
LEARNING ABOUT COMPUTING IS LEARNING

ABOUT PROGRAMMING

Learning about computing almost always requires learning about pro-

gramming. There have been some brilliant people, like Alan Turing and

John von Neumann, who could think about computing without a lan-

guage or notation, but those people are rare. It is analogous to learning

mathematics, including addition, subtraction, and multiplication, with-

out writing digits like “34.9” or symbols like “+.”

Programming is defining a computation, something that a computer

can do. A program describes a process. A program can be specified in any

notation, so we should pick one that best suits the programmer and the

domain. The most popular programming languages today are demand-

ing, requiring students to use complex cognitive skills such as abstraction

and decomposition of a problem into subcomponents. Programming

does not have to be so complex and overwhelming. A simple program-

ming language can still be effective for learning. Programming is a power-

ful tool for helping students learn in many different domains. I argue in

this chapter that providing students with the ability to program is providing

them with a literacy that can be an advantage in learning about everything else.

The term computer science first appeared in print in the Journal of Engi-

neering Education in 1961 in an article by George Forsythe (Knuth 1972).

2
PROVIDING STUDENTS WITH
COMPUTATIONAL LITERACY FOR
LEARNING ABOUT EVERYTHING

Mark Guzdial

Downloaded from http://direct.mit.edu/books/oa-edited-volume/chapter-pdf/2019329/c001400_9780262368971.pdf by guest on 04 May 2022

30 M. gUZdIAl

Forsythe described (in 1968) that he saw computation as a “general- purpose

mental tool” that would “remain serviceable for a lifetime.” Explicitly, com-

puter science was defined as something that students could use to aid in their

thinking and their learning, especially in STEM (science, technology, engi-

neering, and mathematics) classes. In this chapter, I argue that the value of

learning programming is even greater than what Forsythe described.

There are many possible benefits to students learning to program. The first

section of the chapter lists many of these, ending with the most powerful—

programming as a new kind of literacy. The next section explains why the

computer can help with learning everything else, because it is the “master

simulator.” Finally, I argue that even a simple programming language can

have enormous advantage in learning. We don’t need all the power of C,

Scheme, or Logo to learn with programming as a literacy.

WHY SHOULD STUDENTS LEARN TO PROGRAM?

Learning to program does not impart to the learner general problem- solving

skills. There have been several studies looking for transfer from teaching

programming to general problem- solving skills. Probably the first study

investigating this claim was done by Roy Pea and Midian Kurland in 1984.

David Palumbo completed a meta- review of the research relating learning

programming and learning problem- solving (1990). Since then, the topic

has been revisited, but I read Palumbo’s results as painting a picture of pro-

gramming as an opportunity to teach problem solving rather than an expe-

rience where problem- solving is learned automatically.

It is possible to teach problem- solving using programming, but

problem- solving skills are not the automatic and direct result of learning

to program (Grover and Pea 2013). Sharon Carver showed how to teach

problem- solving with programming (Carver 1988). She wanted students

to learn debugging skills, such as being able to take a map and a set of

instructions and then figure out where the instructions are wrong. She

taught those debugging skills by having students debug Logo programs.

Students successfully transferred those debugging skills from Logo pro-

gramming to the map task. That’s significant from a cognitive and learning

sciences perspective. But her students didn’t learn much programming;

Downloaded from http://direct.mit.edu/books/oa-edited-volume/chapter-pdf/2019329/c001400_9780262368971.pdf by guest on 04 May 2022

CoMPUtAtIonAl lIteRACY FoR leARnIng AboUt eveRYtHIng 31

she didn’t need much programming to teach that problem- solving skill.

Other studies have found similar results (Grover, Pea, and Cooper 2015;

Kalelioglu and Gülbahar 2014).

Fortunately, there are many other benefits of learning to program.

These are described in the paragraphs that follow.

to UndeRstAnd tHe WoRld In WHICH tHeY lIve

Simon Peyton Jones argued that computer science is a science like all the

others (Peyton Jones 2013). We teach chemistry to students because they

live in a world with chemical interactions. We teach biology because

they live in a world full of living things. We teach physics because they live

in a physical world. We should teach computer science because they live in

a digital world.

Students live in a world where secret messages can be hidden inside

of pictures and where machines can be infected with viruses. They live

in a world where they own many computers, some of which do noth-

ing more sophisticated than control their microwave oven. They do not

need to know how all of this works at a level that they could build it

(although they may want to). They do need to understand enough to

troubleshoot the computing in their lives: for example, to know that it is

unlikely for the internet to ever “break,” but the router in their home can

fail. They need to understand enough to protect themselves: for example,

why running any arbitrary program downloaded from the internet may

be dangerous for their security. They also need to understand that they

can make their own apps and games and that anyone with any computer

can invent something that is world changing. Students should know the

basic principles of how their world works.

to Use CoMPUteRs MoRe eFFeCtIvelY

We all use computers ubiquitously, from the cellphones in our hands to

the laptops on which we work. Does knowing how the computer works

lead to more effective use of the computer? Are people who program

less likely to make mistakes with software? Are they more resilient in

bouncing back from errors? Can programmers solve computing problems

Downloaded from http://direct.mit.edu/books/oa-edited-volume/chapter-pdf/2019329/c001400_9780262368971.pdf by guest on 04 May 2022

32 M. gUZdIAl

(those that happen in applications or with hardware, even without pro-

gramming) more easily?

I bet the answer is yes, but I am unaware of research results that sup-

port that argument. There are likely common elements to mental models

that are used to understand the computational systems with which we

interact. Some of those common elements may include the causal and

repeatable nature of computers, which is unlike our everyday experience

(e.g., your PowerPoint animations likely work exactly the same way every

time). Programming may be a way to learn those common elements explic-

itly and efficiently.

to InFlUenCe tHeIR WoRld

The default behavior of users with computers is to consume. We consume

books, videos, music, and commentary in an endless stream or scroll. The

promise of programming is to turn digital consumers into digital produc-

ers who can use computing to have an effect on the world.

Yasmin Kafai calls this promise computational participation (Kafai 2016),

and Tissenbaum, Sheldon, and Abelson (2019) call it computational action.

The computer’s connectivity, malleability, and representational power

give students the ability to make digital products and share them widely.

From YouTube videos to new apps, the computer provides a rich medium

for creativity and a far- reaching distribution mechanism.

The question of the role of programming changes if we reframe pro-

gramming. Imagine if programming was not a complex and hard- to- learn

activity. What if learning to program was like learning to use a drawing

app, a photo editing tool, or a video editor. If we think of programming

as defining a process for someone else to use, then teaching students to

program is giving them another way that they can create digital artifacts

(i.e., stored and executable process) and share them with the world.

to stUdY And UndeRstAnd PRoCesses

Alan Perlis (first Association for Computing Machinery [ACM] Turing

Award laureate) argued in 1962 that everyone on every campus should

learn to program (Perlis 1962). He said that computer science is the study

of process. He contrasted learning computer science with learning calculus.

Downloaded from http://direct.mit.edu/books/oa-edited-volume/chapter-pdf/2019329/c001400_9780262368971.pdf by guest on 04 May 2022

CoMPUtAtIonAl lIteRACY FoR leARnIng AboUt eveRYtHIng 33

Calculus is the study of rates, which is important for many disciplines.

Perlis argued that all students need to learn about process, from manag-

ers who work on logistics to scientists who try to understand molecular

or biological processes. Programming automates process, which creates

opportunities to simulate, model, and test theories about processes at

scale. Abelson, Sussman, and Sussman (1996) stated that mathematics is

about formalizing declarative knowledge (“what is”), while programming

is about formalizing imperative knowledge (“how to”).

Perlis was prescient in predicting computational science and engineer-

ing. Today, people play “what- if” games with spreadsheets daily. We use

computing to track our weather and our packages. Most professionals

use a computer to explore models. The ability to construct models and

test hypotheses by executing those models is one of the most powerful

abilities that a computer can provide us. It is especially powerful because

it extends a basic human capability— to imagine a possible future world.

The computer can allow us to realize this world (at a level of fidelity that

makes sense for our needs) and test it in simulation. Testing our imagined

worlds is difficult to do at the level of precision that a computer affords.

to HAve A neW WAY to leARn sCIenCe And MAtHeMAtICs

Mathematics places a critical role in understanding our world. The power

of mathematics in science is obvious, but the adoption of mathematics

in society may be even more influenced by its importance for business.

Without a doubt, the world runs on numbers.

Our notation for mathematics is mostly static equations representing

models about the world. Increasingly, we are finding that representing

code is different and gives us new insights. This is what Andy diSessa has

been saying in his calls for computational literacy (2001). Bruce Sherin

(2001), Idit Harel (1990), Yasmin Kafai (2014), Uri Wilensky (2016), and

many others have shown us how code gives us a powerful new way to

learn science and mathematics. Bootstrap:Algebra (Schanzer et al. 2015)

teaches algebra with computing. Every student of mathematics should

also be a student of programming, because it provides a different, dynamic

notation for understanding mathematical ideas. When the programming

context is tied to a real application (from image manipulation to video

Downloaded from http://direct.mit.edu/books/oa-edited-volume/chapter-pdf/2019329/c001400_9780262368971.pdf by guest on 04 May 2022

34 M. gUZdIAl

games), the computation can help to concretize the mathematical con-

cepts (Wilensky 1991), which can make them more engaging and easier

to learn.

to be Able to AsK QUestIons AboUt tHe teCHnologICAl

InFlUenCes on tHeIR lIves

C. P. Snow (1962) also argued for everyone to learn computing in 1962,

but with more foreboding. He correctly predicted that computers and

computing algorithms were going to control important aspects of our

lives. He said, “I am asking whether we are now running into a posi-

tion where only those who are concerned with the computer, who are

formulating its decision rules, are going to be knowledgeable about the

decision,” and “It is not only that I am afraid of misjudgments by persons

armed with computing instruments; it is also that I am afraid of the rest

of society’s contracting out, feeling that they no part in what is of vital

concern to them because it is happening altogether incomprehensibly

and over their heads.” Snow would likely have agreed with Cathy O’Neil’s

premise in Weapons of Math Destruction (2016), that computer algorithms

are not inherently objective and that programmers’ biases may influence

their judgments.

If we don’t know about computing, we have “contracted out,” in

Snow’s terms. We don’t even know what to ask about the algorithms that

are controlling our lives. It shouldn’t be magic. Even if you’re not build-

ing these algorithms, simply knowing about them gives you power. C. P.

Snow argues that you need that power.

As A Job sKIll

The most common argument for teaching computer science in the

United States is as a job skill. The original Code . org video (2013) argued

that everyone should learn programming because we have a shortage of

programmers. While the need for more programmers is important for

supporting our technological society, that is not a good enough reason

to put programming in front of every student. Moreover, that’s not a rea-

son to bear the enormous cost to change our school systems so that we

have enough teachers to teach all those students. Not everyone is going

Downloaded from http://direct.mit.edu/books/oa-edited-volume/chapter-pdf/2019329/c001400_9780262368971.pdf by guest on 04 May 2022

CoMPUtAtIonAl lIteRACY FoR leARnIng AboUt eveRYtHIng 35

to become a software developer, and it does not make any sense to train

everyone for a job that only some will do.

But if you think about computing as a literacy, and not as a career, it

becomes more clear that computing will be an important component job

skill for many. Some fifteen years ago, we could already see that the ratio

of professional software developers to people who program just as part

of their job was somewhere between 1:4 and 1:9 (Scaffidi et al. 2005).

A more recent analysis shows that, for the same job category, workers

(who are not software developers) who program make higher wages than

those comparable workers (in the same job category) who do not (Scaffidi

2017). Learning to program gives students new skills that have value in

the economy.

Today, not everyone has access to computing education. It tends to

be centralized in more urban/suburban and more affluent schools. Even

when it’s available, it is mostly White and Asian males taking the class

(Margolis et al., 2017; Parker and Guzdial 2019). It is a social justice issue

if we do not make this economic opportunity available to everyone.

to develoP A neW lIteRACY

Alan Kay and Adele Goldberg made the argument in the 1970s that com-

puting is a whole new medium. In fact, it is humans’ first meta- medium— it

can be all other media, and it includes interactivity so that the medium can

respond to the reader/user/viewer (Kay and Goldberg 1977). Computing

gives us a new way to express ideas, to communicate to others, and to

explore ideas. Everyone should have access to this new medium.

Kay (1977) described what the experience of using the computer as a

literacy should be like: “Computer literacy is a contact with the activity

deep enough to make the computational equivalent of reading and writ-

ing fluent and enjoyable.’” We can use Kay’s perspective to contrast pro-

gramming and textual literacy. We can and do study reading and writing

for their own sake: for example, we read classics of literature and learn to

compose our own essays. For most of us, the greatest power of reading

and writing is that every day it enables us to express ideas, to commu-

nicate with others, and to understand our world. Literacy supports and

affects how we learn. Programming can be studied for itself, and there

Downloaded from http://direct.mit.edu/books/oa-edited-volume/chapter-pdf/2019329/c001400_9780262368971.pdf by guest on 04 May 2022

36 M. gUZdIAl

are obviously full- time, professional programmers— just as there are full-

time, professional writers. But programming can also be an everyday skill

that can inform the way we think and communicate.

The computer’s great power as a form of literacy is that it doesn’t

have to look like a computer. Kay (1995) pointed out that the computer

as meta- medium could be anything else: “The computer is the greatest

‘piano’ ever invented, for is it the master carrier of representations of

every kind. The heart of computing is building a dynamic model of an

idea through simulation.” The computer can be anything, which makes it

a powerful tool for learning about everything. The most powerful aspect

of the computer is the ability to encode models and execute them as

simulations.

As Sherin (2001) demonstrated when he taught physics with Boxer,

the computer provides a modeling capability different than equations.

Algebraic equations are useful for describing balance. Given all but one of

the variables in the equation, we can manipulate the equation to com-

pute that last variable. Computer programs typically do not work the

same way. Rather, computer programs can represent causality. Students

learning a programming model of physics learn about how acceleration

influences velocity and velocity influences position (Guzdial 1995)— a

causal chain that is not obvious in kinematics equations.

THE COMPUTER AS A TOOL FOR LEARNING EVERYTHING

When computers were first being developed as tools for learning, the goal

wasn’t learning computer science. From Kemeny and Kurtz developing

Basic, to Papert, Solomon, Feurzeig, and Bobrow developing Logo, the

goal was using the computer to learn about something else (Guzdial and du

Boulay 2019). Kemeny and Kurtz wanted everyone on campus to be able

to use computing in their work. Papert and the Logo developers wanted

students to learn about poetry, mathematics, and artificial intelligence.

In their seminal work “Personal Dynamic Media,” Kay and Goldberg

showed their new Smalltalk system being used in a wide variety of dis-

ciplines, with representations that matched the discipline. They used

the new graphical user interfaces to represent circuit diagrams, music,

art, animations, and a simulation of a hospital. Today, we recognize that

Downloaded from http://direct.mit.edu/books/oa-edited-volume/chapter-pdf/2019329/c001400_9780262368971.pdf by guest on 04 May 2022

CoMPUtAtIonAl lIteRACY FoR leARnIng AboUt eveRYtHIng 37

each discipline has its own representations and ways of communicating,

which is called disciplinary literacy (Moje 2015). The computer is powerful

for teaching in all disciplines, in part, because it can support disciplinary

literacy.

The interface and language of the computer doesn’t have to look the

way that computer scientists want it to look. We can adapt the language

and interface to use the representations and abstractions of the domain.

We want students to learn abstractions that are powerful and generalize,

but these need not be abstractions that are native to the computer. There

is nothing sacred about FOR loops, bits and bytes, or arrays and linked

lists. Many domains have powerful abstractions. We can use the com-

puter to teach any of those, to adapt to any of those abstractions, and to

represent them in an authentic way.

HoW MUCH PRogRAMMIng does A stUdent

need FoR lIteRACY?

Programming languages are growing in size and complexity. The defini-

tion of equality (= =) in JavaScript is a list of twenty- two dense rules (ECMA

2011), and that is one of the most basic operators. The number of primi-

tives and the sizes of the libraries grow with every new release of a lan-

guage. To “learn Python” is a significant challenge, one that can take years

to achieve. Certainly, we cannot expect students to learn all of any lan-

guage to be literate. So, how much programming does a student really need

to be expressive and to learn?

Scratch is likely the most successful programming environment ever

developed for children (Maloney et al. 2008, 2010), with tens of millions

of users around the world. Empirical studies of students using the block-

based programming language show that most students use very few of the

capabilities of the language (Fields, Kafai, and Giang 2017). Most loops

are simply forever loops. Few students use any Boolean expressions at all.

Students don’t need to know and use much programming to find Scratch

compelling. Even a small bit of programming has expressive power that

draws in tens of millions of students. What is likely more important than

the Scratch programming language are the environment and community

in which it is embedded.

Downloaded from http://direct.mit.edu/books/oa-edited-volume/chapter-pdf/2019329/c001400_9780262368971.pdf by guest on 04 May 2022

38 M. gUZdIAl

Bootstrap:Algebra is a powerful way to teach algebra through pro-

gramming (Schanzer et al. 2015). Students build video games by writing

equations that describe the current frame of the video in terms of the

previous frame, then translate those equations into code. The analysis

process that students are taught in Bootstrap:Algebra helps them in solv-

ing word problems in algebra (Schanzer et al. 2018). But students don’t

actually use much programming when building their video games. There

is no explicit repetition (iteration or recursion). Students can improve

their learning of algebra without learning everything that is in a modern

programming language. Even a small bit of programming has power in

enabling powerful learning outside of computing.

Of course, there is a purpose for all those other programming language

features that aren’t used in Scratch or aren’t taught in Bootstrap:Algebra.

The programming needs are dependent on the students’ goals. The

important point is that students do not need to know everything in order

to learn enough to gain benefits of computational literacy.

Consider a comparison with textual literacy. There are professionals

who write for a living: for example, those who produce news stories or

novels. Most people find value in writing even if they do not write for

newspapers or publishers. Every day, people find value in writing letters

and grocery lists with less sophisticated words or grammatical constructs.

When people are learning a foreign language, they can often achieve basic

communication with a limited vocabulary and few verb tenses. Similarly,

there is value in even a small bit of programming.

WHY ARen’t We tHeRe Yet?

Over the last decade, the United States has made dramatic progress in

increasing access to computing education. For example, in Georgia, 43 per-

cent of high schools offer computer science classes (Parker and Guzdial

2019). However, only 1 percent of Georgia high school students take any

of those computer science classes. In Indiana, 33 percent of schools offer

computer science, but only about 2.5 percent of students ever take a com-

puter science class (Guzdial 2019; Guzdial and Arquilla 2019; Parker and

Guzdial 2019).

The reasons are complicated why students are still avoiding computer

science, even when they have access to computing education. Certainly,

Downloaded from http://direct.mit.edu/books/oa-edited-volume/chapter-pdf/2019329/c001400_9780262368971.pdf by guest on 04 May 2022

CoMPUtAtIonAl lIteRACY FoR leARnIng AboUt eveRYtHIng 39

one of the explanations is that not all computing education experiences

are high quality. Some afterschool programs and internships dissuade

students from continuing in computing (Weston et al. 2019). A more

compelling explanation is that students do not see that computing is a

pathway to achieving their goals (Lewis et al. 2019). Students who leave

computing have a very different perception of the field than those who

stay in computer science (Biggers et al. 2008).

One solution to give more students access to computing education is

to find new ways to integrate computing across the curriculum. The idea

is to follow the lead of Bootstrap:Algebra to find ways that programming

can enhance learning in other subjects. If we can’t convince students to

come to programming and computational literacy, maybe we can bring

programming to them and provide computational literacy to support the

learning that students are interested in.

REDESIGNING PROGRAMMING FOR MICROWORLDS:

TASK- SPECIFIC PROGRAMMING

Microworlds are one of the great inventions for using programming to

teach a wide range of subjects. The idea of microworlds is to provide a

limited subset of the programming environment with tailored operations

that match the domain of the microworld. Seymour Papert (1980) first

defined microworlds as a “subset of reality or a constructed reality whose

structure matches that of a given cognitive mechanism so as to provide

an environment where the latter can operate effectively. The concept

leads to the project of inventing microworlds so structured as to allow a

human learner to exercise particular powerful ideas or intellectual skills.”

Andrea diSessa (with Hal Abelson) built on this idea in Boxer (diSessa and

Abelson 1986) and said in his book Changing Minds (diSessa, 2001): “A

microworld is a type of computational document aimed at embedding

important ideas in a form that students can readily explore. The best

microworlds have an easy- to- understand set of operations that students

can use to engage tasks of value to them, and in doing so, they come

to understanding powerful underlying principles. You might come to

understand ecology, for example, by building your own little creatures

that compete with and are dependent on each other.”

Downloaded from http://direct.mit.edu/books/oa-edited-volume/chapter-pdf/2019329/c001400_9780262368971.pdf by guest on 04 May 2022

40 M. gUZdIAl

Typically, a microworld is built on top of a general- purpose language:

for example, Papert used Logo and diSessa used Boxer. Thus, the designer

of the microworld could assume familiarity with the syntax and seman-

tics of the programming language and perhaps some general program-

ming concepts like mutable variables and control structures. The problem

here is that with Logo and Boxer, like any general- purpose programming

language, it takes time to develop proficiency. They are large and com-

plex things to learn, and learning those can get in the way of the power-

ful ideas or intellectual skills that Papert and diSessa are interested in.

Task- specific programming (TSP) aims to provide the same easy- to-

understand operations for a microworld, but with a language and envi-

ronment designed for a particular purpose. The task- specific programming

language (TSPL) is purposefully limited in the abstractions and concepts

needed for the tasks or explorations in the microworld so that program-

ming becomes much easier to learn than a complete programming lan-

guage. Some task- specific programming languages have been usable in

only five to ten minutes (Chasins et al. 2018). The ease of use makes it

possible to think about learning different concepts with different micro-

worlds, that is, different task- specific programming languages. Perhaps an

elementary or secondary school student might encounter several differ-

ent TSPLs in a single year.

An eXAMPle tAsK- sPeCIFIC PRogRAMMIng envIRonMent

The domain for the following example task- specific programming environ-

ment is precalculus. The operations in this prototype environment are the

simple matrix transformations taught in many precalculus curricula—

matrix addition and subtraction and scalar multiplication. The concrete

purpose in this microworld is the creation of image filters. The point of

this prototype is to engage students in practicing the intellectual skills

of matrix manipulation by engaging them in developing image filters.

Image filters become the concrete purpose for learning the abstraction of

matrix manipulation.

Figure 2.1 is the main screen for the prototype. Students see a pic-

ture (left- hand side) that is decomposed into matrices representing the red

channel of the pixels in the picture (bottom left), and the green and blue

channel matrices next to that. A set of matrix transformations is listed

Downloaded from http://direct.mit.edu/books/oa-edited-volume/chapter-pdf/2019329/c001400_9780262368971.pdf by guest on 04 May 2022

CoMPUtAtIonAl lIteRACY FoR leARnIng AboUt eveRYtHIng 41

at the top left— this is the program that, applied to the input picture (on

left), produces the output picture (on right). The Change Picture button

changes the input picture so that the students can apply the operations

to different pictures to see that the program processes an arbitrary picture

to generate a similar image effect on all pictures.

The matrix transformations listed in figure 2.1 are a program, but the

language is not typed (as in a textual programming language) nor assem-

bled like a jigsaw puzzle (as in a block- based programming language).

Instead, the statements are constructed with a purpose- built editor that is

grounded in the disciplinary literacy of precalculus. Each matrix transfor-

mation is created and edited on a screen like in figure 2.2.

There are two possible transformations, which are selected by radio

button:

• The red, green, or blue matrices can be redefined (“set”) as the sum or

difference between four matrices: red, green, blue, or a matrix where

every value is 255. The matrices and operation (plus or minus) are

selected with pull- down menus. In the example, figure 2.2, the red

matrix (top left) is set to the difference of the green matrix and the blue

matrix (top middle). The matrices are presented, using the notation

2.1 Defining an image filter as a sequence of matrix transformations.

Downloaded from http://direct.mit.edu/books/oa-edited-volume/chapter-pdf/2019329/c001400_9780262368971.pdf by guest on 04 May 2022

42 M. gUZdIAl

commonly appearing in precalculus texts, with the output matrix (the

new red matrix) appearing on the right. The all- 255 matrix can be used

to compute the inverse of an image, by setting the red, green, and blue

matrices to 255 minus the current value in the matrix.
• Alternatively, one of the matrices (red, green, or blue) can be multi-

plied by a scalar. The matrix can be selected by pull- down menu, and

the scalar value is typed into a text area.

The image filter language is simple and grounded in the concepts

and notation of precalculus. The image filter prototype is an example

of task- specific programming to support learning matrix transformations

for precalculus. Students may use this tool to meet a challenge (e.g., to

generate a particular image manipulation effect) or to practice with trac-

ing and using matrix arithmetic (e.g., in this given effect, what happens

to pixels in the original picture whose RGB values are [128, 104, 12]).

Our approach to adoption is informed by the work on SimCalc. In their

scaling- up paper, Tatar et al. (2008) wrote: “Conversely, a wider path to

adoption exists if one can engineer materials to support short- term use

without extensive professional development and with a wide variety of

2.2 Defining one matrix transformation.

Downloaded from http://direct.mit.edu/books/oa-edited-volume/chapter-pdf/2019329/c001400_9780262368971.pdf by guest on 04 May 2022

CoMPUtAtIonAl lIteRACY FoR leARnIng AboUt eveRYtHIng 43

pedagogical styles. In the short term, innovators may be able to make

an earlier, more immediate impact on a wide audience and set a credible

base of authentic improvement that can then serve longer term growth.”

This is exactly our approach. While task- specific programing tools may

fit into project- based activities (Blumenfeld et al. 1991, 1994; Krajcik and

Blumenfeld 2006), the goal is to be usable in a variety of activities.

We use our prototypes in participatory design sessions with teachers

(DiSalvo 2016; Wilensky and Stroup, 1999). Our goal is to develop task-

specific programming that teachers would find useful and would inte-

grate into their classes, so we ask them to try it in the context of what

students find challenging about precalculus. The prototype is an artifact

to think with. Precalculus teachers learn and use it and then tell us what

would really be useful to them. We then iterate on the design.

Sessions with precalculus teachers support our hypothesis that they can

start using it in less than ten minutes. The general response from precalcu-

lus teachers has been guardedly positive. The teachers see that the micro-

worlds aim to take an abstract concept in precalculus and ground it in a

concrete application. They appreciate our attention to disciplinary literacy

and to the learning outcomes for precalculus. Several of our informants

saw the benefits of connecting precalculus to contexts that students found

personally meaningful, like Instagram or Snapchat photo filters.

However, the teachers tell us that we are solving the wrong problems.

While some students struggle with matrix notation and element- by-

element operations, most do not. The hard parts of matrices in precalcu-

lus are matrix multiplication and determinants, and even convolution.

Those parts are so difficult for students that matrices are often left out of

a school’s precalculus curriculum, which puts students at a disadvantage

when they face linear algebra in undergraduate courses. We are currently

iterating on this design.

A task- specific programming environment is unlikely to achieve all the

goals described at the beginning of this chapter. Rather, task- specific pro-

gramming may be an easier- to- use and easier- to- adopt programming experi-

ence than textual or block- base languages. Students will not use task- specific

programming environments alone as a notational tool for computational

literacy, but use of such tools may help students to gain understanding

about the nature of programs, programming, and debugging. Task- specific

Downloaded from http://direct.mit.edu/books/oa-edited-volume/chapter-pdf/2019329/c001400_9780262368971.pdf by guest on 04 May 2022

44 M. gUZdIAl

programming may help students develop the first competencies on trajec-

tories to learn programming (Rich et al. 2017, 2019).

CONCLUSION: FINDING PATHWAYS TO

COMPUTATIONAL LITERACY

There are many reasons for students to learn programming, from under-

standing the digital world in which they live, to developing computational

participation and action skills, to developing a new way to understand the

world in which they live. Programming offers a powerful notation for learn-

ing and thinking that is unlike mathematical equations. The computer is the

master simulator— it can look like any domain. Learning programming can

be about learning domains that students are already interested in. Learning

to program is not just about learning to become a software developer.

Achieving that vision may require us to rethink our programming envi-

ronments. Languages developed for professional programmers, or devel-

oped for children in an earlier age with fewer computational end- interface

skills, are unlikely to provide the affordances for learning that we can design

in purpose- built environments. Task- specific programming is an approach

for providing a pathway to computational literacy.

REFERENCES

Abelson, Harold, Gerald Jay Sussman, and Julie Sussman. 1996. Structure and Interpre-
tation of Computer Programs. 2nd ed. Cambridge, MA: MIT Press.

Biggers, Maureen, Anne Brauer, and Tuba Yilmaz. 2008. “Student Perceptions of
Computer Science: A Retention Study Comparing Graduating Seniors vs. CS Leav-
ers.” In SIGCSE ’08: Proceedings of the 39th SIGCSE Technical Symposium on Computer
Science Education. 402– 406. https:// doi . org / 10 . 1145 / 1352135 . 1352274 .

Blumenfeld, Phyllis C., Joseph S. Krajcik, Ronald W. Marx, and Elliot Soloway. 1994.
“Lessons Learned: A Collaborative Model for Helping Teachers Learn Project- based
Instruction.” Elementary School Journal 94 (5): 539– 551.

Blumenfeld, Phyllis C., Elliot Soloway, Ronald W. Marx, Joseph S. Krajcik, Mark Guz-
dial, and Annemarie Palincsar. 1991. “Motivating Project- Based Learning: Sustaining
the Doing, Supporting the Learning.” Educational Psychologist 26 (3 & 4): 369– 398.

Carver, Sharon M. 1988. “Learning and Transfer of Debugging Skills: Applying Task
Analysis to Curriculum Design and Assessment.” In Teaching and Learning Computer
Programming: Multiple Research Perspectives, edited by Richard E. Mayer, 259– 297.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Downloaded from http://direct.mit.edu/books/oa-edited-volume/chapter-pdf/2019329/c001400_9780262368971.pdf by guest on 04 May 2022

https://doi.org/10.1145/1352135.1352274

CoMPUtAtIonAl lIteRACY FoR leARnIng AboUt eveRYtHIng 45

Chasins, Sarah E., Maria Mueller, and Rastislav Bodik. 2018. “Rousillon: Scraping
Distributed Hierarchical Web Data.” In Proceedings of the 31st Annual ACM Sympo-
sium on User Interface Software and Technology, UIST ’18. New York, 963– 975.

Code . org . “What Most Schools Don’t Teach.” Streamed live on February 26, 2013,
YouTube video, 5:43. https:// youtu . be / nKIu9yen5nc .

DiSalvo, Betsy. 2016. “Participatory Design through a Learning Science Lens.” In
Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. New
York, 4459– 4463.

diSessa, Andrea A. 2001. Changing Minds. Cambridge, MA: MIT Press.

diSessa, Andrea A., and Harold Abelson. 1986. “Boxer: A Recon- structible Computa-
tional Medium.” Communications of the ACM 29 (9): 859– 868.

ECMA International. 2011. Ecma- 262 Edition 5.1, The ECMAScript Language Specifica-
tion. https:// 262 . ecma - international . org / 5 . 1 / # sec - 11 . 9 . 3 .

Fields, Deborah A., Yasmin Bettina Kafai, and Michael T. Giang. 2017. “Youth Com-
putational Participation in the Wild: Understanding Experience and Equity in Par-
ticipating and Programming in the Online Scratch Community.” ACM Transactions
on Computing Education 17 (3): 15:1– 15:22.

Grover, Shuchi, and Roy Pea. 2013. “Computational Thinking in K– 12: A Review of
the State of the Field.” Educational Researcher, 42 (1): 38– 43.

Grover, Shuchi, Roy Pea, and Stephen Cooper. 2015. “Designing for Deeper Learn-
ing in a Blended Computer Science Course for Middle School Students.” Computer
Science Education, 25 (2): 199– 237.

Guzdial, Mark. 1995. “Software- Realized Scaffolding to Facilitate Programming for
Science Learning.” Interactive Learning Environments 4 (1): 1– 44.

Guzdial, Mark. 2019. “Computing Education as a Foundation for 21st Century
Literacy.” In Proceedings of the 50th ACM Technical Symposium on Computer Science
Education, SIGCSE ’19. New York, 502– 503.

Guzdial, Mark, and John Arquilla. 2019. “Is CS Really for All, and Defending Democ-
racy in Cyberspace.” Communications of the ACM, 62 (6): 8– 9.

Guzdial, Mark, and Benedict du Boulay. 2019. “History of computing education
research.” In The Cambridge Handbook of Computing Education Research, edited by Sally
A. Fincher and Anthony V. Robins, 11– 39. Cambridge: Cambridge University Press.

Harel, Idit, and Seymour Papert. 1990. “Software Design as a Learning Environ-
ment.” Interactive Learning Environments 1 (1): 1– 32.

Kafai, Yasmin Bettina. 2016. “From Computational Thinking to Computational Par-
ticipation in K– 12 Education.” Communications of the ACM 59 (8): 26– 27.

Kafai, Yasmin Bettina, Quinn Burke, and Mitchel Resnick. 2014. Connected Code:
Why Children Need to Learn Programming. Cambridge, MA: MIT Press.

Downloaded from http://direct.mit.edu/books/oa-edited-volume/chapter-pdf/2019329/c001400_9780262368971.pdf by guest on 04 May 2022

https://youtu.be/nKIu9yen5nc
https://262.ecma-international.org/5.1/#sec-11.9.3

46 M. gUZdIAl

Kalelioglu, Filiz, and Yasemin Gülbahar. 2014. “The Effects of Teaching Program-
ming via Scratch on Problem Solving Skills: A Discussion from Learners’ Perspec-
tive.” Informatics in Education 13 (1): 33– 50.

Kay, Alan C. 1977. “Microelectronics and the Personal Computer.” Scientific Ameri-
can 237 (3): 230– 245.

Kay, Alan C. 1995. “Computers, Networks and Education.” Scientific American 272
(3): 148– 155.

Kay, Alan C., and Adele Goldberg. 1977. “Personal Dynamic Media.” IEEE Computer
10 (3): 31– 41.

Knuth, Donald E. 1972. “George Forsythe and the Development of Computer Sci-
ence.” Communications of the ACM 15 (8): 721– 726.

Krajcik, Joseph S., and Phyllis C. Blumenfeld. 2006. “Project- based Learning.” In
The Cambridge Handbook of the Learning Sciences, edited by R. Keith Sawyer, 317– 333.
Cambridge: Cambridge University Press.

Lewis, Colleen, Paul Bruno, Jonathan Raygoza, and Julia Wang. 2019. “Alignment of
Goals and Perceptions of Computing Predicts Students’ Sense of Belonging in Com-
puting.” In Proceedings of the 14th International Conference on Computing Education
Research, ICER ’19. New York, 11– 9.

Maloney, John, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. 2010. “The Scratch Programming Language and Environment.” ACM Trans-
actions on Computing Education 10 (4): 16:1– 16:15.

Maloney, John H., Kylie A. Peppler, Yasmin Bettina Kafai, Mitchel Resnick, and
Natalie Rusk. 2008. “Programming by Choice: Urban Youth Learning Programming
with Scratch.” In SIGCSE ’08: Proceedings of the 39th SIGCSE Technical Symposium on
Computer Science Education. New York, 367– 371.

Margolis, J., R. Estrella, J. Goode, J. J. Holme, and K. Nao. 2017. Stuck in the Shallow
End: Education, Race, and Computing. Cambridge, MA: MIT Press.

Moje, Elizabeth B. 2015. “Doing and Teaching Disciplinary Literacy with Adoles-
cent Learners: A Social and Cultural Enterprise.” Harvard Educational Review 85 (2):
254– 278.

O’Neil, Cathy. 2016. Weapons of Math Destruction: How Big Data Increases Inequality
and Threatens Democracy. New York: Crown.

Palumbo, David B. 1990. “Programming Language/Problem- Solving Research: A
Review of Relevant Issues.” Review of Educational Research 60 (1): 65– 89.

Papert, Seymour. 1980. Mindstorms: Children, Computers, and Powerful Ideas. Sussex,
UK: Basic Books.

Parker, Miranda C., and Mark Guzdial. 2019. “A Statewide Quantitative Analysis of
Computer Science: What Predicts CS in Georgia Public High School?” In Proceedings of

Downloaded from http://direct.mit.edu/books/oa-edited-volume/chapter-pdf/2019329/c001400_9780262368971.pdf by guest on 04 May 2022

CoMPUtAtIonAl lIteRACY FoR leARnIng AboUt eveRYtHIng 47

the 2019 ACM Conference on International Computing Education Research, ICER ’19. New
York, 317.

Pea, Roy D., and D. Midian Kurland. 1984. “On The Cognitive Effects of Learning
Computer Programming.” New Ideas in Psychology 2 (2): 137– 168.

Perlis, Alan J. 1962. “The Computer in the University.” In Computers and the World of
the Future, edited by Martin Greenberger, 180– 217. Cambridge, MA: MIT Press.

Peyton Jones, Simon. 2013, September. “Computer Science as a School Subject.” In
Proceedings of the 18th ACM SIGPLAN International Conference on Functional Program-
ming. Seattle, 159– 160.

Rich, Kathryn M., Carla Strickland, T. Andrew Binkowski, and Diana Franklin. 2019.
“A K- 8 Debugging Learning Trajectory Derived from Research Literature.” In Proceed-
ings of the 50th ACM Technical Symposium on Computer Science Education, SIGCSE ’19.
New York, 745– 751.

Rich, Kathryn M., Carla Strickland, T. Andrew Binkowski, Cheryl Moran, and
Diana Franklin. 2017. “K- 8 Learning Trajectories Derived from Research Literature:
Sequence, Repetition, Conditionals.” In Proceedings of the 2017 ACM Conference on
International Computing Education Research, ICER ’17. New York, 182– 190.

Scaffidi, Christopher. 2017. “Workers Who Use Spreadsheets and Who Program
Earn More than Similar Workers Who Do Neither.” In 2017 IEEE Symposium on
Visual Languages and Human- Centric Computing (VL/HCC). Raleigh, NC, 233– 237.

Scaffidi, Christopher, Mary Shaw, and Brad A. Myers. 2005. “An Approach for Cat-
egorizing End User Programmers to Guide Software Engineering Research.” ACM
SIGSOFT Software Engineering Notes 30 (4): 1– 5.

Schanzer, Emmanuel, Kathi D. Fisler, and Shriram Krishnamurthi. 2018. “Assess-
ing Bootstrap: Algebra Students on Scaffolded and Unscaffolded Word Problems.”
In SIGCSE ’18: Proceedings of the 49th ACM Technical Symposium on Computer Science
Education. New York, 8– 13.

Schanzer, Emmanuel, Kathi D. Fisler, Shriram Krishnamurthi, and Matthias Fel-
leisen. 2015. “Transferring Skills at Solving Word Problems from Computing to
Algebra through Bootstrap.” In Proceedings of the 46th ACM Technical Symposium on
Computer Science Education. New York, 616– 621.

Sherin, Bruce L. 2001. “A Comparison of Programming Languages and Algebraic
Notation as Expressive Languages for Physics.” International Journal of Computers for
Mathematical Learning 6: 1– 61.

Snow, Charles Percy. 1962. “Scientists and Decision Making.” In Computers and the
World of the Future, edited by Martin Greenberger. Cambridge, MA: MIT Press.

Tatar, Deborah, Jeremy Roschelle, Jennifer Knudsen, Nicole Shechtman, Jim Kaput,
and Bill Hopkins. 2008. “Scaling Up Innovative Technology- Based Mathematics.”
Journal of the Learning Sciences 17 (2): 248– 286.

Downloaded from http://direct.mit.edu/books/oa-edited-volume/chapter-pdf/2019329/c001400_9780262368971.pdf by guest on 04 May 2022

48 M. gUZdIAl

Tissenbaum, Mike, Josh Sheldon, and Hal Abelson. 2019. “From Computational
Thinking to Computational Action.” Communications of the ACM 62 (3): 34– 36.

Weston, Timothy J., Wendy M. Dubow, and Alexis Kaminsky. 2019. “Predicting
Women’s Persistence in Computer Science- and Technology- Related Majors from
High School to College.” ACM Transactions on Computing Education 20 (1): 1:1– 1:16.

Wilensky, Uri. 1991. “Abstract Meditations on the Concrete and Concrete Implica-
tions for Mathematics Education.” In Constructionism, edited by Idit Harel and Sey-
mour Papert, 193– 203. Norwood, NJ: Ablex.

Wilensky, U., K. Orton, D. Weintrop, E. Beheshti, M. Horn, and K. Jona. 2016.
“Bringing Computational Thinking into High School Mathematics and Science
Classrooms.” In Transforming Learning, Empowering Learners: The International Confer-
ence of the Learning Sciences (ICLS) , Vol. 2, edited by C. K. Looi, J. L. Polman, U. Cress,
and P. Reimann. Singapore: International Society of the Learning Sciences.

Wilensky, Uri, and Walter Stroup. 1999. “Learning through Participatory Simula-
tions: Network- Based Design for Systems Learning in Classrooms.” In Proceedings
of the 1999 Conference on Computer Support for Collaborative Learning. Stanford, CA:
International Society of the Learning Sciences, 80.

Downloaded from http://direct.mit.edu/books/oa-edited-volume/chapter-pdf/2019329/c001400_9780262368971.pdf by guest on 04 May 2022

