
LEARNING ABOUT COMPUTING IS LEARNING  

ABOUT PROGRAMMING

Learning about computing almost always requires learning about pro-

gramming. There have been some brilliant people, like Alan Turing and 

John von Neumann, who could think about computing without a lan-

guage or notation, but those people are rare. It is analogous to learning 

mathematics, including addition, subtraction, and multiplication, with-

out writing digits like “34.9” or symbols like “+.”

Programming is defining a computation, something that a computer 

can do. A program describes a process. A program can be specified in any 

notation, so we should pick one that best suits the programmer and the 

domain. The most popular programming languages today are demand-

ing, requiring students to use complex cognitive skills such as abstraction 

and decomposition of a problem into subcomponents. Programming 

does not have to be so complex and overwhelming. A simple program-

ming language can still be effective for learning. Programming is a power-

ful tool for helping students learn in many different domains. I argue in 

this chapter that providing students with the ability to program is providing 

them with a literacy that can be an advantage in learning about everything else.

The term computer science first appeared in print in the Journal of Engi-

neering Education in 1961 in an article by George Forsythe (Knuth 1972). 
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Forsythe described (in 1968) that he saw computation as a “general- purpose 

mental tool” that would “remain serviceable for a lifetime.” Explicitly, com-

puter science was defined as something that students could use to aid in their 

thinking and their learning, especially in STEM (science, technology, engi-

neering, and mathematics) classes. In this chapter, I argue that the value of 

learning programming is even greater than what Forsythe described.

There are many possible benefits to students learning to program. The first 

section of the chapter lists many of these, ending with the most powerful— 

programming as a new kind of literacy. The next section explains why the 

computer can help with learning everything else, because it is the “master 

simulator.” Finally, I argue that even a simple programming language can 

have enormous advantage in learning. We don’t need all the power of C, 

Scheme, or Logo to learn with programming as a literacy.

WHY SHOULD STUDENTS LEARN TO PROGRAM?

Learning to program does not impart to the learner general problem- solving 

skills. There have been several studies looking for transfer from teaching 

programming to general problem- solving skills. Probably the first study 

investigating this claim was done by Roy Pea and Midian Kurland in 1984. 

David Palumbo completed a meta- review of the research relating learning 

programming and learning problem- solving (1990). Since then, the topic 

has been revisited, but I read Palumbo’s results as painting a picture of pro-

gramming as an opportunity to teach problem solving rather than an expe-

rience where problem- solving is learned automatically.

It is possible to teach problem- solving using programming, but 

problem- solving skills are not the automatic and direct result of learning 

to program (Grover and Pea 2013). Sharon Carver showed how to teach 

problem- solving with programming (Carver 1988). She wanted students 

to learn debugging skills, such as being able to take a map and a set of 

instructions and then figure out where the instructions are wrong. She 

taught those debugging skills by having students debug Logo programs. 

Students successfully transferred those debugging skills from Logo pro-

gramming to the map task. That’s significant from a cognitive and learning 

sciences perspective. But her students didn’t learn much programming; 
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she didn’t need much programming to teach that problem- solving skill. 

Other studies have found similar results (Grover, Pea, and Cooper 2015; 

Kalelioglu and Gülbahar 2014).

Fortunately, there are many other benefits of learning to program. 

These are described in the paragraphs that follow.

to UndeRstAnd tHe WoRld In WHICH tHeY lIve

Simon Peyton Jones argued that computer science is a science like all the 

others (Peyton Jones 2013). We teach chemistry to students because they 

live in a world with chemical interactions. We teach biology because 

they live in a world full of living things. We teach physics because they live 

in a physical world. We should teach computer science because they live in 

a digital world.

Students live in a world where secret messages can be hidden inside 

of pictures and where machines can be infected with viruses. They live 

in a world where they own many computers, some of which do noth-

ing more sophisticated than control their microwave oven. They do not 

need to know how all of this works at a level that they could build it 

(although they may want to). They do need to understand enough to 

troubleshoot the computing in their lives: for example, to know that it is 

unlikely for the internet to ever “break,” but the router in their home can 

fail. They need to understand enough to protect themselves: for example, 

why running any arbitrary program downloaded from the internet may 

be dangerous for their security. They also need to understand that they 

can make their own apps and games and that anyone with any computer 

can invent something that is world changing. Students should know the 

basic principles of how their world works.

to Use CoMPUteRs MoRe eFFeCtIvelY

We all use computers ubiquitously, from the cellphones in our hands to 

the laptops on which we work. Does knowing how the computer works 

lead to more effective use of the computer? Are people who program 

less likely to make mistakes with software? Are they more resilient in 

bouncing back from errors? Can programmers solve computing problems 
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(those that happen in applications or with hardware, even without pro-

gramming) more easily?

I bet the answer is yes, but I am unaware of research results that sup-

port that argument. There are likely common elements to mental models 

that are used to understand the computational systems with which we 

interact. Some of those common elements may include the causal and 

repeatable nature of computers, which is unlike our everyday experience 

(e.g., your PowerPoint animations likely work exactly the same way every 

time). Programming may be a way to learn those common elements explic-

itly and efficiently.

to InFlUenCe tHeIR WoRld

The default behavior of users with computers is to consume. We consume 

books, videos, music, and commentary in an endless stream or scroll. The 

promise of programming is to turn digital consumers into digital produc-

ers who can use computing to have an effect on the world.

Yasmin Kafai calls this promise computational participation (Kafai 2016), 

and Tissenbaum, Sheldon, and Abelson (2019) call it computational action. 

The computer’s connectivity, malleability, and representational power 

give students the ability to make digital products and share them widely. 

From YouTube videos to new apps, the computer provides a rich medium 

for creativity and a far- reaching distribution mechanism.

The question of the role of programming changes if we reframe pro-

gramming. Imagine if programming was not a complex and hard- to- learn 

activity. What if learning to program was like learning to use a drawing 

app, a photo editing tool, or a video editor. If we think of programming 

as defining a process for someone else to use, then teaching students to 

program is giving them another way that they can create digital artifacts 

(i.e., stored and executable process) and share them with the world.

to stUdY And UndeRstAnd PRoCesses

Alan Perlis (first Association for Computing Machinery [ACM] Turing 

Award laureate) argued in 1962 that everyone on every campus should 

learn to program (Perlis 1962). He said that computer science is the study 

of process. He contrasted learning computer science with learning calculus. 
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Calculus is the study of rates, which is important for many disciplines. 

Perlis argued that all students need to learn about process, from manag-

ers who work on logistics to scientists who try to understand molecular 

or biological processes. Programming automates process, which creates 

opportunities to simulate, model, and test theories about processes at 

scale. Abelson, Sussman, and Sussman (1996) stated that mathematics is 

about formalizing declarative knowledge (“what is”), while programming 

is about formalizing imperative knowledge (“how to”).

Perlis was prescient in predicting computational science and engineer-

ing. Today, people play “what- if” games with spreadsheets daily. We use 

computing to track our weather and our packages. Most professionals 

use a computer to explore models. The ability to construct models and 

test hypotheses by executing those models is one of the most powerful 

abilities that a computer can provide us. It is especially powerful because 

it extends a basic human capability— to imagine a possible future world. 

The computer can allow us to realize this world (at a level of fidelity that 

makes sense for our needs) and test it in simulation. Testing our imagined 

worlds is difficult to do at the level of precision that a computer affords.

to HAve A neW WAY to leARn sCIenCe And MAtHeMAtICs

Mathematics places a critical role in understanding our world. The power 

of mathematics in science is obvious, but the adoption of mathematics 

in society may be even more influenced by its importance for business. 

Without a doubt, the world runs on numbers.

Our notation for mathematics is mostly static equations representing 

models about the world. Increasingly, we are finding that representing 

code is different and gives us new insights. This is what Andy diSessa has 

been saying in his calls for computational literacy (2001). Bruce Sherin 

(2001), Idit Harel (1990), Yasmin Kafai (2014), Uri Wilensky (2016), and 

many others have shown us how code gives us a powerful new way to 

learn science and mathematics. Bootstrap:Algebra (Schanzer et al. 2015) 

teaches algebra with computing. Every student of mathematics should 

also be a student of programming, because it provides a different, dynamic 

notation for understanding mathematical ideas. When the programming 

context is tied to a real application (from image manipulation to video 
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games), the computation can help to concretize the mathematical con-

cepts (Wilensky 1991), which can make them more engaging and easier 

to learn.

to be Able to AsK QUestIons AboUt tHe teCHnologICAl 

InFlUenCes on tHeIR lIves

C. P. Snow (1962) also argued for everyone to learn computing in 1962, 

but with more foreboding. He correctly predicted that computers and 

computing algorithms were going to control important aspects of our 

lives. He said, “I am asking whether we are now running into a posi-

tion where only those who are concerned with the computer, who are 

formulating its decision rules, are going to be knowledgeable about the 

decision,” and “It is not only that I am afraid of misjudgments by persons 

armed with computing instruments; it is also that I am afraid of the rest 

of society’s contracting out, feeling that they no part in what is of vital 

concern to them because it is happening altogether incomprehensibly 

and over their heads.” Snow would likely have agreed with Cathy O’Neil’s 

premise in Weapons of Math Destruction (2016), that computer algorithms 

are not inherently objective and that programmers’ biases may influence 

their judgments.

If we don’t know about computing, we have “contracted out,” in 

Snow’s terms. We don’t even know what to ask about the algorithms that 

are controlling our lives. It shouldn’t be magic. Even if you’re not build-

ing these algorithms, simply knowing about them gives you power. C. P. 

Snow argues that you need that power.

As A Job sKIll

The most common argument for teaching computer science in the 

United States is as a job skill. The original Code . org video (2013) argued 

that everyone should learn programming because we have a shortage of 

programmers. While the need for more programmers is important for 

supporting our technological society, that is not a good enough reason 

to put programming in front of every student. Moreover, that’s not a rea-

son to bear the enormous cost to change our school systems so that we 

have enough teachers to teach all those students. Not everyone is going 
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to become a software developer, and it does not make any sense to train 

everyone for a job that only some will do.

But if you think about computing as a literacy, and not as a career, it 

becomes more clear that computing will be an important component job 

skill for many. Some fifteen years ago, we could already see that the ratio 

of professional software developers to people who program just as part 

of their job was somewhere between 1:4 and 1:9 (Scaffidi et al. 2005). 

A more recent analysis shows that, for the same job category, workers 

(who are not software developers) who program make higher wages than 

those comparable workers (in the same job category) who do not (Scaffidi 

2017). Learning to program gives students new skills that have value in 

the economy.

Today, not everyone has access to computing education. It tends to 

be centralized in more urban/suburban and more affluent schools. Even 

when it’s available, it is mostly White and Asian males taking the class 

(Margolis et al., 2017; Parker and Guzdial 2019). It is a social justice issue 

if we do not make this economic opportunity available to everyone.

to develoP A neW lIteRACY

Alan Kay and Adele Goldberg made the argument in the 1970s that com-

puting is a whole new medium. In fact, it is humans’ first meta- medium— it 

can be all other media, and it includes interactivity so that the medium can 

respond to the reader/user/viewer (Kay and Goldberg 1977). Computing 

gives us a new way to express ideas, to communicate to others, and to 

explore ideas. Everyone should have access to this new medium.

Kay (1977) described what the experience of using the computer as a 

literacy should be like: “Computer literacy is a contact with the activity 

deep enough to make the computational equivalent of reading and writ-

ing fluent and enjoyable.’” We can use Kay’s perspective to contrast pro-

gramming and textual literacy. We can and do study reading and writing 

for their own sake: for example, we read classics of literature and learn to 

compose our own essays. For most of us, the greatest power of reading 

and writing is that every day it enables us to express ideas, to commu-

nicate with others, and to understand our world. Literacy supports and 

affects how we learn. Programming can be studied for itself, and there 
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are obviously full- time, professional programmers— just as there are full- 

time, professional writers. But programming can also be an everyday skill 

that can inform the way we think and communicate.

The computer’s great power as a form of literacy is that it doesn’t 

have to look like a computer. Kay (1995) pointed out that the computer 

as meta- medium could be anything else: “The computer is the greatest 

‘piano’ ever invented, for is it the master carrier of representations of 

every kind. The heart of computing is building a dynamic model of an 

idea through simulation.” The computer can be anything, which makes it 

a powerful tool for learning about everything. The most powerful aspect 

of the computer is the ability to encode models and execute them as 

simulations.

As Sherin (2001) demonstrated when he taught physics with Boxer, 

the computer provides a modeling capability different than equations. 

Algebraic equations are useful for describing balance. Given all but one of 

the variables in the equation, we can manipulate the equation to com-

pute that last variable. Computer programs typically do not work the 

same way. Rather, computer programs can represent causality. Students 

learning a programming model of physics learn about how acceleration 

influences velocity and velocity influences position (Guzdial 1995)— a 

causal chain that is not obvious in kinematics equations.

THE COMPUTER AS A TOOL FOR LEARNING EVERYTHING

When computers were first being developed as tools for learning, the goal 

wasn’t learning computer science. From Kemeny and Kurtz developing 

Basic, to Papert, Solomon, Feurzeig, and Bobrow developing Logo, the 

goal was using the computer to learn about something else (Guzdial and du 

Boulay 2019). Kemeny and Kurtz wanted everyone on campus to be able 

to use computing in their work. Papert and the Logo developers wanted 

students to learn about poetry, mathematics, and artificial intelligence.

In their seminal work “Personal Dynamic Media,” Kay and Goldberg 

showed their new Smalltalk system being used in a wide variety of dis-

ciplines, with representations that matched the discipline. They used 

the new graphical user interfaces to represent circuit diagrams, music, 

art, animations, and a simulation of a hospital. Today, we recognize that 
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each discipline has its own representations and ways of communicating, 

which is called disciplinary literacy (Moje 2015). The computer is powerful 

for teaching in all disciplines, in part, because it can support disciplinary 

literacy.

The interface and language of the computer doesn’t have to look the 

way that computer scientists want it to look. We can adapt the language 

and interface to use the representations and abstractions of the domain. 

We want students to learn abstractions that are powerful and generalize, 

but these need not be abstractions that are native to the computer. There 

is nothing sacred about FOR loops, bits and bytes, or arrays and linked 

lists. Many domains have powerful abstractions. We can use the com-

puter to teach any of those, to adapt to any of those abstractions, and to 

represent them in an authentic way.

HoW MUCH PRogRAMMIng does A stUdent  

need FoR lIteRACY?

Programming languages are growing in size and complexity. The defini-

tion of equality (= =) in JavaScript is a list of twenty- two dense rules (ECMA 

2011), and that is one of the most basic operators. The number of primi-

tives and the sizes of the libraries grow with every new release of a lan-

guage. To “learn Python” is a significant challenge, one that can take years 

to achieve. Certainly, we cannot expect students to learn all of any lan-

guage to be literate. So, how much programming does a student really need 

to be expressive and to learn?

Scratch is likely the most successful programming environment ever 

developed for children (Maloney et al. 2008, 2010), with tens of millions 

of users around the world. Empirical studies of students using the block- 

based programming language show that most students use very few of the 

capabilities of the language (Fields, Kafai, and Giang 2017). Most loops 

are simply forever loops. Few students use any Boolean expressions at all. 

Students don’t need to know and use much programming to find Scratch 

compelling. Even a small bit of programming has expressive power that 

draws in tens of millions of students. What is likely more important than 

the Scratch programming language are the environment and community 

in which it is embedded.
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Bootstrap:Algebra is a powerful way to teach algebra through pro-

gramming (Schanzer et al. 2015). Students build video games by writing 

equations that describe the current frame of the video in terms of the 

previous frame, then translate those equations into code. The analysis 

process that students are taught in Bootstrap:Algebra helps them in solv-

ing word problems in algebra (Schanzer et al. 2018). But students don’t 

actually use much programming when building their video games. There 

is no explicit repetition (iteration or recursion). Students can improve 

their learning of algebra without learning everything that is in a modern 

programming language. Even a small bit of programming has power in 

enabling powerful learning outside of computing.

Of course, there is a purpose for all those other programming language 

features that aren’t used in Scratch or aren’t taught in Bootstrap:Algebra. 

The programming needs are dependent on the students’ goals. The 

important point is that students do not need to know everything in order 

to learn enough to gain benefits of computational literacy.

Consider a comparison with textual literacy. There are professionals 

who write for a living: for example, those who produce news stories or 

novels. Most people find value in writing even if they do not write for 

newspapers or publishers. Every day, people find value in writing letters 

and grocery lists with less sophisticated words or grammatical constructs. 

When people are learning a foreign language, they can often achieve basic 

communication with a limited vocabulary and few verb tenses. Similarly, 

there is value in even a small bit of programming.

WHY ARen’t We tHeRe Yet?

Over the last decade, the United States has made dramatic progress in 

increasing access to computing education. For example, in Georgia, 43 per-

cent of high schools offer computer science classes (Parker and Guzdial 

2019). However, only 1 percent of Georgia high school students take any 

of those computer science classes. In Indiana, 33 percent of schools offer 

computer science, but only about 2.5 percent of students ever take a com-

puter science class (Guzdial 2019; Guzdial and Arquilla 2019; Parker and 

Guzdial 2019).

The reasons are complicated why students are still avoiding computer 

science, even when they have access to computing education. Certainly, 
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one of the explanations is that not all computing education experiences 

are high quality. Some afterschool programs and internships dissuade 

students from continuing in computing (Weston et al. 2019). A more 

compelling explanation is that students do not see that computing is a 

pathway to achieving their goals (Lewis et al. 2019). Students who leave 

computing have a very different perception of the field than those who 

stay in computer science (Biggers et al. 2008).

One solution to give more students access to computing education is 

to find new ways to integrate computing across the curriculum. The idea 

is to follow the lead of Bootstrap:Algebra to find ways that programming 

can enhance learning in other subjects. If we can’t convince students to 

come to programming and computational literacy, maybe we can bring 

programming to them and provide computational literacy to support the 

learning that students are interested in.

REDESIGNING PROGRAMMING FOR MICROWORLDS:  

TASK- SPECIFIC PROGRAMMING

Microworlds are one of the great inventions for using programming to 

teach a wide range of subjects. The idea of microworlds is to provide a 

limited subset of the programming environment with tailored operations 

that match the domain of the microworld. Seymour Papert (1980) first 

defined microworlds as a “subset of reality or a constructed reality whose 

structure matches that of a given cognitive mechanism so as to provide 

an environment where the latter can operate effectively. The concept 

leads to the project of inventing microworlds so structured as to allow a 

human learner to exercise particular powerful ideas or intellectual skills.” 

Andrea diSessa (with Hal Abelson) built on this idea in Boxer (diSessa and 

Abelson 1986) and said in his book Changing Minds (diSessa, 2001): “A 

microworld is a type of computational document aimed at embedding 

important ideas in a form that students can readily explore. The best 

microworlds have an easy- to- understand set of operations that students 

can use to engage tasks of value to them, and in doing so, they come 

to understanding powerful underlying principles. You might come to 

understand ecology, for example, by building your own little creatures 

that compete with and are dependent on each other.”
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Typically, a microworld is built on top of a general- purpose language: 

for example, Papert used Logo and diSessa used Boxer. Thus, the designer 

of the microworld could assume familiarity with the syntax and seman-

tics of the programming language and perhaps some general program-

ming concepts like mutable variables and control structures. The problem 

here is that with Logo and Boxer, like any general- purpose programming 

language, it takes time to develop proficiency. They are large and com-

plex things to learn, and learning those can get in the way of the power-

ful ideas or intellectual skills that Papert and diSessa are interested in.

Task- specific programming (TSP) aims to provide the same easy- to- 

understand operations for a microworld, but with a language and envi-

ronment designed for a particular purpose. The task- specific programming 

language (TSPL) is purposefully limited in the abstractions and concepts 

needed for the tasks or explorations in the microworld so that program-

ming becomes much easier to learn than a complete programming lan-

guage. Some task- specific programming languages have been usable in 

only five to ten minutes (Chasins et al. 2018). The ease of use makes it 

possible to think about learning different concepts with different micro-

worlds, that is, different task- specific programming languages. Perhaps an 

elementary or secondary school student might encounter several differ-

ent TSPLs in a single year.

An eXAMPle tAsK- sPeCIFIC PRogRAMMIng envIRonMent

The domain for the following example task- specific programming environ-

ment is precalculus. The operations in this prototype environment are the 

simple matrix transformations taught in many precalculus curricula— 

matrix addition and subtraction and scalar multiplication. The concrete 

purpose in this microworld is the creation of image filters. The point of 

this prototype is to engage students in practicing the intellectual skills 

of matrix manipulation by engaging them in developing image filters. 

Image filters become the concrete purpose for learning the abstraction of 

matrix manipulation.

Figure 2.1 is the main screen for the prototype. Students see a pic-

ture (left- hand side) that is decomposed into matrices representing the red 

channel of the pixels in the picture (bottom left), and the green and blue 

channel matrices next to that. A set of matrix transformations is listed 
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at the top left— this is the program that, applied to the input picture (on 

left), produces the output picture (on right). The Change Picture button 

changes the input picture so that the students can apply the operations 

to different pictures to see that the program processes an arbitrary picture 

to generate a similar image effect on all pictures.

The matrix transformations listed in figure 2.1 are a program, but the 

language is not typed (as in a textual programming language) nor assem-

bled like a jigsaw puzzle (as in a block- based programming language). 

Instead, the statements are constructed with a purpose- built editor that is 

grounded in the disciplinary literacy of precalculus. Each matrix transfor-

mation is created and edited on a screen like in figure 2.2.

There are two possible transformations, which are selected by radio 

button:

• The red, green, or blue matrices can be redefined (“set”) as the sum or 

difference between four matrices: red, green, blue, or a matrix where 

every value is 255. The matrices and operation (plus or minus) are 

selected with pull- down menus. In the example, figure 2.2, the red 

matrix (top left) is set to the difference of the green matrix and the blue 

matrix (top middle). The matrices are presented, using the notation 

2.1 Defining an image filter as a sequence of matrix transformations.
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commonly appearing in precalculus texts, with the output matrix (the 

new red matrix) appearing on the right. The all- 255 matrix can be used 

to compute the inverse of an image, by setting the red, green, and blue 

matrices to 255 minus the current value in the matrix.
• Alternatively, one of the matrices (red, green, or blue) can be multi-

plied by a scalar. The matrix can be selected by pull- down menu, and 

the scalar value is typed into a text area.

The image filter language is simple and grounded in the concepts 

and notation of precalculus. The image filter prototype is an example 

of task- specific programming to support learning matrix transformations 

for precalculus. Students may use this tool to meet a challenge (e.g., to 

generate a particular image manipulation effect) or to practice with trac-

ing and using matrix arithmetic (e.g., in this given effect, what happens 

to pixels in the original picture whose RGB values are [128, 104, 12]). 

Our approach to adoption is informed by the work on SimCalc. In their 

scaling- up paper, Tatar et al. (2008) wrote: “Conversely, a wider path to 

adoption exists if one can engineer materials to support short- term use 

without extensive professional development and with a wide variety of 

2.2 Defining one matrix transformation.
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pedagogical styles. In the short term, innovators may be able to make 

an earlier, more immediate impact on a wide audience and set a credible 

base of authentic improvement that can then serve longer term growth.” 

This is exactly our approach. While task- specific programing tools may 

fit into project- based activities (Blumenfeld et al. 1991, 1994; Krajcik and 

Blumenfeld 2006), the goal is to be usable in a variety of activities.

We use our prototypes in participatory design sessions with teachers 

(DiSalvo 2016; Wilensky and Stroup, 1999). Our goal is to develop task- 

specific programming that teachers would find useful and would inte-

grate into their classes, so we ask them to try it in the context of what 

students find challenging about precalculus. The prototype is an artifact 

to think with. Precalculus teachers learn and use it and then tell us what 

would really be useful to them. We then iterate on the design.

Sessions with precalculus teachers support our hypothesis that they can 

start using it in less than ten minutes. The general response from precalcu-

lus teachers has been guardedly positive. The teachers see that the micro-

worlds aim to take an abstract concept in precalculus and ground it in a 

concrete application. They appreciate our attention to disciplinary literacy 

and to the learning outcomes for precalculus. Several of our informants 

saw the benefits of connecting precalculus to contexts that students found 

personally meaningful, like Instagram or Snapchat photo filters.

However, the teachers tell us that we are solving the wrong problems. 

While some students struggle with matrix notation and element- by- 

element operations, most do not. The hard parts of matrices in precalcu-

lus are matrix multiplication and determinants, and even convolution. 

Those parts are so difficult for students that matrices are often left out of 

a school’s precalculus curriculum, which puts students at a disadvantage 

when they face linear algebra in undergraduate courses. We are currently 

iterating on this design.

A task- specific programming environment is unlikely to achieve all the 

goals described at the beginning of this chapter. Rather, task- specific pro-

gramming may be an easier- to- use and easier- to- adopt programming experi-

ence than textual or block- base languages. Students will not use task- specific 

programming environments alone as a notational tool for computational 

literacy, but use of such tools may help students to gain understanding 

about the nature of programs, programming, and debugging. Task- specific 
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programming may help students develop the first competencies on trajec-

tories to learn programming (Rich et al. 2017, 2019).

CONCLUSION: FINDING PATHWAYS TO  

COMPUTATIONAL LITERACY

There are many reasons for students to learn programming, from under-

standing the digital world in which they live, to developing computational 

participation and action skills, to developing a new way to understand the 

world in which they live. Programming offers a powerful notation for learn-

ing and thinking that is unlike mathematical equations. The computer is the 

master simulator— it can look like any domain. Learning programming can 

be about learning domains that students are already interested in. Learning 

to program is not just about learning to become a software developer.

Achieving that vision may require us to rethink our programming envi-

ronments. Languages developed for professional programmers, or devel-

oped for children in an earlier age with fewer computational end- interface 

skills, are unlikely to provide the affordances for learning that we can design 

in purpose- built environments. Task- specific programming is an approach 

for providing a pathway to computational literacy.
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