iversity

The Open

Un

Open Research Online

The Open University's repository of research publications
and other research outputs

Using GitHub Copilot to Solve Simple Programming
Problems

Conference or Workshop Item

How to cite:

Wermelinger, Michel (2023). Using GitHub Copilot to Solve Simple Programming Problems. In: SIGCSE
2023: Proceedings of the 54th ACM Technical Symposium on Computing Science Education V. 1, ACM, New York,
USA, pp. 172-178.

For guidance on citations see FAQs.

(© 2023 Copyright held by the owner/author(s).

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1145/3545945.3569830

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies

page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1145/3545945.3569830
http://oro.open.ac.uk/policies.html

Using GitHub Copilot to Solve Simple Programming Problems

Michel Wermelinger
School of Computing and Communications
The Open University
Milton Keynes, United Kingdom
michel. wermelinger@open.ac.uk

ABSTRACT

The teaching and assessment of introductory programming involves
writing code that solves a problem described by text. Previous re-
search found that OpenAI’'s Codex, a natural language machine
learning model trained on billions of lines of code, performs well
on many programming problems, often generating correct and
readable Python code. GitHub’s version of Codex, Copilot, is freely
available to students. This raises pedagogic and academic integrity
concerns. Educators need to know what Copilot is capable of, in or-
der to adapt their teaching to Al-powered programming assistants.
Previous research evaluated the most performant Codex model
quantitatively, e.g. how many problems have at least one correct
suggestion that passes all tests. Here I evaluate Copilot instead, to
see if and how it differs from Codex, and look qualitatively at the
generated suggestions, to understand the limitations of Copilot. I
also report on the experience of using Copilot for other activities
asked of students in programming courses: explaining code, gener-
ating tests and fixing bugs. The paper concludes with a discussion
of the implications of the observed capabilities for the teaching of
programming.

CCS CONCEPTS

« Computing methodologies — Natural language processing;
« Software and its engineering — Automatic programming; «
Social and professional topics — CS1.

KEYWORDS

code generation, test generation, code explanation, programming
exercises, programming patterns, novice programming, introduc-
tory programming, academic integrity, OpenAl Codex

ACM Reference Format:

Michel Wermelinger. 2023. Using GitHub Copilot to Solve Simple Program-
ming Problems. In Proceedings of the 54th ACM Technical Symposium on
Computer Science Education V. 1 (SIGCSE 2023), March 15-18, 2023, Toronto,
ON, Canada. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3545945.3569830

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE 2023, March 15-18, 2023, Toronto, ON, Canada

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9431-4/23/03...$15.00
https://doi.org/10.1145/3545945.3569830

1 INTRODUCTION

Program synthesis is an active research field with a long history.
Recent developments include OpenAT’s Codex! [1], DeepMind’s
AlphaCode2 [8], Amazon’s CodeWhisperer3 and Tabnine?, four
systems that can translate a problem description to code. Currently
(August 2022), AlphaCode and CodeWhisperer aren’t publicly avail-
able and Tabnine’s free version only does code suggestions. This
paper considers GitHub’s Copilot®, a version of Codex accessible
through a plugin for popular IDEs.

In June 2022, GitHub released Copilot to individual customers
and included it in the free Student Pack. Codex, publicly available
since November 2021, is a paid service, accessed by writing a pro-
gram that calls OpenAI’s APL These are barriers to adoption by
students and Copilot removed them. Whether we like it or not,
many students will use the free IDE plugin for exercises and assign-
ments, without having to learn an API or disrupt their workflow.

With a suitable configuration, the most performant Codex model
(Davinci) can solve typical CS1 problems [4]. (I use ‘solve’ in the
sense of ‘generate an answer that passes the tests’.) However, Davinci
is also the slowest and most expensive of the models and we know
that “a distinct production version of Codex powers GitHub Copilot”
[1]. Given the recent release of Copilot and its expected widespread
use by students, it is timely to check if it performs as well as Davinci,
and if not, what limitations it has.

OpenAT’s Codex examples® include fixing a bug and generating
documentation strings, step-by-step explanations and code sum-
maries. Sarsa et al. showed that Davinci can create exercises (as
variations of a given problem), sample solutions, explanations and
tests [12]. However, Copilot’s FAQ states that it “is not intended
for non-coding tasks like data generation and natural language
generation, like question and answering”. We can thus expect Copi-
lot to perform less well than Davinci in generating tests and code
explanations, two tasks often asked of students.

The demo videos on the Codex site illustrate the incremental
creation of programs: the user’s initial request generates a minimal
program or function that is modified by each subsequent request.
Codex and the user engage in a ‘dialogue’ in which the user’s Eng-
lish sentences elicit a reply in a programming language. Copilot
makes this interaction stronger and more seamless: it makes sugges-
tions as we type in the IDE, we can ask for alternative suggestions
with one keystroke and we can edit Copilot’s suggestions. It’s no
surprise that GitHub dubs Copilot as “your Al pair programmer”,

Lhttps://openai.com/blog/openai-codex
https://www.deepmind.com/blog/competitive-programming-with-alphacode
Shttps://aws.amazon.com/codewhisperer

*https://www.tabnine.com

Shttps://copilot.github.com

®https://beta.openai.com/examples?category=code

https://orcid.org/0000-0002-6467-3293
https://doi.org/10.1145/3545945.3569830
https://doi.org/10.1145/3545945.3569830
https://doi.org/10.1145/3545945.3569830
https://openai.com/blog/openai-codex
https://www.deepmind.com/blog/competitive-programming-with-alphacode
https://aws.amazon.com/codewhisperer
https://www.tabnine.com
https://copilot.github.com
https://beta.openai.com/examples?category=code

SIGCSE 2023, March 15-18, 2023, Toronto, ON, Canada

even though the interaction is far more limited than with a human;
notably, Copilot does not provide a rationale for its suggestions.

In summary, Copilot is currently the most likely Al assistant to
be adopted by students, but only Codex has been evaluated, in a
quantitative way, mostly with automated tests to obtain the per-
centage of correct code suggestions for a given problem statement.
While Copilot could be evaluated in the same way, a qualitative
look at Copilot’s answers may be more insightful. This paper is
a report of my experience in using Copilot as if I were a student
tasked with writing code (possibly with an explanation) and tests
for a given CS1 problem. The guiding questions for this exploration
are:

e How does Copilot perform, compared with Davinci, in terms
of the correctness and variety of the generated code, tests
and explanations?

o If a suggestion is incorrect, can Copilot be interactively led
to a correct one?

2 RELATED WORK

The OpenAl team wrote 164 problems’ with tests, to evaluate if
early models of Codex generate correct Python code from English
[1]. Almost 29% of the problems were solved by Codex’s first sug-
gestion. A fine-tuned model, trained only on correct Python code,
solved 38% of the problems on its first attempt. If that model is
allowed 100 attempts per problem, then at least one of them was
correct for 78% of the problems. Judging from the randomly selected
attempts in the paper’s appendix, most are incorrect.

Finnie-Ansley et al. [4] investigated the performance of the
Davinci model on two sets of CS1 problems in Python, setting
the temperature parameter to 90% to elicit more creative answers.

The first set had 23 problems from past tests of their CS1 course.
Codex had ten attempts at each problem. It solved 10 problems
on the first attempt, it needed manual output correction for some
problems, and it couldn’t solve 4 problems that required ASCII
formatting or restricted what students could use, e.g. ‘you must use
a while-loop but not the split() method’.

The second set consisted of 7 variants of the rainfall problem
[3-7, 13, 14]. Codex was asked for 50 solutions to each problem.
For all but one variant, at least one attempt passed all tests. The 50
attempts passed on average 19% of the tests for the Ebrahimi et al.
variant [3], up to 63% of the tests for Soloway’s [14].

Sarsa et al. [12] also evaluated Davinci, but from the perspective
of a teacher who wants varied but related exercises in different do-
mains to better engage their students. The researchers submitted to
Codex a Python docstring containing: keywords describing the do-
main (e.g. ‘football’) and the programming context (e.g. ‘list’); a base
problem in English; a sample solution; some tests. This was followed
by different domain and programming keywords and a prompt to
generate another exercise (statement, solution and tests). The au-
thors read half of the 240 exercises generated and 75% of those
were reasonable, i.e. they made sense, incorporated the prompted
domain or programming concept, and included appropriate code.
However, 30% of the exercises had no solution or no tests. When
both existed, only 31% of the solutions passed the tests.

"https://github.com/openai/human-eval

Michel Wermelinger

Write a program that will read the amount of rainfall for each day.

A negative value of rainfall should be rejected, since this is invalid and inadmissible.
The program should print out the number of valid recorded days,

the number of rainy days, the rainfall over the period, and

the maximum amount of rain that fell on any one day.

Use a sentinel value of 9999 to terminate the program.

def main():

Main function

rainy_days = 0
total_rainfall = @
max_rainfall = @
valid_days = 0
rainfall = int(input("Enter the rainfall for a day: "))
while rainfall != 9999:
if rainfall >= 0:
valid_days += 1
total_rainfall += rainfall
if rainfall > max_rainfall:
max_rainfall = rainfall
if rainfall > 0:
rainy_days += 1

rainfall = int(input("Enter the rainfall for a day: "))

print("The number of valid days is:", valid_days)
print("The number of rainy days is: rainy_days)
print("The total rainfall is:", total_rainfall)
print("The maximum rainfall is:", max_rainfall)

Figure 1: An inline suggestion for Ebrahimi’s rainfall prob-
lem variant.

The authors also asked Codex to generate line-by-line explana-
tions for three functions and a class: only two thirds of the gener-
ated lines were correct. Codex often got the operator wrong, e.g.
speed > 100 was explained as ‘speed is less than 100’.

In summary, previous research shows that while Codex solves a
good percentage of problems on the first attempt, it requires many
attempts for most problems, and it never solves quite a number of
problems. None of the related work captures how most students
will use Codex: interactively in an IDE.

3 USING COPILOT

Copilot is accessible via a plugin for several editors. I used Visual
Studio Code within the 60-day free Copilot trial period GitHub
users have. It’s unlikely results would be different with other IDEs
as they are only interfaces to Copilot.

In VS Code, Copilot attempts to provide an inline suggestion
when the user pauses typing or presses Alt-\ or Enter. The sugges-
tion, in italic grey font at the cursor position, may complete the
current line or may be several lines long (Figure 1). The user can
cycle through alternative suggestions with Alt-[or Alt-]. Pressing
Tab accepts the current suggestion. Pressing Ctrl-Enter requests
Copilot to generate up to 10 suggestions and display the unique
ones in a separate panel. Each suggestion has an acceptance button,
which copies it to the editor.

The following sections detail the prompts used, i.e. the code and
comments in the editor at the time a suggestion is asked for. All code
is in Python, to allow comparing with previous work and because
it is the introductory programming language at our institution.

Copilot can be configured in the Settings page of the user’s
GitHub account. Users can choose whether to see suggestions that
match public code and whether to allow GitHub and OpenAl to
use the submitted prompts for training. I declined both. The plugin
doesn’t indicate which suggestions match public code, so students

https://github.com/openai/human-eval

Using GitHub Copilot to Solve Simple Programming Problems

are likely to hide them to avoid unintended plagiarism. Although un-
likely, allowing to use the prompts for training might have changed
the results over the course of experiencing Copilot.

4 GENERATING CODE

I used Copilot with two CS1 problem sets. This section presents the
qualitative results, illustrated with selected examples. I highlight
Copilot’s mistakes with # wrong and, due to limited space, I replace
repetitive generated code with an ellipsis.

4.1 Programming patterns

The use of programming and design patterns is grounded in cog-
nitive theories of how people construct and organise knowledge
and become problem-solving experts. Muller et al. [10] introduced
30 programming patterns, showing that they improve the students’
ability to solve problems. Patterns are step-by-step algorithmic tem-
plates and thus I wanted to check if they are suited to incremental
program construction as demonstrated by OpenAlL

For our introductory programming module, I created a small
set of patterns [11] and 8 exercises delivered via the CodeRunner
plugin [9] for Moodle. Exercises include printing how many images
fit in a disk (formula pattern), the strength of an earthquake given
its Richter magnitude (case analysis), printing the list of values
outside a range (list filtering), and printing the percentage of such
values (pattern combination). For the last exercise, students are
expected to combine the list filtering and formula patterns. For
every other exercise, the CodeRunner editor shows the needed
pattern as Python comments. Students write the corresponding code
line(s) after each comment. CodeRunner runs some tests on their
code and presents the results. Students have unlimited attempts:
the exercises aren’t graded. They just help students practice the
instantiation of patterns and the basics of programming.

4.1.1 Method. I copied each exercise to VS Code, as in Figure 2:
I put the problem statement as-is within a docstring, keeping the
instructions to students and the references to our materials. On
CodeRunner, each problem description includes a table of example
inputs and corresponding outputs. I translated the HTML table to
Markdown, within the docstring. The CodeRunner editor content
(the comments with the pattern) was copied unchanged.

I pressed Enter at the end of each comment line to make Copilot
suggest the code for that step of the pattern (see line 22 in Figure
2), until the whole program was generated. If it was incorrect or
could be improved, I added a prompt (a comment with an English
instruction) after the code, like in OpenAI’s Codex examples.

4.1.2 Results. Copilot solved 4 of the 8 problems on the first at-
tempt. It extracted the relevant information from the docstring,
translated the general pattern into problem-specific code, found
the right formula even if it was not given, and used appropriate
variable names, like kelvin_values instead of output_list in Figure
2. When Copilot used the generic name from the pattern, prompt
‘Rename ... to ... led to the desired improvement.

Copilot generated the correct algorithm for one exercise but it
failed the automated test because Copilot added one word to the
output message. Copilot failed another exercise because it wrote
code with an undefined variable:

SIGCSE 2023, March 15-18, 2023, Toronto, ON, Canada

"""This question is about Block 2 Section 2.1.4 (Transform).

1

2

3 Consider again a list of hourly temperature readings from a fridge, in degrees Celsius,
4 as described in Question 9. Write a program that prints the list of temperatures,

5 but in degrees Kelvin. Find the appropriate formula online.
6
7
8

The answer box contains a simplification of Pattern 2.4 (List transformation) as comments,
to get you started. Write the corresponding code beneath each comment. Use variable names

9 appropriate to the problem at hand instead of the generic names used by the pattern.

10 The first step has been done for you.

12 For example:

14 Input | Result

15 |-

16 [0, 5.85, -2.5] | [273.15, 279.0, 270.65]

17 e

19 # initialise the input_list with the given values

20 celsius_values = get_input()

21 # initialise the output_list to the empty list

22 kelvin_values = []

23 # for each input_value of the input_list:

24 # transform the input_value into an output_value

25 # append the output_value to the output_list
26 # print the output_list

Figure 2: The list transformation exercise, with an inline
suggestion (line 22).

if input values fall into the first case:

if magnitude < 4:

compute outputs according to the first case
print("That_is_a_minor_earthquake.")

print the outputs

print (output) # Wrong

Replacing ‘compute outputs’ with ‘compute the description’ made
Copilot assign each string to a description variable and print it at the
end, as our students are intended to use the pattern. Impressively,
after I changed the last comment to ‘print the full message’ and
gave the prompt ‘Now let the description be just the adjaective’
(note the typo), Copilot generated:

if input values fall into the first case:

if magnitude < 4:

compute the description according to the first case
description = "minor"

print the full message
print("That_is_a.{}_earthquake.".format(description))

The hardest exercise asks students to generate a pseudo-random
number sequence until the seed is repeated. The problem statement
tells students they must change the given pattern. Copilot follows
the pattern and produces a while-loop (while value != seed) that
is never entered because the first value is the seed. After several
attempts, prompt ‘Modify the above program so that it computes
and prints the second value before entering the loop’ did generate
the required additional code, but in the separate suggestions, which
required editing to integrate them in the program.

For the list transformation exercise (Figure 2), Copilot called
a function transform on each value. Prompted with def trans after
the code, Copilot wrote a correct Celsius to Kelvin transformation
function, with a good docstring.

4.1.3 Analysis. One the one hand, it is notable how Copilot sifts the
chaff from the grain in the problem statement, including extracting
the output messages from Markdown tables, and how it defines
auxiliary functions as needed.

SIGCSE 2023, March 15-18, 2023, Toronto, ON, Canada

On the other hand, it fails to solve half of these simple problems.
While Copilot can be instructed to incrementally fix or improve a
program, the user must know exactly what they want and find the
right words to communicate their intentions. It’s easier and quicker
to edit the code directly.

Copilot sometimes uses constructs novice programmers might
not know about, like list comprehensions. How students will react
to such suggestions remains to be seen.

4.2 The rainfall problem

4.2.1 Method. To directly compare Copilot and Davinci, I asked
Copilot to solve the same rainfall problem variants as Finnie-Ansley
et al. For each one, the prompt was a docstring with the problem
description given in Table 2 of [4], followed by def, to make Copi-
lot suggest the function header and the body. Since the problem
variants are similar, I didn’t accept Copilot’s suggestions, to reduce
any learning effect that might increase the correctness or reduce
the variety of the suggestions for subsequent variants.

The rainfall problem asks for the mean of the valid numbers
(what is valid depends on the variant) up to the first sentinel value.
If there are no valid numbers, the mean is undefined. Most variants
don’t state what to return in that case or if we can assume the input
to have a valid number. I took the latter stance. Finnie-Ansley et al.
tested Davinci’s suggestions with the empty input and with only
invalid numbers, but it’s unclear what outcome their tests expect.

4.2.2 Results. Copilot made for every variant 1-3 inline sugges-
tions and less than 10 unique separate suggestions, but often they
were essentially the same, differing in the names of variables, the
docstring (or its absence), the messages in input() and print(), and
minor coding variations, e.g. iterating with a repeat-until loop or
an infinite while-loop with a break.

Soloway’s original problem [14] is the simplest: read numbers
from the input until the sentinel occurs and compute their mean.
All of Copilot’s suggestions are correct.

Simon [13] asks to treat negative values as if they were zeroes.
Copilot does not do that: it adds all values until the sentinel.

Guzdial et al. [6] ask for the mean of the positive values; there is
no sentinel. All Copilot suggestions are correct, except two. One
does if value < 0: continue instead of <= o to skip non-positive val-
ues. The other uses 1en to divide the sum by the length of the list,
even though this is the only variant stating that one must divide
by the number of valid values.

Lakanen et al. [7] ask for the mean of the positive numbers up
to the first value exceeding 998. The description uses the word
‘sentinel’, but it is not a fixed value like in the other variants. This
was the only variant Davinci couldn’t solve, and neither can Copi-
lot: one suggestion breaks the loop on 999 only; the others don’t
check for a sentinel. All suggestions (except the one with the break
statement) have an unnecessary else: continue branch, a striking
example of the lack of variety.

Fisler [5] asks for the mean of the non-negative values up to the
sentinel, which is optional. The statement is ‘Design a program
[...] that consumes a list of numbers [...] entered by a user. The
list may contain [the sentinel]’. Contrary to all other variants, this
leads Copilot to generate two kinds of algorithms: while-loops that
use input() and break upon reading the sentinel, and for-loops that

Michel Wermelinger

iterate over a list parameter. Only one for-loop suggestion and two
while-loop suggestions are correct: the others use len() or don’t
check whether a value is negative. This variant elicited the most
varied suggestions: some use a while-loop to read the values up to
the sentinel into a list, followed by a for-loop to add and count the
non-negative values; others use sun() / len() and one uses slicing.

Ebrahimi [3] asks for a program that reads rainfall amounts
(negative values are invalid) until the sentinel occurs and then
outputs the number, total and maximum of the valid values and
‘the number of rainy days’, which isn’t further explained. This was
the variant on which Davinci performed worst, with suggestions
passing on average 2 of the 10 tests. Surprisingly, Copilot’s first
inline suggestion (Figure 1) and most other ones are correct. The
incorrect suggestions compute the mean or use the wrong variable
when printing. Some suggestions unnecessarily store the values
read in a list that isn’t further used. The prompt ‘The next code
doesn’t create a rainfall list’ removed it.

Finnie-Ansley et al. [4] ask for the mean, rounded to one decimal
place, of the non-negative values up to the sentinel or the end of
the list, whichever occurs first. If the input is None (instead of a list
of numbers) or the mean is undefined, then the output should be
-1.0. Copilot’s suggestions are all incorrect. They use len(), don’t
round the result, don’t stop at the sentinel, or they check if the sum
(rather than the count) of valid values is zero to return -1. The first
inline suggestion is almost correct: it doesn’t round.

4.2.3 Analysis. For every variant, Finnie-Ansley et al. found that
Davinci generated a variety of attempts, including doing one or
two passes over the list, with a for-loop or a while-loop. Copilot
generates one approach, possibly combined with len(), per variant:
a single-pass for-loop if the input is a list and a single-pass while-
loop if the standard input is read. It generates both approaches only
for Fisler’s variant, likely due to both ‘entered by a user’ and ‘list’
occurring in the problem description.

Looking more closely at the suggestions for each variant, they
seem to be obtained largely by combining, say, two different names
for one variable, two docstrings, two ways of using the while-loop,
etc. Even though the code of each suggestion is unique, algorithmi-
cally they are essentially the same.

There are at least two reasons why Copilot’s suggestions are
much less varied than Davinci’s. First, Copilot generates about
10-12 suggestions per variant, whereas Davinci was asked for 50.
Second, Copilot’s temperature is probably low, because lower tem-
peratures tend to give more precise results while higher tempera-
tures, as used with Davinci, tend to produce more random results.

The lack of variety led to more polarised correctness results
than those reported by Finnie-Ansley et al. The suggestions tend
to be mostly (or exclusively) correct or incorrect. Davinci found a
solution for 6 of the 7 variants; Copilot solved 4 variants.

Also to note, the separate suggestions, which take a few seconds
to appear, frequently do not improve on the inline suggestions,
which are almost immediate. This may be on purpose, to provide a
good user experience and avoid further requests to the servers.

5 GENERATE TESTS

Students are sometimes asked to write tests in order to think about
edge cases. Can Copilot generate comprehensive tests?

Using GitHub Copilot to Solve Simple Programming Problems

The programming pattern exercises didn’t ask students for tests,
so I requested tests for the rainfall problems, using the prompt def
test_, sometimes after the code Copilot had generated, sometimes
after the problem description, to mimic test-driven development,
in which tests are written before the code.

Typical suggestions, both inline and separate, both after the
problem and after the code, look like Listing 1. While some tests are
correct, most are wrong and extend a data sequence in a repetitive
way. Copilot stops midway through a list, which is a syntax error.

Using a different prompt and requesting the tests line by line
(with Enter) starts off well...

Write unit tests below this line
def test_harvest_none():
assert harvest(None) == -1.0
def test_harvest_empty():
assert harvest([]) == -1.0
def test_harvest_one():
assert harvest([1]) == 1.0
def test_harvest_two():
assert harvest([1, 2]) == 1.5
def test_harvest_three():
assert harvest([1, 2, 3]) == 2.0

... but Copilot again settles into a repetitive testing pattern. Describ-
ing the required unit tests brings more variety:

A unit test with positive and negative values
def test_harvest_positive_negative():
assert harvest([1, 2, -3]) == 1.5
def test_harvest_negative_positive():
assert harvest([-1, 2, 3]1) == 2.0
def test_harvest_negative_negative():

assert harvest([-1, -2, -3]) == -1.0
def test_harvest_positive_positive():
assert harvest([1, 2, 3]) == 2.0

Wrong

After leaving a blank line, continuing to press Enter and Tab gener-
ates this:

A unit test with a sentinel
def test_harvest_sentinel():

assert harvest([1, 2, 3, -999]) == 2.0
def test_harvest_sentinel_positive():

assert harvest([1, 2, 3, -999, 4]) == 2.5 # Wrong
def test_harvest_sentinel_negative():

assert harvest([1, 2, 3, -999, -41) == 1.5 # Wrong

The generated comment suggests that Copilot ‘knows’ that it has
yet to test for the sentinel value, but the wrong tests show that it
has no understanding of the sentinel’s effect.

6 GENERATE EXPLANATIONS

Explaining code allows students to ‘think aloud’ about their code
and educators to check the students’ understanding. Codex can
translate code to natural language. How does Copilot fare?

I typed # at the end of lines of code to request a comment from
Copilot. Figure 3 shows the comments generated for a wrong sug-
gestion. (The file also contains the problem description, not shown
in the figure.) Most comments are literal translations of the code,
but some explain the role of a number or variable: -999 is the sen-
tinel, the 1 in the last line is the number of decimal places and count
is the number of non-negative values. Whether these comments are
enough to make students realise that the code counts all numbers
instead of the valid ones remains to be seen.

SIGCSE 2023, March 15-18, 2023, Toronto, ON, Canada

def harvest(list):
if list is None:
return -1.0

**

if the list is None, return -1.0

else:
sum = 0 # initialize the sum to @
count = 0@ # initialize the count to @
for i in list: # for each value in the list
if 1 == -999: # if the value is the sentinel, break
break
else: # otherwise, add the value to the sum and increment the count
sum += i
count += 1
if count == 0: # if there are no non-negative values, return -1.0
return -1.0
else: # otherwise, return the average of the non-negative values

return round(sum/count, 1) # round the average to 1 decimal place

Figure 3: Comments generated for the Finnie-Ansley variant.

Generated comments may explain unknown constructs to stu-
dents. Here are the comments generated for a suggestion for Soloway’s
variant. I moved some comments one line up to improve the layout.
total = 0@
count = @

while True:
try: # try to read in a rainfall value

number = int(input("Enter_a_number:_"))
if the value is 99999, break out of the loop
if number == 99999:

break

total += number
count += 1
if the value is not an integer, print an error
message
except ValueError:
print("Invalid_input")
continue to the next iteration of the loop
continue
print the average of the rainfall values
print("The_average_is:_{}".format(total / count))

Copilot explains the try ... except, break and continue constructs,
but not the format syntax.

The prompt ‘Explain the code above:’ (the colon seems crucial)
also generates text. If the file includes the problem statement, Copi-
lot just repeats it as the explanation. Without the problem statement,
Copilot attempts to summarise what the code does, without explain-
ing how it works. For example, for a correct solution to Ebrahimi’s

variant, Copilot generated:

The code above is a program that asks the user to
enter rainfall for a day. The user will enter 9999 to
indicate that they are finished entering rainfall. The
program will then print the number of valid days,
the number of rainy days, the total rainfall, and the
maximum rainfall.

If we type ‘1. after the prompt to explain the code, Copilot, like
Codex [12], generates a list of statements. For the same 23-line
program, the generated 14-step list formed this text:

The code above is a program that asks the user to
enter rainfall for a day. The rainfall is stored in a
list. The rainfall is checked to see if it is valid. If the
rainfall is valid, the rainfall is added to the list. The
rainfall is checked to see if it is the maximum rainfall.
If the rainfall is the maximum rainfall, the maximum
rainfall is updated. The rainfall is checked to see if it

SIGCSE 2023, March 15-18, 2023, Toronto, ON, Canada

Michel Wermelinger

Listing 1: A test function for the rainfall variant of Finnie-Ansley et al.

def test_harvest():

W

Test the harvest function with various inputs.

W

assert harvest([]) == -1.0

assert harvest([1, 2, 3, 4, 5]) == 3.0

assert harvest([1, 2, 3, 4, 5, -999]) == 3.0

assert harvest([1, 2, 3, 4, 5, -999, 6, 7, 8, 9, 10]) == 5.5
assert harvest([1, 2, 3, 4, 5, -999, 6, 7, 8, 9, 10, -9991)
assert harvest([1, 2, 3, 4, 5, -999, 6, 7, 8, 9, 10, -999,

assert harvest([1, 2, 3, 4, 5, -999, 6, 7, 8, 9, 10, -999,

23, 24, 25, -999]) == 13.5 # Wrong
assert harvest([1,

is greater than 0. If the rainfall is greater than 0, the
rainy days is updated. The total rainfall is updated.
The number of valid days is updated. The number of
rainy days is updated. The total rainfall is updated.
The maximum rainfall is updated. The code prints the
number of valid days, the number of rainy days, the
total rainfall, the maximum rainfall, and the average
rainfall.

The step-by-step description is repetitive, sometimes unclear, misses
the check for the sentinel in the code, puts some steps in the wrong
order, and wrongly states that the code prints the average rainfall.

7 CONCLUDING REMARKS

The first guiding question was about Copilot’s performance com-
pared with Davinci’s, in terms of correctness and variety of answers.
Comparing my results to those cited about Davinci, it seems clear
that Copilot fares less well on both accounts: as observed in the
code, tests and explanations generated, Copilot’s suggestions often
are wrong, include unnecessary elements or are mainly ‘variations
on a theme’, possibly due to a low default temperature.

Sometimes Copilot seems to have an uncanny understanding
of the problem, able to extract the relevant details from text and
tables of examples, while ignoring student instructions and refer-
ences to materials. Other times, Copilot looks completely clueless,
generating gibberish, like irrelevant lists of imports.

The second guiding question probed if Copilot can be interac-
tively led to a correct answer. As in the first question, the examples
provide a sobering reminder that, in spite of all the hype, using
tools like Copilot can be a frustrating ‘hit and miss’ affair. Copilot
most often does not understand our instructions to fix or improve
the code it generated unless we formulate them in a very specific
way. I felt like Gandalf trying to open the Doors of Durin.

Neither this nor previous work has studied how students will
use Codex and Copilot in practice. Even without such a study, some
educated guesses of what the future holds can be made.

Finn-Ansley et al. note that Codex poses challenges to academic
integrity that can’t be ‘wished away’: educators must adapt to the
new reality. This is even more so with Copilot’s free IDE plugin.

While less performant than Davinci, Copilot does generate code
(and with some editing, tests and explanations) that could have been
written by humans. Detecting and punishing the use of Copilot is

Wrong
== 5.5 # Wrong
11, 12, 13, 14, 15]) == 7.5 # Wrong

11, 12, 13, 14, 15, -999, 16, 17, 18, 19, 20, -999, 21, 22,

impossible and futile. A more fruitful approach is to adopt these
tools and educate students and colleagues about their advantages
and limitations. Knowing what Copilot is good at and what it can’t
do helps students and educators understand what they need to
learn, teach and assess in an age where up to 40% of code is written
by Copilot, when it is used [2].

Copilot can provide a first helpful attempt at a problem, but
students still need to know a language’s syntax and semantics well,
in order to spot and modify Copilot’s often incorrect suggestions.

Copilot’s ‘explanations’ may help students understand unfamil-
iar constructs and detect errors in the code, but they mostly describe
what the code does at a low level of detail and sometimes omit im-
portant aspects. Students still need to learn how to write clear,
high-level, synoptic documentation and they still need to figure out
why some code doesn’t work, in order to fix it.

Copilot can provide several suggestions, but to be productive,
students must be able to quickly read and understand code without
running it, in order to choose the correct suggestion or to combine
the correct parts from different suggestions.

Copilot quickly completes comments, code lines and individual
tests with hardly any syntax errors. Students will spend less time
typing code and understanding compiler errors, and work through
more exercises. Lecturers and TAs can focus more on documenta-
tion, testing, debugging and program comprehension.

Educators should stop ‘re-dressing’ old toy problems that only
have 1-2 sensible solutions, because Copilot’s first suggestion will
likely be correct, readable and the simplest one, thus restricting
the learning opportunities for coding, debugging and algorithmic
thinking, compared to problems with interesting ‘wrinkles’.

Finnie-Ansley et al. note that students will likely get partial credit
if they submit any of Davinci’s suggestions, since almost each one
passes some tests. This also happens with Copilot. Educators may
need to increase the use of all-or-nothing grading, to make students
analyse and combine partially correct solutions.

As this experience shows, Copilot is a useful springboard to
productively solve CS1 problems, but the algorithmic thinking,
program comprehension, debugging and communication skills are
as needed as ever. As Jean-Baptiste Karr observed: the more things
change, the more they stay the same.

Using GitHub Copilot to Solve Simple Programming Problems

REFERENCES

[1] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira

[7

[

Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish
Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov,
Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe
Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam,
Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage,
Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam
McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. https://doi.org/10.48550/ARXIV.2107.03374
Thomas Dohmke. 2022. GitHub Copilot is generally available to all develop-
ers. GitHub blog. https://github.blog/2022-06-21-github- copilot-is-generally-
available-to-all-developers

Alireza Ebrahimi. 1994. Novice Programmer Errors: Language Constructs and
Plan Composition. Int. J. Hum.-Comput. Stud. 41, 4 (Oct. 1994), 457-480. https:
//doi.org/10.1006/ijhc.1994.1069

James Finnie-Ansley, Paul Denny, Brett A. Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The Robots Are Coming: Exploring the Implications of
OpenAlI Codex on Introductory Programming. In Australasian Computing Educa-
tion Conference (Virtual Event, Australia) (ACE ’22). Association for Computing
Machinery, New York, NY, USA, 10-19. https://doi.org/10.1145/3511861.3511863
Kathi Fisler. 2014. The Recurring Rainfall Problem. In Proceedings of the Tenth
Annual Conference on International Computing Education Research (Glasgow,
Scotland, United Kingdom) (ICER ’14). Association for Computing Machinery,
New York, NY, USA, 35-42. https://doi.org/10.1145/2632320.2632346

Mark Guzdial, Rachel Fithian, Andrea Forte, and Lauren Rich. 2003. Report on
Pilot Offering of CS1315 Introduction to Media Computation With Comparison to
CS1321 and COE1361. Technical Report. Georgia Tech.

Antti-Jussi Lakanen, Vesa Lappalainen, and Ville Isométtonen. 2015. Revisiting
Rainfall to Explore Exam Questions and Performance on CS1. In Proceedings of
the 15th Koli Calling Conference on Computing Education Research (Koli, Finland)

—
&

[11

[12

[13

(14

]

SIGCSE 2023, March 15-18, 2023, Toronto, ON, Canada

(Koli Calling °15). Association for Computing Machinery, New York, NY, USA,
40-49. https://doi.org/10.1145/2828959.2828970

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi
Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas
Hubert, Peter Choy, Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun
Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov, James
Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. 2022. Competition-Level Code
Generation with AlphaCode. https://doi.org/10.48550/ARXIV.2203.07814
Richard Lobb and Jenny Harlow. 2016. Coderunner: A Tool for Assessing
Computer Programming Skills. ACM Inroads 7, 1 (Feb. 2016), 47-51. https:
//doi.org/10.1145/2810041

Orna Muller, David Ginat, and Bruria Haberman. 2007. Pattern-Oriented In-
struction and Its Influence on Problem Decomposition and Solution Construc-
tion. In Proceedings of the 12th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education (Dundee, Scotland) (ITiCSE "07). As-
sociation for Computing Machinery, New York, NY, USA, 151-155. https:
//doi.org/10.1145/1268784.1268830

Paul Piwek, Michel Wermelinger, Robin Laney, and Richard Walker. 2019. Learn-
ing to Program: From Problems to Code. In Proceedings of the 3rd Conference
on Computing Education Practice (Durham, United Kingdom) (CEP ’19). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 14, 4 pages.
https://doi.org/10.1145/3294016.3294024

Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic
Generation of Programming Exercises and Code Explanations Using Large Lan-
guage Models. In Proceedings of the 2022 ACM Conference on International Com-
puting Education Research - Volume 1 (Lugano and Virtual Event, Switzerland)
(ICER °22). Association for Computing Machinery, New York, NY, USA, 27-43.
https://doi.org/10.1145/3501385.3543957

Simon. 2013. Soloway’s Rainfall Problem Has Become Harder. In Learning and
Teaching in Computing and Engineering. IEEE, 130-135. https://doi.org/10.1109/
LaTiCE.2013.44

Elliot Soloway. 1986. Learning to Program = Learning to Construct Mechanisms
and Explanations. Commun. ACM 29, 9 (Sept. 1986), 850-858. https://doi.org/10.
1145/6592.6594

https://doi.org/10.48550/ARXIV.2107.03374
https://github.blog/2022-06-21-github-copilot-is-generally-available-to-all-developers
https://github.blog/2022-06-21-github-copilot-is-generally-available-to-all-developers
https://doi.org/10.1006/ijhc.1994.1069
https://doi.org/10.1006/ijhc.1994.1069
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/2632320.2632346
https://doi.org/10.1145/2828959.2828970
https://doi.org/10.48550/ARXIV.2203.07814
https://doi.org/10.1145/2810041
https://doi.org/10.1145/2810041
https://doi.org/10.1145/1268784.1268830
https://doi.org/10.1145/1268784.1268830
https://doi.org/10.1145/3294016.3294024
https://doi.org/10.1145/3501385.3543957
https://doi.org/10.1109/LaTiCE.2013.44
https://doi.org/10.1109/LaTiCE.2013.44
https://doi.org/10.1145/6592.6594
https://doi.org/10.1145/6592.6594

	Abstract
	1 Introduction
	2 Related work
	3 Using Copilot
	4 Generating code
	4.1 Programming patterns
	4.2 The rainfall problem

	5 Generate tests
	6 Generate explanations
	7 Concluding remarks
	References

