
My AI Wants to Know if This Will Be on the Exam:
Testing OpenAI’s Codex on CS2 Programming Exercises
James Finnie-Ansley

The University of Auckland
Auckland, New Zealand

james.finnie-ansley@auckland.ac.nz

Paul Denny
The University of Auckland
Auckland, New Zealand
paul@cs.auckland.ac.nz

Andrew Luxton-Reilly
The University of Auckland
Auckland, New Zealand

a.luxton-reilly@auckland.ac.nz

Eddie Antonio Santos
University College Dublin

Dublin, Ireland
eddie.santos@ucdconnect.ie

James Prather
Abilene Christian University

Abilene, Texas, USA
james.prather@acu.edu

Brett A. Becker
University College Dublin

Dublin, Ireland
brett.becker@ucd.ie

Write a recursive function, called biggest_last(), that takes a list of 
integers as input, where the list elements can be in any order.
If the input list is empty or only contains one integer, then it returns 
the input. Otherwise the function proceeds by starting with the first 
two elements and checking whether the larger one is the second one.
If it is not then the two values should be exchanged, i.e., the smaller 
value put into the first location and the larger value into the 
subsequent location. Once this check is performed then the function 
moves on by one location and repeats this until it has processed the 
entire list. The function outputs that list with the largest integer in the 
last location of the list. The output order of the other integers may be 
different than their input order.
Remember a recursive function is one than calls itself to assist in 
performing its task.

Figure 1: A lengthy question given in a CS2 exam (left) and code generated by OpenAI Codex to answer the question (right)

ABSTRACT
The introduction of OpenAI Codex sparked a surge of interest in the
impact of generative AI models on computing education practices.
Codex is also the underlying model for GitHub Copilot, a plugin
which makes AI-generated code accessible to students through
auto-completion in popular code editors. Research in this area,
particularly on the educational implications, is nascent and has
focused almost exclusively on introductory programming (or CS1)
questions. Very recent work has shown that Codex performs con-
siderably better on typical CS1 exam questions than most students.
It is not clear, however, what Codex’s limits are with regard to more
complex programming assignments and exams. In this paper, we
present results detailing how Codex performs on more advanced
CS2 (data structures and algorithms) exam questions taken from
past exams. We compare these results to those of students who
took the same exams under normal conditions, demonstrating that
Codex outscores most students. We consider the implications of
such tools for the future of undergraduate computing education.

This work is licensed under a Creative Commons Attribution International
4.0 License.

ACE ’23, January 30-February 3, 2023, Melbourne, VIC, Australia
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9941-8/23/01.
https://doi.org/10.1145/3576123.3576134

CCS CONCEPTS
• Social and professional topics → Computing education;
Computer science education; CS1; • Computing methodolo-
gies → Artificial intelligence.

KEYWORDS
academic integrity; AI; AlphaCode; algorithms; artificial intelli-
gence; code generation; Codex; copilot; CS1; CS2; data structures;
deep learning; DeepMind; introductory programming; GitHub;
GPT-3; machine learning; neural networks; novice programming;
OpenAI

ACM Reference Format:
James Finnie-Ansley, Paul Denny, Andrew Luxton-Reilly, Eddie Antonio
Santos, James Prather, and Brett A. Becker. 2023. My AI Wants to Know if
This Will Be on the Exam: Testing OpenAI’s Codex on CS2 Programming
Exercises. In Australasian Computing Education Conference (ACE ’23), Jan-
uary 30-February 3, 2023, Melbourne, VIC, Australia. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3576123.3576134

1 INTRODUCTION
In 2021, OpenAI unveiled Codex [5], an AI model capable of gen-
erating source code from plain English prompts. Codex powers
GitHub Copilot [12], an extension available within several code ed-
itors and IDEs which has resulted in calls for “rethinking computer
science education”.1 On June 21, 2021, Copilot was made available

1theregister.com/2022/10/20/ai_programming_tools_mean_rethinking

97

https://orcid.org/0000-0002-4279-6284
https://orcid.org/0000-0002-5150-9806
https://orcid.org/0000-0001-8269-2909
https://orcid.org/0000-0001-5337-715X
https://orcid.org/0000-0003-2807-6042
https://orcid.org/0000-0003-1446-647X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3576123.3576134
https://doi.org/10.1145/3576123.3576134
https://www.theregister.com/2022/10/20/ai_programming_tools_mean_rethinking/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576123.3576134&domain=pdf&date_stamp=2023-01-30


ACE ’23, January 30-February 3, 2023, Melbourne, VIC, Australia Finnie-Ansley, Denny, Luxton-Reilly, Santos, Prather & Becker

free to any student with a verified GitHub Education account.2 It
was then made availabe for free to teachers on September 8, as it
became evident that Codex and Copilot will impact curriculum,
as well as present emerging educational opportunities—as early
research demonstrated that Codex is effective at solving many in-
troductory programming assignments [10] and that it can generate
explanations of code examples [23].3

Codex’s ability to understand plain English and produce code is
impressive [20]. It is based on the third generation of OpenAI’s Gen-
erative Pre-trained Transformer (GPT-3), one of the most advanced
natural language models that is widely-available as of this writing,
and is trained on “tens of millions of public repositories” [5, 25].

Codex has a number of features that allow users to interact with
and generate source code. With plain English prompts as input, it
will generate code in several programming languages including
Python, C, JavaScript, Go, Perl, PHP, Ruby, Swift and TypeScript,
and Shell.4 It will also translate code from one programming lan-
guage to another and provide English-language descriptions of the
functionality of code provided as input including its computational
complexity. It can also generate code that calls APIs allowing it
to access information in publicly available datasets—for instance
getting the air quality index for cities based on ZIP codes. Codex is
available via the OpenAI API5 and via GitHub Copilot6.

1.1 Motivating example & research questions
Learning to program has a long history of known difficulties [4, 19]
and the challenges students face have been discussed from many
angles [3, 18]. Just a few of the known barriers are dealing with
programming tools and environments [15], programming error
messages [7], program comprehension [24], and how students ap-
proach problem solving [8, 9]. In fact, much of the research on
teaching programming focuses on challenges that students face [4].

Figure 1 shows an example of a CS2 problem description written
in plain English (left). Despite the description being lengthy and
containing many specific details, Codex is capable of generating a
correct solution (right).

Although the details and emphasis of CS2 courses may vary [13],
the main topics of programming methodologies, recursion, search-
ing, sorting, and data structures have remained a staple of CS2
courses for more than 30 years [16]. CS2 courses typically build on
the basic programming constructs taught in CS1 by covering com-
mon structures used to store data (e.g., linear structures such as lists,
stacks, and queues; and non-linear structures such as sets, dictio-
naries, and trees) and the implementation of those data structures.
It also typically covers the algorithms that use the data structures,
including searching and sorting algorithms. Although CS2 may
introduce more elements of theory (e.g., analysis of running time
and efficiency trade-offs), it typically continues to develop pro-
gramming skills with problems that involve implementation of data
structures [26].

Codex has significant implications for educational practices in-
volving programming. Prior work demonstrated that Codex was

2github.blog/2022-06-21-github-copilot-is-generally-available-to-all-developers
3github.blog/2022-09-08-github-copilot-now-available-for-teachers
4openai.com/blog/openai-codex
5beta.openai.com
6copilot.github.com

able to outperform the majority of CS1 students when given the
same English language problem descriptions [10] used in tests and
exams. However, the questions used in CS2 courses are typically
more advanced and may not be so easily solved by models like
Codex. In this paper, we aim to quantify how well Codex performs
on more complex programming problems used in CS2 exams. We
are motivated by the following research questions:
RQ1: How does Codex perform on CS2 assessments compared

with students?
RQ2: How does Codex perform on CS2 assessments compared

with CS1 assessments?
RQ3: What question characteristics appear to influence the per-

formance of Codex?
Codex and other tools like it (based on large languagemodels) are

still nascent. It is therefore unclear how this emerging technology
will impact the computing education classroom. Answering our
research questions is important because computing educators need
to know what tools like Codex are capable of doing, in what ways
they excel, and in what ways they fail. Exposing this will help shape
the ongoing conversation of how to adapt to the new capabilities
at the fingertips of our students (and their educators).

This paper is organized as follows: Section 2 provides the back-
ground of Codex and related AI-powered code generation tools. We
then evaluate the performance of Codex on a suite of programming
problems taken from CS1 and CS2 tests with Section 3 describing
our method and Section 4 reporting the performance of the CS2
problems in relation to student performance and assessing the over-
all performance of Codex on different questions. We then discuss
the implications of our findings in Sections 5 onward.

2 RELATEDWORK
One hope of modern artificial intelligence is that it could provide
dynamic educational support at massive scale never before thought
possible [2]. Modern systems like Codex seem poised to move signif-
icantly towards this goal. For instance, Finnie-Ansley et al. demon-
strated that Codex can solve typical CS1 problems and perform
amongst the top quartile of (real) students on (real) CS1 exams [10].
However, it is currently unclear how such technologies will be
adopted by students and by teachers in computing classrooms, and
whether the opportunities presented by code generation models
will outweigh the challenges relating to their inappropriate use.

2.1 AI-powered code generation
Early investigations of GPT-3 revealed that it could generate simple
programs from Python docstrings, despite GPT-3 being a natural
language model not trained for code generation [5]. This observa-
tion led to the creation of Codex, discussed in Section 1.

Other AI code generation tools exist and have gained rapid
ground in very recent years. Tabnine is an “AI Assistant for Soft-
ware Developers”7 that auto-completes lines of code in several lan-
guages and can be integrated into popular IDEs. It can be trained
on in-house repositories to learn the code patterns of specific teams.
However, Tabnine can only generate fully correct code for less than
8% of unseen programming tasks, given 100 samples [5]. DeepMind

7www.tabnine.com

98

https://github.blog/2022-06-21-github-copilot-is-generally-available-to-all-developers/
https://github.blog/2022-09-08-github-copilot-now-available-for-teachers/
https://openai.com/blog/openai-codex
https://beta.openai.com/
https://copilot.github.com/
https://www.tabnine.com/


My AI Wants to Know if This Will Be on the Exam ACE ’23, January 30-February 3, 2023, Melbourne, VIC, Australia

AlphaCode is a transformer-based model that was trained on code
from competitive programming competitions [17]. As a result, Al-
phaCode can generate code to solve complex problems entirely
from a plain English description, ranking in the top 54% when en-
tered into actual competitive programming competitions. Amazon
CodeWhisperer8 is yet another “machine learning-powered” IDE
plugin that is intended to automatically generate code, including
code that calls APIs.

2.2 Effectiveness of AI-generated code
There have been many recent attempts to assess the effectiveness
of AI-powered code generation. Most studies focus on professional
software developers [5, 6, 27], while few study its implication in
the classroom [10].

Dakhel et al. explored Copilot’s ability to generate code for vari-
ous introductory algorithms, as well as five introductory Python
programming problems [6]. They found that Copilot was perfor-
mant in generating correct and often quite optimal code for com-
mon algorithms such as insertion sort, breadth-first search, and
depth-first search. In cases where Copilot generated incorrect code,
they found that these were easier to fix than typical code submitted
by novices.

Vaithilingam et al. compared the experience of programmers
(predominantly students from undergraduate through PhD) using
Copilot and typical IntelliSense support in standard IDEs [27]. They
found that most users preferred Copilot, but that it did not neces-
sarily reduce task completion time or increase success rate. Users
tended to over-rely on the code produced by Copilot and some
users struggled to understand and debug the auto-generated code.

Finnie-Ansley et al. evaluated the performance of OpenAI’s
Codex on a private repository of CS1 test questions and found
that it solved roughly half of the questions on the very first attempt
[10]. Themodel ultimately scored around 80% across two tests when
multiple attempts (with resubmission penalties consistent with the
course grading scheme) were taken into account, and ranked 17
out of 71 when its performance was compared with students who
were enrolled in the course.

However, AI code generation is far from perfect. Nguyen and
Nadi evaluated the performance of Copilot on 33 LeetCode ques-
tions, with varying difficulty, observing correctness rates of be-
tween 27% and 57% across four languages [21].

Recently, code generation models have been applied to the task
of generating learning resources for students. Sarsa et al. explored
the potential for Codex to generate novel programming exercises
and explanations of code [23]. Using appropriate priming examples
as input, they found that exercises could be created that targeted
specific programming concepts and the contextual themes. In most
cases exercises were sensible, novel, and included matching sample
solutions.

3 METHOD
To answer RQ1 and RQ2 we assess the correctness of solutions
generated by Codex in response to problems from CS1 and CS2
courses. To answer RQ3 we compare characteristics of the questions

8https://aws.amazon.com/codewhisperer/

in which Codex performed very well with characteristics of the
questions in which Codex performed poorly.

3.1 Comparing Codex with students in CS2
RQ1 seeks to compare the performance of Codex on CS2 questions
to the performance of students. We utilize 26 programming ques-
tions that were used as summative assessments on two invigilated
(proctored) lab-based tests conducted in a CS2 programming course
at the University of Auckland in 2019 (14 questions from the first
test and 12 from the second test). In total, there were 264 students
enrolled in the course.

The CS2 course provides a review of the Python programming
language, and covers efficient ways to organize and manipulate
data, including sorting and searching algorithms, as well as writing
software that uses and implements common abstract data types
such as lists, stacks, queues, dictionaries, and binary trees.

The lab-based tests were designed to be two hours in duration.
Each test question consisted of a problem statement and at least
one example test case illustrating successful program execution.
Students completed the test questions on machines with standard
software images, and used the IDLE environment to develop their
programs. Figure 2 shows and example of how test questions ap-
peared to students.

The completed programs were submitted to an automated testing
system (CodeRunner) which provided immediate feedback to stu-
dents who were shown a subset of the test cases used to determine
answer correctness.

Students were permitted to resubmit their code multiple times,
but repeated incorrect submissions accumulated a penalty up to
a maximum penalty of 50%, as shown in Figure 2. Marks for each
question were assigned on an all-or-nothing basis: marks were only
awarded for a question if the submitted code successfully passed all
tests. Code that did not successfully pass all tests received 0 marks
for that question.

As input to Codex, the problem prompt and example test cases
(as doctests) were given as the instruction, and any function
headers or pre-loaded code included in the answer window was
given as the input to the edit model.9 The edit model was chosen
as many problems provide a function header as a starting point
or ask students to modify existing code provided in the answer
window. Specifically, we used OpenAI’s code-davinci-edit-001
model which takes a prompt “instruction” and starter code “input”
for each question. Aside from using the edit model, Codex was
configured the same as it was for a similar recent study (see [10]).

In the evaluations reported in this paper, we provide as input
to Codex the problem statements exactly as they were presented
to students. We did not perform any prompt engineering—instead,
we are simulating students copy-pasting the problem description
verbatim into a downstream application of Codex, such as GitHub
Copilot.

3.2 Codex performance in CS1 vs. CS2
RQ2 seeks to compare the performance of Codex on CS1 versus
CS2 style questions. We compare the performance of Codex on the
CS2 problems discussed above with performance on CS1 problems.
9https://beta.openai.com/docs/api-reference/edits/create

99

https://aws.amazon.com/codewhisperer/
https://beta.openai.com/docs/api-reference/edits/create


ACE ’23, January 30-February 3, 2023, Melbourne, VIC, Australia Finnie-Ansley, Denny, Luxton-Reilly, Santos, Prather & Becker

Figure 2: Presentation of Question 1 from CS2 Test 1 within the web-based examination tool as seen by students

We collated 28 CS1-type problems that were used as summative
assessments on two un-invigilated lab-based tests from a CS1 course
at our institution in 2020 (14 questions each).

The CS1 course covers the basics of programming such as vari-
ables, arithmetic, conditional branches, loops, reading and writing
to files, and functions. Students submitted the lab-based tests in CS1
using the same assessment system for CS2 discussed above. The
tests were designed to be 2 hours in duration and were time-limited,
but were not invigilated. In this study we do not consider student
performance in the CS1 tests due to difficulties interpreting student
performance in an un-invigilated test environment. However, the
test questions are representative of typical CS1 problems used in
this course, and provide an appropriate problem set to compare
with CS2 when considering the performance of Codex.

3.3 Scoring Codex
In our previous study [10], we manually generated one run of
responses to question prompts that were copied into CodeRunner
until we got a correct response. While this gave results that were
scored in the same way as students, the single run was susceptible
to the random hit-or-miss nature of Codex responses. As the Codex
model is non-deterministic, there is variability in the output it
generates for a given input. Scoring the performance of Codex
using a single set of outputs is therefore unlikely to lead to results
that are replicable. To ameliorate this issue in this study, for each
questionwe generate 50 Codex responses as a representative sample
to assess the performance of Codex for that question (Chen et al. [5]
used 100). In total we generated 2700 code responses.

We used two general metrics to assess the performance of Codex:

Chance-x This is the probability of generating a fully-correct solu-
tion within x attempts (inclusive). For example, chance-1 is
the probability of getting a fully correct solution in 1 attempt,
and chance-5 is the probability of generating a fully correct
solution within 5 attempts.

Simulated This is the expected score (out of 1) that Codex would
attain on a question if it were being marked in the same way
as students (with the penalty scheme described in Section 3)
capped at a maximum of 5 attempts per question.

The simulated metric allows us to compare Codex to students as
it is effectively grading Codex with the same penalties as students.
In addition, it is capped at a small number of attempts, consistent
with how a student might use Codex in a time-limited test. The
chance-x metrics are intended to give an overview of the general
“power” of Codex if it were being used by a student. It is unlikely
that a student using a tool such as Codex to generate answers
on tests or assignments would only generate one solution if they
were able to test the code it generates; the chance-x metrics, while
simple, are intended to show how likely a student is to generate a
fully-correct solution within a finite number of repeated attempts.

4 RESULTS
4.1 RQ1: Comparing Codex with students in CS2
Our first research question asks how Codex performs on CS2 as-
sessments compared with students; specifically, we compared the
performance of Codex on CS2 questions with students answering
the same questions under invigilated test conditions. Prior work
that explored the same question at the CS1 level revealed that
Codex performed well, scoring approximately 80% on two tests,
and placing 17 out of 71 when ranked alongside students [10].

Table 1 contains the per-question scores of Codex and the mean
score of students as well as the mean scores for each test respec-
tively. It also lists the overall topic/subject of each question. We
compare the “Simulated” score of Codex, which uses the same
penalty scheme as students were graded with, with the “Student”
scores. We use an asterisk to denote which of the “Simulated” and
“Student” scores is greater for each question.

For both tests, the mean simulated score of Codex is higher than
the mean student score, and on individual questions Codex exhibits
equal or better performance compared to the mean student score
for 77% of questions (20 of 26).

Figure 3 plots the Test 1 and Test 2 scores (scaled to a maximum
of 100) of 264 students enrolled in the CS2 course in 2019 who com-
pleted both tests. For comparison, the performance of the responses
generated by Codex is marked with an orange ‘×’. Averaging both
Test 1 and Test 2 performance, Codex’s score is in position 66 when
ranked alongside the 264 students’ scores, placing it just within the
top quartile of class performance.

100



My AI Wants to Know if This Will Be on the Exam ACE ’23, January 30-February 3, 2023, Melbourne, VIC, Australia

Test-Question Question Tags Chance-1 Chance-3 Chance-5 Simulated Student

1-1 Algebra 0.56 0.91 0.98 *0.98 0.80
1-2 IO, Data Sanitisation 0.24 0.56 0.75 *0.87 0.84
1-3 Algebra, Finite Series 0.68 0.97 1.00 *0.99 0.82
1-4 File IO, String Manipulation 0.70 0.97 1.00 *0.99 0.62
1-5 String Manipulation 0.30 0.66 0.83 *0.91 0.76
1-6 Mapping/Aggregation 0.26 0.59 0.78 *0.89 0.60
1-7 Algebra, Finite Series 0.36 0.74 0.89 *0.94 0.37
1-8 String Manipulation 0.34 0.71 0.87 *0.93 0.59
1-9 Classes/OOP 0.76 0.99 1.00 *1.00 0.61
1-10 String Manipulation 0.34 0.71 0.87 *0.93 0.42
1-11 Tree Search 0.04 0.12 0.18 *0.31 0.20
1-12 IO, Rainfall 0.14 0.36 0.53 *0.71 0.32
1-13 Insertion Sort, String Formatting 0.00 0.00 0.00 0.00 *0.08
1-14 Classes/OOP 0.02 0.06 0.10 *0.17 0.10

Avg. — 0.34 0.60 0.70 *0.76 0.51

2-1 Discrete Mathematics 0.66 0.96 1.00 *0.99 0.98
2-2 String Manipulation 0.54 0.90 0.98 =0.96 =0.96
2-3 Filtering 0.48 0.86 0.96 *0.94 0.91
2-4 List Manipulation 0.06 0.17 0.27 0.25 *0.31
2-5 Rainfall Variant 0.08 0.22 0.34 0.32 *0.54
2-6 Classes/OOP 0.08 0.22 0.34 0.32 *0.47
2-7 Classes/OOP 0.12 0.32 0.47 *0.45 0.18
2-8 Stacks/Queues 0.26 0.59 0.78 *0.75 0.38
2-9 Classes/OOP 0.20 0.49 0.67 *0.64 0.13
2-10 Binary Heaps 0.40 0.78 0.92 *0.90 0.23
2-11 Hashing 0.00 0.00 0.00 0.00 *0.15
2-12 Binary Search Trees 0.02 0.06 0.10 0.09 *0.11

Avg. — 0.24 0.46 0.57 *0.55 0.45

Table 1: CS2 question scores of grading methods rounded to two decimal places; the higher score for each question appears
with an asterisk (*)

4.2 RQ2: Codex performance in CS1 vs. CS2
Our second research question asks how Codex performs on CS2
assessments compared with CS1 assessments. To assess this, we
applied the simulated score calculation described in section 3.3
to the CS1 questions. As established previously, Codex has been
shown to perform well on CS1 questions [10]. When comparing
CS1 and CS2 performance, it would be reasonable to expect Codex
to perform better on CS1 questions than on CS2 questions, given
their lower overall complexity.

Figure 4 plots a kernel density estimation of the simulated per-
question scores (the “Simulated” column in Table 1) for each of
the two CS1 tests and the two CS2 tests. The x-axis indicates the
simulated per-question test score, and the y-axis indicates the “den-
sity” of questions with that score. A higher peak means that more
questions achieved a simulated score in that relative region.

The distributions for both CS1 tests, as well as well as the first
CS2 test are heavily bimodal: for these tests, Codex usually achieves
a high average score (accounting for the larger, higher mode), or
it fails to consistently answer a question correctly (accounting for
the smaller, lower mode). In other words, Codex’s performance on

these tests is hit-or-miss; Codex either produces a good solution
(more likely), or will produce very low scoring solutions (less likely).
However, the per-question score distribution that Codex achieved
on CS2, test 2—while still bimodal—is far flatter than all other
distributions, meaning that, for CS2, Codex produces responses
with a wider variety of correctness in CS2.

4.3 RQ3: Differences in questions by scores
RQ3 seeks to explore some of the characteristics that tend to be
common to questions where Codex performs well and to those
where it does not perform well. We examined the CS1 and CS2
questions where the simulated score was above and below the
average simulated score of 72% and report in this section some
observations of elements common to these questions. In total there
were 35 questions with a simulated score that was above average
and 19 questions that got a simulated score that was below average.

Between these sets of questions we make some general observa-
tions. There is a striking difference between the number of charac-
ters included in each prompt given to Codex with the best perform-
ing questions having a mean of 742 characters per question and

101



ACE ’23, January 30-February 3, 2023, Melbourne, VIC, Australia Finnie-Ansley, Denny, Luxton-Reilly, Santos, Prather & Becker

0 20 40 60 80 100
Test 1 score (out of 100)

0

20

40

60

80

100

Te
st

 2
 s

co
re

 (o
ut

 o
f 1

00
)

Figure 3: Student scores on two invigilated tests for CS2 with
the performance of Codex plotted as an orange ‘×’

CS1, test 1

CS1, test 2

CS2, test 1

0.0 0.2 0.4 0.6 0.8 1.0
Simulated score (out of 1)

CS2, test 2

Figure 4: Kernel density estimation of the distribution of
Codex’s per-question scores, grouped by test

the worst performing questions having a mean of 1443 characters
per question—nearly double that of the best performing questions.
Although some of this may be explained by the fact that more
complex questions may require longer prompts, it also aligns with
observations of Chen et al. that performance of the Codex model
tends to decrease exponentially as the number of basic building
blocks in a question increases [5]. Figure 5 shows Codex’s question

500 1000 1500 2000 2500
Prompt length (characters)

0.0

0.2

0.4

0.6

0.8

1.0

S
im

ul
at

ed
 S

co
re

Figure 5: Simulated score by prompt character length

scores by prompt length. Simulated score has a moderate negative
correlation with prompt length (𝑟 = −0.57).

A greater proportion of the worst performing questions also
contained additional code that needed to be edited or used (e.g.,
helper functions) with 5 of the 19 worst performing questions
including such code as input (26%) versus 2 of the 35 best performing
questions (6%). We also note some general differences in the nature
of the problems between the two sets of questions.

The best performing questions tend to be posing simple problems
that require the application of standard algorithmic patterns [11]
(e.g., filtering, mapping, etc.) or computing common mathematical
operations such as multiplying numbers, computing prime factor-
izations, or the magnitude of a line in 2D space. Below is one of the
best performing questions taken from one of the CS1 tests:

Complete the

get_list_of_four_letter_words(words_list)

function which is passed a list of strings as a parameter.
The function returns a new list of all the words from
the parameter list which are four characters in length.
All the words in the returned list should be in lowercase
characters.

Notes:
• You MUST use the append()method to add elements
to the end of the list.

• If the parameter list is empty or contains no words
which are four characters in length, the function re-
turns an empty list.

For example:

>>> words = get_list_of_four_letter_words(

102



My AI Wants to Know if This Will Be on the Exam ACE ’23, January 30-February 3, 2023, Melbourne, VIC, Australia

['into', 'elephant', 'room', 'the'] )
>>> print(words)
['into', 'room']

The worst performing questions tend to be those with implicit
edge cases (e.g., not explicitly stating words might contain up-
percase letters), questions that operate on complex data (nested
structures, 2D lists, etc), questions that need specific output format-
ting, or questions that give a non-itemized specification of a class
API with several methods that need to be implemented. Below is
one of the lowest scoring questions taken from one of the CS2 tests:

The following code implements the Insertion Sort algo-
rithm and maintains the sorted part of the list at the
start.
[... Insertion Sort code provided here ...]
Modify the code so that the sorted part of the list is
maintained at the end of the list.

Additionally, modify the code so that it prints out the
list before each element is added to the sorted sublist.
The output should contain the number of elements in
the sorted sublist (size), and should print the sublist that
is still unsorted, and the sublist that is sorted.

For example:

>>> insertion_sort([4, 1, 3, 5, 2])
1 : unsorted - [4, 1, 3, 5] sorted - [2]
2 : unsorted - [4, 1, 3] sorted - [2, 5]
3 : unsorted - [4, 1] sorted - [2, 3, 5]
4 : unsorted - [4] sorted - [1, 2, 3, 5]
5 : unsorted - [] sorted - [1, 2, 3, 4, 5]

In this question students are asked to edit code that is provided
to them. The goal is to modify a sorting algorithm by changing
its intermediate behavior (which portion of the list is sorted as
the algorithm progresses) and to print intermediate states. The
additional input code was provided as the “input” field of the edit
API with the question prompt given as the “instruction”10. This
question was the lowest scoring by both students and Codex. Codex
was unable to produce a single fully-correct response from the 50
generated and students attaining a mean score of 0.08 out of 1.

5 DISCUSSION
The results of this study and our previous study [10] demonstrate
that Codex can perform better than most students on code writing
questions from both CS1 and CS2 tests, scoring in the top quartile
of test marks when compared with students in both cases.

Overall, our results show that Codex performs better than most
students on code writing questions at the CS2 level, mirroring the
findings of Finnie-Ansley et al. [10] that focused on CS1 questions.
In both cases, the performance of Codex falls within the top quartile
of test marks when compared to students. Although Codex does
appear to perform better in CS1 comparedwith CS2, it is still capable
of completing most CS2 tasks assessed in these exams. Since Copilot
is available as a free extension to commonly used IDEs, we can

10https://beta.openai.com/docs/api-reference/edits/create

assume that most students will have access to an AI-generated
solution that is likely better than their own (unassisted) solution.

Our analysis of question characteristics suggests that Codex per-
forms well on tasks that start with a ‘blank slate’ and have explicit,
well-defined requirements. Those with much longer descriptions
are less able to be completed by Codex. Tasks that require modifi-
cation of existing code, or in which there are implicit requirements
to handle edge cases typically have poorer performance. The char-
acteristics that make tasks more challenging for Codex may also
make tasks more challenging for students—ambiguous or implicit
requirements, difficult edge cases, wordy questions, and the need
to understand existing code and make modifications.

Our results indicate that Codex is very good at solving semi-
complex code reading and writing problems. It falters when there
are odd edge cases or the requirements are somewhat esoteric.
This is probably because these data were not in its training set
and it struggles to extrapolate a solution. Since Codex was trained
on code from GitHub, it is also important to recognize what else
was possibly not in (or less well-represented in) the training set,
including multiple choice questions, card sorting exercises, Parsons
problems, programming error message diagnosis, reverse code-
tracing, and more. These may be more out of Codex’s immediate
reach, and we propose that these be explored further by the research
community. If Codex can handle current assignments and exams
as suggested by our results (including [10]) educators should reach
beyond typical questions that can still adequately measure student
learning. It appears that students are likely to be over-reliant on
AI-generated code and often struggle to properly utilize it [27].
Acting on this could yield approaches that teach students how to
effectively use tools like Codex - while still enhancing learning.

5.1 Speculation
Wehave no clear signals to indicate howAI code generation technol-
ogy will develop in the future, or how widely it will be adopted by
industry professionals. However, it seems fairly safe (likely obvious)
to predict that this technology will become faster, more accessible,
and more accurate [22]. Exploratory work by Vaithilingam et al.
[27] reports that users of Copilot prefer it to the Intellisense support
provided in Visual Studio Code. This user preference suggests that
students will likely adopt the technology, particularly if it helps
them to complete assessed work.

The existence of AI code generation tools complicates the deliv-
ery of computing education as students will have ready access to
uniquely generated solutions that are frequently correct, but not
curated (i.e., the solution may be flawed, or use programming con-
structs or idioms that are inconsistent with the course instruction).
The temptation to use such a technology for graded assignments
will be high, and may impact student behavior in negative ways.

Given this, our educational effort is perhaps best directed at
better supporting students to understand the code to which they
are exposed. This may emphasize reading over writing, which is
consistent with the approach advocated by Xie et al. [28].

We have limited understanding of how these technologies will
impact student behavior or how they might impact computing
education practices. Regardless, we believe there will be an impact,

103

https://beta.openai.com/docs/api-reference/edits/create


ACE ’23, January 30-February 3, 2023, Melbourne, VIC, Australia Finnie-Ansley, Denny, Luxton-Reilly, Santos, Prather & Becker

and our community urgently needs to understand how to best
mitigate the drawbacks and to leverage the potential benefits.

6 LIMITATIONS
Since our students have continued access to their test questions
after a test is completed, it is possible that some students may have
uploaded the test problems to GitHub or other online repositories.
In this case there may be exemplars present in the data that Codex
was trained on. The questions used in this study are drawn from a
single institution, and both CS1 and CS2 courses that contribute the
data use a web-based automated assessment tool that includes test
cases. The nature of the course and the tool used, may mean that
these assessments are not representative of questions used in other
institutions. However, we note that both courses use the online
Runestone textbooks [1] and cover standard CS1 and CS2 content
aligned with the ACM Curriculum [14].

It should be noted that our analysis focuses on the artifacts
produced—essentially, this is aligned with the behaviorist paradigm
and should not be treated as a measure of the “intelligence” of the
AI-generative models under cognitive perspectives.

7 CONCLUSIONS
We find that Codex is able to solve most CS2 questions, performing
similarly to students in the top quartile of the class that answered
the same questions we provided to Codex. We find evidence that
Codex may perform better on questions that are more precisely
defined, succinctly written, have fewer edge cases, and do not re-
quire adapting existing code. This work confirms that Codex is well
capable beyond the complexity of CS1 problems. It is unknown
at what point the complexity of questions will markedly impact
the performance of Codex (in the programming education domain).
Further, how educators should adapt to this new technology that is
freely available to our students, remains an open question. More
work is needed in this rapidly emerging so that educators can to
best adapt their classroom practices in ways that continue to benefit
student learning.

REFERENCES
[1] Runestone Academy. 2022. Foundations of Python Programming. https://

runestone.academy/ns/books/published/fopp/index.html
[2] Brett Becker. 2017. Artificial Intelligence in Education: What Is It, Where Is It

Now, Where Is It Going. Ireland’s Yearbook of Education 2018 (2017), 42–46.
[3] Brett A. Becker. 2021. What Does Saying That ‘Programming is Hard’ Really Say,

and About Whom? Commun. ACM 64, 8 (jul 2021), 27–29. https://doi.org/10.
1145/3469115

[4] Brett A. Becker and Keith Quille. 2019. 50 Years of CS1 at SIGCSE: A Review of
the Evolution of Introductory Programming Education Research. In Proceedings
of the 50th ACM Technical Symposium on Computer Science Education (SIGCSE
’19). ACM, NY, NY, USA, 338–344. https://doi.org/10.1145/3287324.3287432

[5] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, et al. 2021. Evaluating Large Language Models Trained on Code. https:
//arxiv.org/abs/2107.03374. (2021).

[6] Arghavan Moradi Dakhel, Vahid Majdinasab, Amin Nikanjam, Foutse Khomh,
Michel C. Desmarais, et al. 2022. GitHub Copilot AI Pair Programmer: Asset or
Liability? https://doi.org/10.48550/arXiv.2206.15331

[7] Paul Denny, James Prather, and Brett A. Becker. 2020. Error Message Readability
and Novice Debugging Performance. In Proceedings of the 2020 ACM Conference
on Innovation and Technology in Computer Science Education (ITiCSE ’20). ACM,
NY, NY, USA, 480–486. https://doi.org/10.1145/3341525.3387384

[8] Paul Denny, James Prather, Brett A. Becker, Zachary Albrecht, Dastyni Loksa,
et al. 2019. A Closer Look at Metacognitive Scaffolding: Solving Test Cases Before
Programming. In Proceedings of the 19th Koli Calling International Conference on

Computing Education Research (Koli Calling ’19). ACM, NY, NY, USA, Article 11,
10 pages. https://doi.org/10.1145/3364510.3366170

[9] Paul E. Dickson, Neil C. C. Brown, and Brett A. Becker. 2020. Engage Against the
Machine: Rise of the Notional Machines as Effective Pedagogical Devices (ITiCSE
’20). ACM, NY, NY, USA, 159–165. https://doi.org/10.1145/3341525.3387404

[10] James Finnie-Ansley, Paul Denny, Brett A. Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The Robots Are Coming: Exploring the Implications of
OpenAI Codex on Introductory Programming. In Australasian Computing Educa-
tion Conference (ACE ’22). ACM, Online, 10–19. https://doi.org/10.1145/3511861.
3511863

[11] James Finnie-Ansley, Paul Denny, and Andrew Luxton-Reilly. 2021. A Semblance
of Similarity: Student Categorisation of Simple Algorithmic Problem Statements.
In Proceedings of the 17th ACM Conference on International Computing Education
Research (ICER 2021). ACM, NY, NY, USA, 198–212. https://doi.org/10.1145/
3446871.3469745

[12] GitHub. 2021. GitHub Copilot - Your AI Pair Programmer. https://github.com/
features/copilot/. (Accessed July 21, 2022).

[13] Matthew Hertz. 2010. What Do "CS1" and "CS2" Mean? Investigating Differences
in the Early Courses. In Proceedings of the 41st ACM Technical Symposium on
Computer Science Education (SIGCSE ’10). ACM, NY, NY, USA, 199–203. https:
//doi.org/10.1145/1734263.1734335

[14] ACM Joint Task Force on Computing Curricula and IEEE Computer Society. 2013.
Computer Science Curricula 2013: Curriculum Guidelines for Undergraduate Degree
Programs in Computer Science. ACM, NY, NY, USA.

[15] Ioannis Karvelas, Annie Li, and Brett A. Becker. 2020. The Effects of Compilation
Mechanisms and Error Message Presentation on Novice Programmer Behavior. In
Proceedings of the 51st ACM Technical Symposium on Computer Science Education
(SIGCSE ’20). ACM, NY, NY, USA, 759–765. https://doi.org/10.1145/3328778.
3366882

[16] Elliot B. Koffman, David Stemple, and Caroline E. Wardle. 1985. Recommended
Curriculum for CS2, 1984: A Report of the ACM Curriculum Task Force for CS2.
Commun. ACM 28, 8 (Aug 1985), 815–818. https://doi.org/10.1145/4021.214936

[17] Yujia Li, David Choi, Junyoung Chung, Julian Schrittwieser, et al. 2022.
Competition-level Code Generation With AlphaCode. Science 378, 6624 (2022),
1092–1097. https://doi.org/10.1126/science.abq1158

[18] Andrew Luxton-Reilly. 2016. Learning to Program is Easy. In Proceedings of
the 2016 ACM Conference on Innovation and Technology in Computer Science
Education (ITiCSE ’16). ACM, NY NY, USA, 284–289. https://doi.org/10.1145/
2899415.2899432

[19] Andrew Luxton-Reilly, Simon, Ibrahim Albluwi, Brett A. Becker, Michail Gian-
nakos, et al. 2018. Introductory Programming: A Systematic Literature Review.
In Proceedings Companion of the 23rd Annual ACM Conference on Innovation and
Technology in Computer Science Education (ITiCSE 2018 Companion). ACM, NY,
NY, USA, 55–106. https://doi.org/10.1145/3293881.3295779

[20] Cade Metz. 2021. A.I. Can NowWrite Its Own Computer Code. Thats Good News
for Humans. The New York Times (Sep 2021). https://www.nytimes.com/2021/
09/09/technology/codex-artificial-intelligence-coding.html

[21] Nhan Nguyen and Sarah Nadi. 2022. An Empirical Evaluation of GitHub Copilot’s
Code Suggestions. In 2022 IEEE/ACM 19th International Conference on Mining
Software Repositories (MSR). IEEE, Pittsburgh, US, 1–5. https://doi.org/10.1145/
3524842.3528470

[22] Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, et al.
2022. Synchromesh: Reliable Code Generation from Pre-Trained Language Mod-
els. (January 2022). http://arxiv.org/abs/2201.11227

[23] Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic Gen-
eration of Programming Exercises and Code Explanations Using Large Language
Models. In Proceedings of the 2022 ACM Conference on International Computing
Education Research V. 1. ACM, NY, NY, USA, 27–43.

[24] Ivonne Schröter, Jacob Krüger, Janet Siegmund, and Thomas Leich. 2017. Com-
prehending Studies on Program Comprehension. In 2017 IEEE/ACM 25th In-
ternational Conference on Program Comprehension (ICPC). 308–311. https:
//doi.org/10.1109/ICPC.2017.9

[25] Maddie Simens. 2022. Understanding Codex Training Data and Outputs | OpenAI
Help Center. https://help.openai.com/en/articles/5480054-understanding-codex-
training-data-and-outputs. (Accessed May 03, 2022).

[26] Beth Simon, Mike Clancy, Robert McCartney, Briana Morrison, Brad Richards,
et al. 2010. Making Sense of Data Structures Exams. In Proceedings of the Sixth
International Workshop on Computing Education Research (ICER ’10). ACM, NY,
NY, USA, 97–106. https://doi.org/10.1145/1839594.1839612

[27] Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation vs.
Experience: Evaluating the Usability of Code Generation Tools Powered by Large
Language Models. In CHI Conference on Human Factors in Computing Systems
Extended Abstracts. ACM, NY, NY, USA, 1–7.

[28] Benjamin Xie, Dastyni Loksa, Greg L. Nelson, Matthew J. Davidson, Dongsheng
Dong, et al. 2019. A theory of instruction for introductory programming skills.
Computer Science Education 29, 2-3 (2019), 205–253. https://doi.org/10.1080/
08993408.2019.1565235

104

https://runestone.academy/ns/books/published/fopp/index.html
https://runestone.academy/ns/books/published/fopp/index.html
https://doi.org/10.1145/3469115
https://doi.org/10.1145/3469115
https://doi.org/10.1145/3287324.3287432
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.48550/arXiv.2206.15331
https://doi.org/10.1145/3341525.3387384
https://doi.org/10.1145/3364510.3366170
https://doi.org/10.1145/3341525.3387404
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3446871.3469745
https://doi.org/10.1145/3446871.3469745
https://github.com/features/copilot/
https://github.com/features/copilot/
https://doi.org/10.1145/1734263.1734335
https://doi.org/10.1145/1734263.1734335
https://doi.org/10.1145/3328778.3366882
https://doi.org/10.1145/3328778.3366882
https://doi.org/10.1145/4021.214936
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1145/2899415.2899432
https://doi.org/10.1145/2899415.2899432
https://doi.org/10.1145/3293881.3295779
https://www.nytimes.com/2021/09/09/technology/codex-artificial-intelligence-coding.html
https://www.nytimes.com/2021/09/09/technology/codex-artificial-intelligence-coding.html
https://doi.org/10.1145/3524842.3528470
https://doi.org/10.1145/3524842.3528470
http://arxiv.org/abs/2201.11227
https://doi.org/10.1109/ICPC.2017.9
https://doi.org/10.1109/ICPC.2017.9
https://help.openai.com/en/articles/5480054-understanding-codex-training-data-and-outputs
https://help.openai.com/en/articles/5480054-understanding-codex-training-data-and-outputs
https://doi.org/10.1145/1839594.1839612
https://doi.org/10.1080/08993408.2019.1565235
https://doi.org/10.1080/08993408.2019.1565235

	Abstract
	1 Introduction
	1.1 Motivating example & research questions

	2 Related Work
	2.1 AI-powered code generation
	2.2 Effectiveness of AI-generated code

	3 Method
	3.1 Comparing Codex with students in CS2
	3.2 Codex performance in CS1 vs. CS2
	3.3 Scoring Codex

	4 Results
	4.1 RQ1: Comparing Codex with students in CS2
	4.2 RQ2: Codex performance in CS1 vs. CS2
	4.3 RQ3: Differences in questions by scores

	5 Discussion
	5.1 Speculation

	6 Limitations
	7 Conclusions
	References

