 28
Hispanics, 5 Blacks, 2 Asians, and 1 American Indian; and that for
7th graders was 43 Whites, 22 Hispanics, 3 Blacks, and 3 Asians.

4.2 LP Based Integration Modules and
Implementation

We developed a chemistry module (periodic table) for 6th graders
and physics module (motion) for 7th graders.

4.2.1 Chemistry Module. Lesson 1 introduces computer science in
general and computer models in particular. Part 1 includes moti-
vating videos such as Computer Science is Changing Everything by
code.org (2016) and discussions following these videos. In part 2,
by asking students questions about their classroom, school, and a
family, we introduce the concept of models that human beings may
use to answer questions. Using human thinking as an analogy, we
introduce the concept of LP based computer models for problem
solving. Students would interact with a model by asking the same
questions they were asked in the lesson and extending the model
with new knowledge.

Lesson 2 introduces LP concepts of relations, facts, and queries
using examples. It first reviews the chemical symbols for elements.
Students will then extend a given model by adding facts, e.g., on the
symbol for Hydrogen. They first type a comment “% The symbol
for Hydrogen is H” and then the fact “symbolFor(hydrogen,
h).” Queries are introduced to answer questions to the model.
Students then extend the model with knowledge from other el-
ements including carbon and phosphorous, and test the model
using queries.

Lesson 3 reviews new topics of atomic number and mass number.
The teacher will introduce relations needed to answer questions in
those topics. Students will then expand a given model with facts
about the new knowledge on atomic number and mass number,
and then test the model using queries.

Lesson 4 introduces variables using queries. E.g., for question
“what is the chemical symbol for the element silicon?’, we need a
query “symbolFor(silicon, What)?” where What is a variable.
Students practice variables by writing queries for similar questions
about other elements. A new relation protonsO f (E,N ) is intro-
duced to denote that the number of protons of the atom of element
E is N . Finally, students are challenged to extend a given model
with facts representing the knowledge of the protons of hydrogen.

Lesson 5 introduces rules. It reviews knowledge relating proton
number to atomic number: the number of protons of the atom of

an element E is N if N is the atomic number of the element E. It
then shows the rule for representing it:

protonsOf(E, N) :- atomicNumber(E,N).
Students extend a given model by this rule and test it. They then
practice by writing a rule for knowledge on getting atomic number
from proton number and to test it.

Lesson 6 and 7 introduce more complexity to the rules. It reviews
domain knowledge relating the number of neutrons to mass number
and proton number: N is the number neutrons of an atom E ifM is
the mass number of the atom E, and N =M − P . It is represented as

neutronsOf(E, N) :- massNumber(E, M),
protonsOf(E, P), N = M - P

where “,” between relations means conjunction. The students extend
a given model with the rule and further by a rule defining the mass
number of an element using its number of neutrons and protons.

Lesson 8 continues the practice of writing rules and reviews
domain knowledge relating the number of electrons of an atom to
that of protons or the atomic number. Students are asked to write
and test a rule for this knowledge. Another exercise is to represent
the knowledge on getting neutron number from proton and mass
numbers.

4.2.2 Physics Module. This 8-lesson module has a similar struc-
ture to the chemistry one. Due to lack of space, here we only give
the physics problem involved and its modeling information. The
physics concepts covered are target object, reference object, distance
change between two objects and the target object’smotion relative to
the reference object. They are introduced by an experiment where
one student will move a chair with another student on it. During
and after the experiments, questions about the concepts are asked,
discussed and explained. To model the problem, we introduce the
relations isTarдet (X ) (i.e., X is a target object), isRe f erence (X )
(i.e., X is a reference), distanceChanдe (X ,Y ) (the distance changes
betweenX andY ), andmovinд(X ,Y ) (X is moving relative to object
Y ). One piece of knowledge used is: an object X is moving relative to
object Y if the distance between X and Y changes. (This knowledge
may need to be refined in a rigorous setting or multiple dimensions.)
We also introduce the classical negation ¬ in this module.

4.2.3 Implementation. Each class session consists of one or several
cycles. Each cycle consists of two components: concept understand-
ing (by lecturing and discussion with a duration of 5-10 minutes)
and programming practices. Slides are designed to facilitate the
lecturing and discussion, and workbooks are designed to contain
detailed information to guide the students on their programming
practices. Programming involves too much information and any
ignorance of any information by students will frustrate them and
interrupt the class flow. The workbooks make it easy for students
to review or find information they need.

4.3 Research design
This study lasted for four weeks of totally 8 50-minute long periods
in spring 2018. Due to the exploratory nature of this study, we se-
lected topics that the participating students had learned prior to the
intervention. The goal is to measure students’ learning outcomes
in science content and computational thinking.
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4.4 Data collection and analysis
We administered pre- and post-surveys to examine the learning out-
comes. They contain multiple-choice questions assessing students’
scientific content knowledge of interest and computer science skills.
The science questions have been previously validated. Since LP is
new in teaching CT, the questions are designed by the researchers
by following the guide in [4]. Each question is graded as either
1 (correct) or 0 (incorrect). The total score is the sum of scores
from all question. The questions from the pre- and post-surveys
are substantially the same and vary only in different context. For
instance, the questions in the pre-survey for the 7th-graders are
about a boy on a swing and those in the post-survey are about a car
leaving a garage. The purpose of not using the same questions in
the post-survey is to suppress the possibility of students answering
questions through memorization.

Here are some questions for physics. Pre-question. A boy is
playing on a swing in a park. His mom stands still by the swing.
There are several other kids playing on a slide in the same park. In
reference to the boy, is the swing moving? A. Yes, B. No, C. Not
sure, more information is needed. Post-question. A boy is sitting in
a car. His mom is reversing from the garage. His dad is standing
still in the garage and saying bye to them. In reference to the boy,
is the car moving? A. Yes, B. No, C. Not sure, more information is
needed. Here is a question for measuring abstraction in Computing.
We know protonNumber(E, N) means that the proton number for
element E is N, electronNumber(E, N) means that the electron
number for element E is N. Write a rule to represent the following
knowledge: the electron number of E is N if the proton number of
E is N. A. the electron number of E is N if the proton number of
E is N. B. protonNumber(E, N) :- electronNumber(E, N). C.
electronNumber(E, N) :- protonNumber(E, N). D. None of
the above.

Besides descriptive statistics, we applied paired t-tests on the
surveys for the pre-post comparison. Meanwhile, we calculated
Cohen’s d [7] and normalized gain [18] to measure the effect size.
Cohen’s d describes the width of the impact on students from the
integration modules (small 0.2, medium 0.5, large 0.8) and normal-
ized gain describes the magnitude of the impact in terms of the ratio
of the actual progress made by students to the maximum progress
that students could make (small <0.3, medium 0.3-0.6,large >0.7).

We also carried out one post group interview for each grade to
gauge the students’ feedback to their experience with the integra-
tion modules. The interviews were semi-structured. We recruited
volunteer 6th and 7th graders with a diverse background in terms
of gender, race, science content knowledge and CT understanding
(so that they are representative to the greatest extent – See Table 1).

Table 1: Background information of the interviewees

S7
-1

S7
-2

S7
-3

S7
-4

S7
-5

S7
-6

S7
-7

S7
-8

S6
-1

S6
-2

S6
-3

S6
-4

S6
-5

S6
-6

S6
-7

G 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6
S M F M M M M F M M M M M F F M
R A W W W H W W W W H W W H W W
Sc 3 4 1 2 3 4 4 3 2 3 3 2 2 1 1
CT 3 3 3 2 3 4 4 3 2 3 2 4 3 2 3

G: grade; S: sex; R: race; M: male; F: female; Sc/CT: Science/CT score out of
4; S7-i, S6-i: pseudo code for students; A: Asian; H: Hispanic; W: White.

The interviews were audio-recorded and transcribed later. Codes
were developed to identity students’ feedback to the integration
modules. We coded the interviewees’ comments from three per-
spectives: module being interesting, computing being impactful to
science learning, and science being impactful to computing learning.
For each category, we coded an interviewee’s response as “Yes” (i.e.,
admitting that statement), “No” (denying that statement), and “N/A”
(i.e., not mentioning it in the interview).

5 FINDINGS
5.1 Q1. How did the integration modules affect

the students’ learning?
We summarized in Table 2 the data about pre-post comparison. Both
the 6th- and 7th-grade students developed their CT (abstraction)
significantly with Cohen’s d being large and normalized gain being
medium, which indicates that the modules have helped most of
the participating students make considerable progress in CT skills.
Similarly, the 7th graders’ physics content knowledge increased
significantly. The effect size indexes (Cohen’s d=1.15,<g>=0.61)
suggest that most students developed their understanding about
the relative nature of motion to a considerable extent after the
integration modules. However, the 6th graders’ chemistry content
knowledge decreased from 1.55 to 1.35. This decrease might happen
by chance because it is not statistically significant. Some possible
reasons might be that the students had different statuses while
answering those questions, and students may be more serious to
answer the questions in pre-survey. Some extra instruments may
be needed to figure out the reasons in the future study.

Table 2: Paired t-tests of assessments on science and CT

Pre SD Post SD |t|(df) p C-d <g>
6-C 1.55 0.95 1.35 0.88 0.89(73) ns -0.22 -0.08
6-CT 1.14 1.02 2.51 0.99 10.46(70) *** 1.36 0.48
7-P 1.62 1.37 3.07 1.16 6.71(55) *** 1.15 0.61
7-CT 1.73 1.17 2.61 1 4.37(56) *** 0.82 0.39

ns: not significant; ***: p<0.001; Pre and Post: mean score with a max score
of 4; 6-C: chemistry; 7-P: physics; C-d: Cohen’s d; <g>: normalized gain

The quantitative data does not cover students’ learning of pro-
gramming and communication. They are examined by class obser-
vations and the interviews. For programming, students are expected
to repeat given models and extend them with new knowledge and
rules during class. According to the class observation by the teacher
and researchers, a majority of the students are able to complete
both types of tasks. We will discuss next the interview results on
the programming and communication aspect of CT.

From the interviews, students show positive experience with
programming and LP. For example, “I think it was really easy. Be-
cause you’re basically just saying it in English, but just like a different.
Well.. It’s like pretty much the same thing” by S7-7. “I really liked the
questions for the query because if you get your answer yes your like
hard work paid off or if it didn’t you need to like go through all your
steps again” by S6-5 (and similarly S6-4). The favorite part of the
class is “the coding part” by S7-3 (and agreed by S7-1, S7-4, S7-5 and
S7-6). “My favorite part is I think just learning new coding styles in
general is cool to me because we went from symbol forward to atomic
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number to number of neutrons to protons and I’m just excited for
what we learned” by S6-7. When comparing other programming
paradigms such as drag and drop, “this time around, we actually we
had to learn what to say to do it. I mean in fourth grade all we did
was pretty much move like right forward back but here we actually
had to learn is like protons, neutrons, electrons stuff like that for sparc
[LP system used in our implementation], which I think is actually
better on that because we can learn more .... I mean it’s a lot harder
and more informative if you actually do [LP programming]” by S6-2.

Debugging is an important element of programming. Students
seem to be able to do debugging and appreciate its value. Here are
example excerpts. Comment by S6-5 above on programming. “When
it [the model/program] just doesn’t give you an answer and then you
realize you did something wrong and you go back and you look over
it [program]” by S6-6. “when you make a mistake you get to go back
and then while you’re retyping something or redoing something you
can look and make sure that you get like if I got let’s say lithium
and I went back next to and accidentally only put a top or a symbol
for it is as LI can go back and put it as li and that helps me more
because the more and more I do it and the more I make mistakes the
more I will know to put the right or correct answer” by S6-7. When
something is wrong, “I got through all the steps that I took and if I
missed a step or something I would go back and fix it and it would
work again” by S6-6. When asked if they tried to find errors when
their program does not answer a query correctly, S7-1, S7-2, S7-3
and S7-4 answered yes while S7-5 no. As for locating errors, “ask a
query of a certain line of code. And if it [LP system] comes up ... the
opposite [to the expected] response then ... you can go through that
specific line of code and see what’s wrong” by S7-2.

For CT practice communication, in our teaching, we always start
from English description of knowledge and then write rule(s) to
represent the knowledge. As a result, we observed that majority
of students always write English description before writing any
rules. When commenting about this methodology “I think they help
... because you’re actually reading it and if you don’t understand
something you can read it again maybe ask a couple questions” by
S6-6. Another example is the comment by S7-7 above. Given the
precision needs of computer models, the writing of the description
and translating it into rule(s) will improve students’ rigorousness
in communication.

5.2 Q2. How the participants reflect on their
experience with the LP based integration?

Most of the interviewees commented positively on their experience
with the integrated modules. 13 out of 15 interviewees thought
that the modules were interesting (S7-7 was coded as “No” and
S7-6 as “N/A”). 14 out 15 interviewees believed that computing
impacted science learning (S7-3 is coded as “No”), and vice versa
(S7-6 is coded as “No”). Thus, the LP based integration of science
and CT is accepted by the students. S6-4 commented that science
and computing can support each other: “I think it can be fun just like
learning about new like elements that like mean this is technology,
but we’re also learning about like other stuff in our world not just
kind of ... it’s like a win-win.” “instead of just learning it [motion], but
putting it into something you can do like teaching the computer, that
makes it more fun” by S7-7. “[computing] makes it more interesting

because you’re not just looking at a whole lot of boxes on a piece of
paper [periodic table]” by S6-5. “[Computing is interesting] when
we had to do the like the number of neutrons equals the number of
protons like you add both of those to get the uh, atomic mass” by S6-3.
“You don’t really notice you are learning the chemistry and stuff until
you are done with it [modeling] ...” by S6-1. When talking about
modeling chemistry problems, “you might feel more professional
because you’re doing something that professionals would do” by S6-4.

6 CONCLUSION
We propose an LP based framework to integrate computing and
STEM teaching in K-12. To test its feasibility, we have developed
two integration modules for 6th and 7th grades. By our experience,
the framework allows a rather straightforward development of the
modules (see Section 4.2). We conjecture that the development of
modules for other topics in science, based on our modules, will also
be straightforward. Our survey data show that students’ learning
has been improved on physics and CT (abstraction) significantly.
Class observations and interviews show that students are doing
well in the other aspects of CT: programming and communication.
Interviews also show the LP based integration is accepted by stu-
dents: the modules are interesting and there is a positive impact of
computing and science to each other.

In summary, LP based integration seems to be promising in
terms of the development and implementation of the two 8-session
modules, the students’ learning outcomes.

There are some limitations in this preliminary study. 1)It is diffi-
cult to test students’ development of problem solving capacity, a CT
practice, because the short duration of the project. Our framework
allows a curriculum with much longer duration (see Section 2.3).
We will plan experiments with longer duration in future. 2) Other
variables are not controlled. For example, we did not control the stu-
dents’ access to resources of both science and computational science.
Thus, we cannot ascribe the observed pre-post differences solely
to the LP-integrated modules as there might be other variables
that took effects. 3) Our survey data did not show improvement on
students’ learning outcome on chemistry. One explanation is that
two of the four test questions involve complex relations and calcula-
tions. One question is “How many protons, neurons and electrons are
present in an atom of hafnium, Hf, with a mass number of 178, and
an electron number of 72?” We focus on the declarative knowledge,
but it may still be challenging for 6th graders to calculate the right
answer from their knowledge. In future, clinical interviews will be
used to understand students’ performance change. 4) We do not
have a quantitative measurement on students’ learning outcomes
on programming and communication of CT practices. In future,
we will develop and validate quantitative assessment and rubrics
to more rigorous measurement of students’ outcomes on these CT
practices. Finally, our future workwill be exploring how to integrate
the LP-integrated method into core STEM courses seamlessly.
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